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Single Field Inflation
• In single field inflation, there is a single clock to determine how

inflation proceeds, think of this as the value of a scalar field φ

• Quantum fluctuations in this field just advance or retard the clock
in different regions of space

• Choosing a gauge where scalar field is unperturbed (comoving
gauge to leading order) is a preferred hypersurface - called
constant field or unitary gauge

φ(x, tu) = φ0(tu)

• Given that by assumption the universe is dominated by this scalar
field and it is homogenous in this frame, the only thing that the
action can be built out of is terms that depend on tu
• In EFT language, write down all possible terms that is consistent

with unbroken spatial diffeomorphism invariance in this slicing



Effective Field Theory
• In unitary gauge, there is only the metric to work with. In general

it transforms as a tensor

g̃µν(t̃, x̃i) =
∂x̃µ

∂xα
∂x̃ν

∂xβ
gαβ(t, xi)

• Note: to stay close to the inflationary literature, 0 will represent
coordinate rather than conformal time

• Consider the restricted set of gauge transformations that change
only the spatial coordinates

x̃i = xi + Li; t̃ = t

• Only component that is left invariant under this transformation is
g00; g00 is not invariant if Li depends on t.

• So the most general action is the most general function of g00



Effective Field Theory
• Now consider that g00u + 1 is a small metric perturbation. A general

function may be expanded around this value in a Taylor series

S =

∫
d4x
√
−g
[1
2
M2

PlR+

∞∑
n=0

1

n!
M4

n(tu)(g
00
u + 1)n

]
• Varying action with respect to gµν we get the Einstein equations

• Constant term gives a cosmological constant whereas the n = 1

term gives the effective stress tensor of the field in the background

H2 = − 1

3M2
Pl

[
M4

0 + 2M4
1

]
Ḣ +H2 = − 1

3M2
Pl

[
M4

0 −M4
1

]



K-inflation P (X,φ)
• EFT was built to cover the case of scalar field Lagrangian that is a

general function of its kinetic term and field value

L = P (X,φ)

where 2X = −gµν∂µφ∂νφ
• For a canonical scalar P = X − V (φ)

• The connection to EFT goes through defining the parameters

M4
n = (−X)n

∂nP

∂Xn

M4
0 = P , M4

1 = −XP,X and n = 2 defines the sound speed of
field fluctuations

c−2s = 1 +
2XP,XX
P,X



DBI
• An example coming from string inspired models is the

Dirac-Born-Infeld Lagrangian

L =
[
1−

√
1− 2X/T (φ)

]
T (φ)− V (φ),

where T (φ) is the warped brane tension and φ denotes the position
of the brane in a higher dimension

• If X/T � 1 then L = X − V , the same as a canonical scalar field



Effective Field Theory
• Friedmann equation thus associates n = 0, 1 with energy density

and pressure

M4
0 = −(3H2 + 2Ḣ)M2

Pl

M4
1 = ḢM2

Pl

• Now we an restore time slicing invariance or temporal diffs
allowing for a general change in the time coordinate

tu = t+ π(t, xi)

• In particle physics language this is the Stuckelberg trick and π is a
Stuckelberg field.

• To connect with the canonical scalar field treatment the field
fluctuation

φ(t, xi) = φ0(t) + φ1(t, x
i),



Effective Field Theory
• Scalar field transforms as scalar field

φ̃1 = φ1 − φ̇0π

• To get to unitary slicing φ̃1 = 0, so in alternate slicing

φ1 = φ̇0π

• Likewise the curvature perturbations are related by

R = HL +
HT

3
− ȧ

a
π

• Transformation particularly simple from a spatially flat slicing
where HL +HT/3 = 0, i.e. spatially unperturbed metric

R = − ȧ
a

φ1

φ̇0

= − ȧ
a
π

• Stuckelberg field is the unitary (comoving) gauge curvature



Effective Field Theory
• Each M4

n(tu = t+ π) and hence carry extra Taylor expansion
terms, these can be considered as inflationary “features” below and
are ignored in slow-roll

• Transformation to arbitrary slicing is given by

g00u =
∂tu
∂xµ

∂tu
∂xν

gµν

• In general, transformation mixes π and metric fluctuations δgµν

including terms like

π̇δg00, δgπ̇, ∂iπg
0i, ∂iπ∂jπδg

ij

in the canonical linear theory calculation, the first three are Ȧ, ḢL,
kB terms after integration by parts and the last is cubic order



