
Predicting the CMB: Nucleosynthesis

• Light element abundance
 depends on baryon/photon
 ratio

• Existence and temperature
 of CMB originally predicted 
 (Gamow 1948) by light 
 elements + visible baryons

• With the CMB photon number
  density fixed by the temperature
  light elements imply dark baryons

Burles, Nollett, Turner (1999)

• Peaks say that photon-baryon ratio
  at MeV and eV scales are same



Spectrum

• FIRAS Spectrum

• Perfect Blackbody – µ=0 (t=1yr equilibrium)
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Comptonization

• Compton upscattering: y–distortion - seen in Galaxy clusters

• Redistribution: µ-distortion
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Recombination

• Hung up by Lyα opacity (2γ forbidden transition + redshifting)

• Frozen out with a finite residual ionization fraction
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Inflation and the Initial Conditions
• Inflation: (nearly) scale-invariant curvature (potential) perturbations

• Superluminal expansion → superhorizon scales → "initial conditions"

• Accompanying temperture perturbations due to cosmological redshift

• Potential perturbation Ψ = time-time metric perturbation
δt/t = Ψ → δT/T = –δa/a = –2/3δt/t = –2/3Ψ
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Sachs & Wolfe (1967); White & Hu (1997)



Gravitational Ringing
• Potential wells = inflationary seeds of structure

• Fluid falls into wells, pressure resists: acoustic
 oscillations



Plane Waves
• Potential wells: part of a fluctuation spectrum

• Plane wave decomposition



Harmonic Modes
• Frequency proportional to wavenumber: ω=kcs

• Twice the wavenumber = twice the frequency 
 of oscillation



Seeing Sound
• Oscillations frozen at recombination

• Compression=hot spots, Rarefaction=cold spots



Acoustic Oscillations

• Photon pressure resists 
compression in potential wells

• Acoustic oscillations

• Gravity displaces zero point
 Θ ≡ δT/T = –Ψ

• Oscillation amplitude = initial
displacement from zero pt.

Θ – (-Ψ) = 1/3Ψ
• Gravitational redshift: observed 

(δT/T)obs = Θ +Ψ 

oscillates around zero

First Extrema 

Hu & Sugyama (1995); Hu, Sugiyama & Silk (1997)Peebles & Yu (1970)
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Acoustic Oscillations

• Photon pressure resists 
compression in potential wells

• Acoustic oscillations

• Gravity displaces zero point
 Θ ≡ δT/T = –Ψ

• Oscillation amplitude = initial
displacement from zero pt.

Θ – (-Ψ) = 1/3Ψ
• Gravitational redshift: observed 

(δT/T)obs = Θ +Ψ 

oscillates around zero

Second Extrema

Hu & Sugyama (1995); Hu, Sugiyama & Silk (1997)Peebles & Yu (1970)
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Extrema=Peaks
• First peak = mode that just compresses
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Extrema=Peaks
• First peak = mode that just compresses

• Second peak = mode that compresses then
 rarefies: twice the wavenumber
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Extrema=Peaks
• First peak = mode that just compresses

• Second peak = mode that compresses then
 rarefies: twice the wavenumber

• Harmonic peaks: 1:2:3 in wavenumber
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Angular Peaks



Peaks in Angular Power
• The Anisotropy Formation Process
 



Projection into Angular Peaks

• Peaks in spatial power spectrum

• Projection on sphere

• Spherical harmonic 
decomposition

• Maximum power at l = kd

• Extended tail to l  << kd

• Described by spherical bessel 
function jl(kd)
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Projection into Angular Peaks

• Peaks in spatial power spectrum

• Projection on sphere

• Spherical harmonic 
decomposition

• Maximum power at l = kd

• Extended tail to l  << kd

• 2D Transfer Function
   T2(k,l) ~ (2l+1)2 [∆T/T]2 jl

2(kd)

Hu & Sugiyama (1995)

0.5 1 1.5 2

-3.5

-3

-2.5

-2

-1.5

0.5 1 1.5 2

lo
g(

k 
· M

pc
)

lo
g(

x)

SW

Acoustic

Streaming
Oscillations

0.5

1

1.5

2

2.5

log(l)