Effective Field Theory
• Again we make use of the fact that sub horizon scales these metric

terms are subdominant

• In spatially flat gauge the domain of validity extends even through
the horizon if we neglect slow roll corrections

• In this case we can ignore the terms associated with the spatial
pieces of the metric and replace

g00u = −(1 + π̇)2 +
(∂iπ)2

a2

• Each g00u + 1 factor carries terms that are linear and quadratic in π

(g00u + 1)n = (−π̇)n
n∑
i=0

2n−in!

i!(n− i)!
Πi



Effective Field Theory
• So each M4

n term contributes from πn to π2n

Π = π̇

(
1− (∂iπ)2

a2π̇2

)
• For example M2

(g00u + 1)2 = π̇2

[
4 + 4π̇

(
1− (∂iπ)2

a2π̇2

)
+ π̇2

(
1− (∂iπ)2

a2π̇2

)2
]

= 4(π̇2 + π̇3 − π̇ (∂iπ)2

a2
) + . . .

implies both a cubic and quartic Lagrangian. To cubic order

Sπ =

∫
d4x
√
−g
[
−M2

PlḢ

(
π̇2 − (∂iπ)2

a2

)
+ 2M4

2 (π̇2 + π̇3 − π̇ (∂iπ)2

a2
) + . . .



Effective Field Theory
• Isolate the quadratic action

Sπ2 =

∫
d4x
√
−g
[
(−M2

PlḢ + 2M4
2 )π̇2 +M2

PlḢ
(∂iπ)2

a2

]
and identify the sound speed from ω = (k/a)cs

c−2
s = 1− 2M4

2

M2
PlḢ

; Π ∼ π̇
(

1− 1

c2s

)

using −Ḣ = εH2

Sπ2 =

∫
dtd3x(a3εH2)M2

Plc
−2
s

[
π̇2 − c2s

(∂iπ)2

a2

]
=

∫
dηd3x

z2H2M2
Pl

2

[(
∂π

∂η

)2

− c2s(∂iπ)2
]

where z2 = 2a2ε/c2s is the generalization of Mukhanov z



Effective Field Theory
• So a field redefinition canonically normalizes the field

u = zHπMPl

brings the EFT action to canonical form (assuming M4
n =const.)

Su =

∫
dηd3x

[(
∂u

∂η

)2

− c2s(∂iu)2 − 2u
∂u

∂η

d ln z

dη
+ u2

(
d ln z

dη

)2
]

=

∫
dηd3x

[(
∂u

∂η

)2

− c2s(∂iu)2 +
u2

z

d2z

dη2

]

which is the generalization of the u field of canonical inflation

• The equation of motion of this quadratic Lagrangian is

∂2u

∂η2
+ c2sk

2u− 1

z

d2z

dη2
u = 0



Effective Field Theory
• With ε=const. and cs =const, z ∝ a

1

z

d2z

dη2
≈ 2(aH)2

• Quantize this field assuming Bunch-Davies vacuum; 1/
√
E

normalization factor goes to 1/
√
kcs yielding modefunction

u =
1√
2kcs

(
1 +

i

ks

)
eiks

where the sound horizon is

s =

∫ aend

a

d ln a
cs
aH
≈ cs
aH



Effective Field Theory
• Curvature fluctuations then freezeout at ks� 1 (sound horizon

crossing) at a value

R = −Hπ = − cs

a
√

2ε
u = − cs

a
√

2ε

1√
2kcs

iaH

kcsMPl

≈ −iH
2k3/2

√
εcsMPl

• So

∆2
R =

k3|R|2

2π2
=

H2

8π2εcsM2
Pl

• Scale invariant to the extent that time translation invariance is exact

• Tilt comes from taking

d ln ∆2
R

d ln k
≡ nS − 1 = 2

d lnH

d ln k
− d ln ε

d ln k
− d ln cs
d ln k



Tilt
• Evaluate at horizon crossing where fluctuation freezes k = aH

d

d ln k
≈ d

d ln a

• So define additional parameters for the evolution

d lnH

d ln a
= −ε

d ln εH
d ln a

= 2(ε+ δ1)

d ln cs
d ln a

= σ1

to obtain

nS − 1 = −2ε− 2(ε+ δ1)− σ1 = −4ε− 2δ1 − σ1



Non Gaussianity
• Returning to the original π action, since M4

2 carries cubic term this
requires a non-Gaussianity

Sπ =

∫
d4x
√
−g
[
−M

2
PlḢ

c2s

(
π̇2 + c2s

(∂iπ)2

a2

)
+M2

PlḢ

(
1− 1

c2s

)(
π̇3 − π̇ (∂iπ)2

a2

)]
+ . . .

• For cs � 1, spatial gradients dominate temporal derivatives

∂0 → ω, ∂i → k, ω = kcs/a

and leading order cubic term is π̇(∂iπ)2

• Estimate the size of the non-Gaussianity by taking the ratio of
cubic to quadratic at cs � 1

π̇(∂iπ)2

a2π̇2
∼ kπrms

csa
where πrms =

(
k3|π|2

2π2

)1/2



Non Gaussianity
• Deep within the horizon u = 1/

√
2kcs and so

kπrms

csa
∼ k

csa

(
k2

2z2H2csM2
Pl

)1/2

∼
(
kcs
aH

)2
H

MPl
√
εcs

1

c2s

∼
(
kcs
aH

)2
∆R
c2s

< 1

• Since kcs/aH ∼ ω/H is a ratio of an energy scale to Hubble, the
bound determines the strong coupling scale

ωsc
H
∼ cs√

∆R
∼ 102cs

• For cs < 0.01 the strong coupling scale is near the horizon and the
effective theory has broken down before freezeout



Non Gaussianity
• Now consider a less extreme cs

• Here the effective theory becomes valid at least several efolds
before horizon crossing and we can make predictions within the
theory

• Not surprisingly non-Gaussianity is enhanced by these self
interactions and freezeout at kcs ∼ aH

kπrms

csa
∼ k

csa

(
1

εcsM2
Pl

)1/2

∼ kcs
aH

H√
εcsMPl

1

c2s

∼ ∆R
c2s

and so bispectrum is enhanced over the naive expectation by c−2s



Non Gaussianity
• More generally, each M4

n sets its own strong coupling scale

Ln
L2

∼ 1

These coincide if

M4
n

M4
2

∼
(

1

c2s

)n−2
which would be the natural prediction if the M2 strong coupling
scale indicated the scale of new physics and we take all allowed
operators as order unity at that scale



DBI
• Here

cs(φ,X) =
√

1− 2X/T (φ)

and

cn = (−1)n
M4

n

M4
2

=
(2n− 3)!!

2n−2

(
1

c2s
− 1

)n−2
satisfying the cs scaling of the EFT prescription



Gravitational Waves
• Gravitational wave amplitude satisfies Klein-Gordon equation

(K = 0), same as scalar field

Ḧ
(±2)
T + 2

ȧ

a
Ḣ

(±2)
T + k2H

(±2)
T = 0 .

• Acquires quantum fluctuations in same manner as φ. Lagrangian
sets the normalization

φ1 → H
(±2)
T

√
3

16πG

• Scale-invariant gravitational wave amplitude converted back to +

and × states H(±2)
T = −(h+ ∓ ih×)/

√
6)

∆2
+,× = 16πG∆2

φ1
= 16πG

H2

(2π)2



Gravitational Waves
• Gravitational wave power ∝ H2 ∝ V ∝ E4

i where Ei is the energy
scale of inflation

• Tensor-scalar ratio - various definitions - WMAP standard is

r ≡ 4
∆2

+

∆2
R

= 16εcs

• Tensor tilt:

d ln ∆2
H

d ln k
≡ nT = 2

d lnH

d ln k
= −2ε



Gravitational Waves
• Consistency relation between tensor-scalar ratio and tensor tilt

r = 16εcs = −8nT cs

• Measurement of scalar tilt and gravitational wave amplitude
constrains inflationary model in the slow roll context

• Comparison of tensor-scalar ratio and tensor tilt tests consistency
of canonical cs = 1 inflation and measures sound speed

• B modes formed as photons propagate – the spatial variation in the
plane waves modulate the signal: described by Boltzmann eqn.

∆Bpeak ≈ 0.024

(
Ei

1016GeV

)2

µK



Super Planckian Roll
• The larger ε is the more the field rolls in an e-fold

ε =
1

2csM2
Pl

(
dφ0

dN

)2

=
r

16cs

• Observable scales span ∆N ∼ 5 so

∆φ0 ≈ 5
dφ

dN
= 5(r/8)1/2Mpl ≈ 0.6(r/0.1)1/2Mpl

• Field must roll a super Planckian distance over the ∼ 60 efolds of
inflation

• Does this make sense as an effective field theory? Lyth (1997)

• Models like Monodromy are explicitly constructed to protect such
a long flat potential by invoking an underlying shift symmetry

• Like axion models, results in oscillatory potential



Generalized Slow Roll
• The slow roll derivation above assumes that the quantities ε, δ1 σ1

are nearly constant as well as small

• This is not required for having sufficient inflation, only ε� 1. δ1
and σ1 can be transiently large

• For example in Monodromy the slow roll potential has axion-like
oscillations whose frequency can be large

• Or large scale anomalies in the spectrum could indicate a transient
fast roll period

• What happens when we relax these conditions?