Projection
Oscillations

Main Projection

Transfer Function Bessel Functions



Doppler Effect
• Relative velocity of fluid and observer 

• Extrema of oscillations are turning points or velocity zero points

• Velocity π/2 out of phase with temperature

Velocity minima

Velocity maxima



Doppler Effect
• Relative velocity of fluid and observer 

• Extrema of oscillations are turning points or velocity zero points

• Velocity π/2 out of phase with temperature

• Zero point not shifted by baryon drag

• Increased baryon inertia decreases effect
meff V2 = const.   V ∝  meff

–1/2 = (1+R)–1/2
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Doppler Peaks?
• Doppler effect has lower amplitude and weak features from projection
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Acoustic Landscape
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The First Peak



Spatial Curvature
• Physical scale of peak = distance sound travels

• Angular scale measured: comoving angular
 diameter distance test for curvature

Flat

Closed



Curvature in the Power Spectrum
• Features scale with angular diameter distance

• Angular location of the first peak



First Peak Precisely Measured
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Standard Rulers
• Calibrating the Standard Rulers

• Sound Horizon

• Damping Scale
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The Second Peak



Baryon & Inertia
• Baryons add inertia to 
 the fluid

• Equivalent to adding mass 
 on a spring

• Same initial conditions

• Same null in fluctuations

• Unequal amplitudes of
 extrema
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Low Baryons

–

A Baryon-meter
• Low baryons: symmetric compressions and
 rarefactions
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Baryon Loading

–

A Baryon-meter
• Load the fluid adding to gravitational force

• Enhance compressional peaks (odd) over
 rarefaction peaks (even)



time
|

|
 ∆

T
 

A Baryon-meter

• Enhance compressional peaks (odd) over
 rarefaction peaks (even)

    e.g. relative suppression of second peak



Baryon Loading
• Baryons provide inertia 

• Relative momentum density
R = (ρb + pb)Vb / (ργ + pγ)Vγ ∝ Ωbh2

• Effective mass meff = (1 + R) 

• Baryons drag photons into 
potential wells → zero point ↑

• Amplitude ↑ 

• Frequency ↓   (ω ∝ meff
–1/2) 

• Constant R,  Ψ: (1+ R) Θ + (k2/3)Θ = –(1+ R) (k2/3)Ψ
 Θ + Ψ = [Θ(0) + (1+ R) Ψ(0)] cos [ kη/√3 (1+ R)] – RΨ

..
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η
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Hu & Sugiyama (1995)Alternating Peak Heights 



Baryons in the Power Spectrum



Second Peak Detected
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 Third Peak



Radiation and Dark Matter
• Radiation domination: 
    potential wells created by CMB itself

• Pressure support ⇒ potential decay ⇒ driving

• Heights measures when dark matter dominates



Driving Effects and Matter/Radiation

• Potential perturbation: k2Ψ = –4πGa2δρ generated by radiation

• Radiation →  Potential: inside sound horizon δρ/ρ pressure supported
δρ hence Ψ decays with expansion
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Driving Effects and Matter/Radiation

• Potential perturbation: k2Ψ = –4πGa2δρ generated by radiation

• Radiation →  Potential: inside sound horizon δρ/ρ pressure supported
δρ hence Ψ decays with expansion

• Potential →  Radiation: Ψ–decay timed to drive oscillation
–2Ψ + (1/3)Ψ = –(5/3)Ψ  → 5x boost

• Feedback stops at matter domination
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Driving Effects and Matter/Radiation

• Potential perturbation: k2Ψ = –4πGa2δρ generated by radiation

• Radiation →  Potential: inside sound horizon δρ/ρ pressure supported
δρ hence Ψ decays with expansion

• Potential →  Radiation: Ψ–decay timed to drive oscillation
–2Ψ + (1/3)Ψ = –(5/3)Ψ  → 5x boost

• Feedback stops at matter domination
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Dark Matter in the Power Spectrum



Third Peak Constrained
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Clean Laundry: Standard Rulers
• Calibrated the Standard Rulers

• Sound Horizon

• Baryon drag & Radiation driving
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Damping Tail



Diffusion Damping
• Diffusion inhibited by baryons

• Random walk length scale depends on time to 
 diffuse: horizon scale at recombination



Diffusion Damping
• Random walk during recombination

• Dissipation as hot meets cold

• Physical scale for standard ruler or calibration



Damping
• Perfect fluid: no anisotropic stresses due to scattering

isotropization; baryons and photons move as single fluid



Damping
• Perfect fluid: no anisotropic stresses due to scattering

isotropization; baryons and photons move as single fluid

• Fluid imperfections are related to the mean free path of the
photons in the baryons

λC = τ̇−1 where τ̇ = neσT a

is the conformal opacity to Thomson scattering



Damping
• Perfect fluid: no anisotropic stresses due to scattering

isotropization; baryons and photons move as single fluid

• Fluid imperfections are related to the mean free path of the
photons in the baryons

λC = τ̇−1 where τ̇ = neσT a

is the conformal opacity to Thomson scattering

• Dissipation is related to the diffusion length: random walk
approximation

λD =
√

NλC =
√

η/λC λC =
√

ηλC

the geometric mean between the horizon and mean free path



Damping
• Perfect fluid: no anisotropic stresses due to scattering

isotropization; baryons and photons move as single fluid

• Fluid imperfections are related to the mean free path of the
photons in the baryons

λC = τ̇−1 where τ̇ = neσT a

is the conformal opacity to Thomson scattering

• Dissipation is related to the diffusion length: random walk
approximation

λD =
√

NλC =
√

η/λC λC =
√

ηλC

the geometric mean between the horizon and mean free path

• λD/η∗ ∼ few %, so expect the peaks > 3rd to be affected by
dissipation



Equations of Motion
• Continuity

Θ̇ = −k

3
vγ , δ̇b = −kvb

where gravitational effects ignored and Θ ≡ ∆T/T .

• Euler

v̇γ = kΘ− k

6
πγ − τ̇(vγ − vb)

v̇b = − ȧ

a
vb + τ̇(vγ − vb)/R

where kΘ is the pressure gradient term, kπγ is the viscous stress
term, and vγ − vb is the momentum exchange term with
R ≡ 3ρb/4ργ the baryon-photon momentum ratio.



Viscosity & Heat Conduction
• Both fluid imperfections are related to the gradient of the velocity

kvγ by opacity τ̇ : slippage of fluids vγ − vb.

• Viscosity is an anisotropic stress or quadrupole moment formed by
radiation streaming from hot to cold regions

m=0

v

hot

hot

cold

v



Damping Term
• Oscillator equation contains a Θ̇ damping term

Θ̈ +
k2

τ̇
AdΘ̇ + k2c2

sΘ = 0

• Solve in the adiabatic approximation

Θ ∝ exp(i

∫
ωdη)

exp(i

∫
ωdη) = e±ik

∫
csdη exp[−(k/kD)2]

• Diffusion wavenumber, geometric mean between horizon and mfp:

k−2
D =

1

2

∫
dη

τ̇
Ad ∼

η

τ̇



Dissipation / Diffusion Damping
• Imperfections in the coupled fluid → mean free path λC in the baryons

• Random walk over diffusion scale: geometric mean of mfp & horizon
 λD ~ λC√N ~ √λCη >> λC

• Overtake wavelength:  λD ~ λ ; second order in λC/λ 

• Viscous damping for R<1;  heat conduction damping for R>1

N=η / λC

λD ~ λC√N

λ
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Silk (1968); Hu & Sugiyama (1995); Hu & White (1996)



Dissipation / Diffusion Damping
• Rapid increase at recombination as mfp ↑

• Independent of (robust to changes in) perturbation spectrum

• Robust physical scale for angular diameter distance test (ΩK, ΩΛ)
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Recombination



Standard Ruler
• Damping length is a fixed physical scale given properties at

recombination

• Gemoetric mean of mean free path and horizon: depends on
baryon-photon ratio and matter-radiation ratio



Curvature
• Calibration from lower peaks of Ωbh

2 and Ωmh2 allows
measurement of curvature from damping scale

• Independently of peak scale, confirms flat geometry
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Implications of Damping

• CMB anisotropies ~10% polarized
 
 dissipation –> viscosity –> quadrupole
 anisotropy –> linear polarization 

• Secondary anisotropies are observable
 
 dissipation –> exponential suppression of 
 primary anisotropy –> uncovery of secondary
 anisotropy
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Summary
• Precision cosmology has arrived

• Sound physics seen (pun intended)

• Consistent with inflationary initial conditions

• First peak nailed: nearly flat universe

• Second determined: baryonic dark matter

• Third measured: cold dark matter required
   but does not add up to critical: dark energy

• Damping detected: consistency checks passed   

 (consistent with Big Bang Nucleosynthesis)
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