Generalized Slow Roll
• Define for convenience y =

√
2kcsu and use the sound horizon as

the temporal coordinate x = ks

s =

∫ aend

a

d ln a
cs
aH

and take ′ = d/d ln s = d/d lnx

• Mukhanov-Sasaki equation of motion becomes

d2y

dx2
+

(
1− 2

x2

)
y =

(
f ′′ − 3f ′

f

)
y

x2

f 2 = 8π2M2
Pl

εcs
H2

(
aHs

cs

)2

.

• RHS encapsulates the time variation of the slow roll parameters
and setting it to zero yields the ordinary slow roll approximation



Generalized Slow Roll
• Generalized slow roll approximation exploits this fact by taking an

iterative Green function approach

• LHS “homogeneous” equation is solved by

y0(x) =

(
1 +

i

x

)
eix

so approximating RHS with y ≈ y0 yields an external source

• Solve iteratively with Green function techniques

• Leading order solution

ln ∆2
R = −

∫ ∞
0

dx

x
W ′(x)G(lnx)

where −
∫∞
0
d lnxW ′(x) = 1 and determines freezeout

W (x) =
3 sin(2x)

2x3
− 3 cos(2x)

x2
− 3 sin(2x)

2x



Generalized Slow Roll
• Source function is

G(lnx) = −2 ln f +
2

3
(ln f)′

and corrections to the slow-roll approximation follow from Taylor
expanding G(lnx) = G(0) +G′(0) lnx+ . . .

• In general, slow variations freeze out at lnx ≈ 1.06 and variations
faster than ∆ lnx = 1 cause ringing or oscillations in the power
spectrum



Canonical Scalar Fields
• Supplemental notes more fully working out the canonical scalar

field case

• Establish the relationship between the Mukhanov-Sasaki equation
and the general perturbation equations from previous set.

• In what follows µ = 0 is conformal time again.



Canonical Scalar Fields
• A canonical scalar field is described by the action

Sφ =

∫
d4x
√
−g[−1

2
gµν∂µφ∂νφ− V (φ)]

• Varying the action with respect to the metric

Tµν =
1√
−g

δ

δgµν
√
−gLφ

gives the stress-energy tensor of a scalar field

T µν = ∇µφ∇νφ−
1

2
(∇αφ∇αφ+ 2V )δµν .

• Equations of motion∇µTµν = 0 with closure relations for
p(φ, ∂µφ), Π(φ, ∂µφ) or field equation∇µ∇µφ = V ′ (vary with
respect to φ)



Canonical Scalar Fields
• For the background 〈φ〉 ≡ φ0 (a−2 from conformal time)

ρφ =
1

2
a−2φ̇2

0 + V, pφ =
1

2
a−2φ̇2

0 − V

• So for kinetic dominated wφ = pφ/ρφ → 1

• And potential dominated wφ = pφ/ρφ → −1

• A slowly rolling (potential dominated) scalar field accelerates
expansion

• Can use general equations of motion of dictated by stress energy
conservation

ρ̇φ = −3(ρφ + pφ)
ȧ

a
,

to obtain the equation of motion of the background field φ

φ̈0 + 2
ȧ

a
φ̇0 + a2V ′ = 0 ,



Equation of Motion
• In terms of time instead of conformal time

d2φ0
dt2

+ 3H
dφ0
dt

+ V ′ = 0

• Field rolls down potential hill but experiences “Hubble friction” to
create slow roll. In slow roll 3Hdφ0/dt ≈ −V ′ and so kinetic
energy is determined by field position→ adiabatic – both kinetic
and potential energy determined by single degree of freedom φ0



Equation of Motion
• Likewise for the perturbations φ = φ0 + φ1

δρφ = a−2(φ̇0φ̇1 − φ̇2
0A) + V ′φ1 ,

δpφ = a−2(φ̇0φ̇1 − φ̇2
0A)− V ′φ1 ,

(ρφ + pφ)(vφ −B) = a−2kφ̇0φ1 ,

pφπφ = 0 ,

• For comoving slicing where vφ = B

φ1 = 0

and the field is spatially unperturbed - so all the dynamics are in
the metric



Sound Speed
• In this slicing δpφ = δρφ so the sound speed is δpφ/δρφ = 1.

• More generally the sound speed of the inflation is defined as the
speed at which field fluctuations propagate - i.e. the kinetic piece
to the energy density rather than the V ′φ1 potential piece - much
like in the background the +1 and −1 pieces of w.

• Non canonical kinetic terms– k-essence, DBI inflation – can
generate cs 6= 1 as do terms in the effective theory of inflation



Equation of Motion
• Scalar field fluctuations are stable inside the horizon and are a

good candidate for the smooth dark energy

• Equivalently, conservation equations imply

φ̈1 = −2 ȧ
a
φ̇1 − (k2 + a2V ′′)φ1 + (Ȧ− 3ḢL − kB)φ̇0 − 2Aa2V ′ .

• Alternately this follows from perturbing the Klein Gordon
equation∇µ∇µφ = V ′



Inflationary Perturbations
• Classical equations of motion for scalar field inflaton determine

the evolution of scalar field fluctuations generated by quantum
fluctuations

• Since the curvatureR on comoving slicing is conserved in the
absence of stress fluctuations (i.e. outside the apparent horizon,
calculate this and we’re done no matter what happens in between
inflation and the late universe (reheating etc.)

• But in the comoving slicing φ1 = 0! no scalar-field perturbation

• Solution: solve the scalar field equation in the dual gauge where
the curvature HL +HT/3 = 0 (“spatially flat” slicing) and
transform the result to comoving slicing



Transformation to Comoving Slicing
• Scalar field transforms as scalar field

φ̃1 = φ1 − φ̇0T

• To get to comoving slicing φ̃1 = 0, T = φ1/φ̇0, and
H̃T = HT + kL so

R = HL +
HT

3
− ȧ

a

φ1

φ̇0

• Transformation particularly simple from a spatially flat slicing
where HL +HT/3 = 0, i.e. spatially unperturbed metric

R = − ȧ
a

φ1

φ̇0



Spatially Flat Gauge
• Spatially Flat (flat slicing, isotropic threading):

H̃L + H̃T /3 = H̃T = 0

Af = Ã , Bf = B̃

T =

(
ȧ

a

)−1(
HL +

1

3
HT

)
L = −HT /k

• Einstein Poisson and Momentum

−3(
ȧ

a
)2Af +

ȧ

a
kBf = 4πGa2δρφ ,

ȧ

a
Af −

K

k2
(kBf ) = 4πGa2(ρφ + pφ)(vφ −Bf )/k ,

• Conservation

φ̈1 = −2
ȧ

a
φ̇1 − (k2 + a2V ′′)φ1 + (Ȧf − kBf )φ̇0 − 2Afa

2V ′ .



Spatially Flat Gauge
• For modes where |k2/K| � 1 we obtain

ȧ

a
Af = 4πGa2φ̇0φ1 ,

ȧ

a
kBf = 4πG[φ̇0φ̇1 − φ̇2

0Af + a2V ′φ1 + 3
ȧ

a
φ̇0φ1]

so combining Ȧf − kBf eliminates the φ̇1 term

• The metric source to the scalar field equation can be reexpressed in
terms of the field perturbation and background quantities

(Ȧf − kBf )φ̇0 − 2Afa
2V ′ − a2V ′′φ1 = f(η)φ1

• Single closed form 2nd order ODE for φ1



Mukhanov-Sasaki Equation
• Equation resembles a damped oscillator equation with a particular

dispersion relation

φ̈1 + 2
ȧ

a
φ̇1 + [k2 + f(η)]φ1

• f(η) involves terms with φ̇0, V ′, V ′′ implying that for a sufficiently
flat potential f(η) represents a small correction

• Transform out the background expansion u ≡ aφ1

u̇ = ȧφ+ aφ̇

ü = äφ1 + 2ȧφ̇1 + aφ̈1

ü+ [k2 − ä

a
+ f(η)]u = 0

• Note Friedmann equations say if p = −ρ, ä/a = 2(ȧ/a)2



Mukhanov-Sasaki Equation
• Using the background Einstein and scalar field equations, this

source term can be expressed in a surprisingly compact form

ü+ [k2 − z̈

z
]u = 0

• and

z ≡ aφ̇0

ȧ/a

• This equation is sometimes called the “Mukhanov Equation” and
is both exact (in linear theory) and compact

• For large k (subhorizon), this looks like a free oscillator equation
which can be quantized

• Let’s examine the relationship between z and the slow roll
parameters



Slow Roll Parameters
• Rewrite equations of motion in terms of slow roll parameters but

do not require them to be small or constant.

• Deviation from de Sitter expansion

ε ≡ 3

2
(1 + wφ)

=
3
2
(dφ0/dt)

2/V

1 + 1
2
(dφ0/dt)2/V

• Deviation from overdamped limit of d2φ0/dt
2 = 0

δ1 ≡
d2φ0/dt

2

Hdφ0/dt
(= −ηH)

=
φ̈0

φ̇0

(
ȧ

a

)−1
− 1



Slow Roll Parameters
• Friedmann equations:(

ȧ

a

)2

= 4πGφ̇2
0ε
−1

d

dη

(
ȧ

a

)
=
ä

a
−
(
ȧ

a

)2

=

(
ȧ

a

)2

(1− ε)

Take derivative of first equation, divide through by (ȧ/a)2

2
ȧ

a
(1− ε) = 2

φ̈0

φ̇0

− ε̇

ε

• Replace φ̈0 with δ1

ε̇ = 2ε(δ1 + ε)
ȧ

a

• Evolution of ε is second order in parameters



Slow Roll parameters
• Returning to the Mukhanov equation

ü+ [k2 + g(η)]u = 0

where

g(η) ≡ f(η) + ε− 2

= −
(
ȧ

a

)2

[2 + 3δ1 + 2ε+ (δ1 + ε)(δ1 + 2ε)]− ȧ

a
δ̇1

= − z̈
z

and recall

z ≡ a

(
ȧ

a

)−1
φ̇0



Slow Roll Limit
• Slow roll ε� 1, δ1 � 1, δ̇1 � ȧ

a

ü+ [k2 − 2

(
ȧ

a

)2

]u = 0

or for conformal time measured from the end of inflation

η̃ = η − ηend

η̃ =

∫ a

aend

da

Ha2
≈ − 1

aH

• Compact, slow-roll equation:

ü+ [k2 − 2

η̃2
]u = 0



Quantum Fluctuations
• Simple harmonic oscillator� Hubble length

ü+ k2u = 0

• Quantize the simple harmonic oscillator

û = u(k, η̃)â+ u∗(k, η̃)â†

where u(k, η̃) satisfies classical equation of motion and the
creation and annihilation operators satisfy

[a, a†] = 1, a|0〉 = 0

• Normalize wavefunction [û, dû/dη̃] = i

u(k, η) =
1√
2k
e−ikη̃



Quantum Fluctuations
• Zero point fluctuations of ground state

〈u2〉 = 〈0|u†u|0〉

= 〈0|(u∗â† + uâ)(uâ+ u∗â†)|0〉

= 〈0|ââ†|0〉|u(k, η̃)|2

= 〈0|[â, â†] + â†â|0〉|u(k, η̃)|2

= |u(k, η̃)|2 =
1

2k

• Classical equation of motion take this quantum fluctuation outside
horizon where it freezes in.



Slow Roll Limit
• Classical equation of motion then has the exact solution
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• For |kη̃| � 1 (late times,� Hubble length) fluctuation freezes in
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• Power spectrum of field fluctuations
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Slow Roll Limit
• RecallR = −(ȧ/a)φ1/φ̇0 and slow roll says(
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Thus the curvature power spectrum
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Tilt
• Curvature power spectrum is scale invariant to the extent that H is

constant

• Scalar spectral index
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• Evaluate at horizon crossing where fluctuation freezes
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where aH = −1/η̃ = k



Tilt
• Evolution of ε

d ln ε

d ln k
= − d ln ε

d ln η̃
= −2(δ1 + ε)
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• Tilt in the slow-roll approximation

nS = 1− 4ε− 2δ1



Relationship to Potential
• To leading order in slow roll parameters
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so ε� 1 is related to the first derivative of potential being small



Relationship to Potential
• And
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so δ1 is related to second derivative of potential being small. Very
flat potential.



Relationship to Potential
• Exact relations

1

8πG
(
V ′

V
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V
=
ε− δ1 − [δ21 − εδ1 − (a/ȧ)δ̇1]/3
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agree in the limit ε, |δ1| � 1 and |(a/ȧ)δ̇1| � ε, |δ1|

• Like the Mukhanov to slow roll simplification, identification with
potential requires a constancy of δ1 assumption


