Predicting the CMB: Nucleosynthesis
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Spectrum

FIRAS Spectrum
Perfect Blackbody — pu=0 (t=1yr equilibrium)
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Comptonization

Compton upscattering: y—distortion - seen in Galaxy clusters

Redistribution: Ll-distortion
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Recombination

Hung up by Lyo opacity (27 forbidden transition + redshifting)

Frozen out with a finite residual 1onization fraction

[
-
[\®)

104 103

10-1

102

2-level

[
<
(OS)

10-3 102

U
<
N



CMB Anisotropies:
The Acoustic Peaks
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Inflation and the Initial Conditions

Inflation: (nearly) scale-invariant curvature (potential) perturbations

!

Superluminal expansion — superhorizon scales — "initial conditions'

Accompanying temperture perturbations due to cosmological redshift

Time

Comoving

Space
Potential perturbation ¥ = time-time metric perturbation
ort=¥Y — O0T/T= Ooala = Ot/t = ¥

Sachs & Wolfe (1967); White & Hu (1997)



Gravitational Ringing

Potential wells = inflationary seeds of structure

Fluid falls into wells, pressure resists: acoustic
oscillations



Plane Waves

Potential wells: part of a fluctuation spectrum

Plane wave decomposition



Harmonic Modes

Frequency proportional to wavenumber: w=kc,

Twice the wavenumber = twice the frequency
of oscillation



Seeing Sound

Oscillations tfrozen at recombination

Compression=hot spots, Rarefaction=cold spots



Acoustic Oscillations

Photon pressure resists Oscillation = initial
compression 1n potential wells displacement from zero pt.

Acoustic oscillations O-(-¥)= V¥

Gravity displaces zero point Gravitational redshift: observed

oscillates around zero

First Extrema

Peebles & Yu (1970) Hu & Sugyama (1995); Hu, Sugiyama & Silk (1997)
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Acoustic Oscillations

Photon pressure resists Oscillation = initial
compression in potential wells displacement from zero pt.

Acoustic oscillations O-(-¥)= V¥

Gravity displaces zero point Gravitational redshift: observed
Q) 4 (0T/T)ohs= O +Y

oscillates around zero

Second Extrema

ATIT

—|¥)/3 0

Peebles & Yu (1970) Hu & Sugyama (1995); Hu, Sugiyama & Silk (1997)



Extrema=Peaks

First peak = mode that just compresses

Recombination

- N.B.: "compression" short

> for
compression inside
potential wells

k= /sound and
~ TV horizon rarefaction inside
—|'V)/3

potential hills



Extrema=Peaks

First peak = mode that just compresses

Second peak = mode that compresses then
rarefies: twice the wavenumber

Recombination Recombination
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Extrema=Peaks

First peak = mode that just compresses

Second peak = mode that compresses then
rarefies: twice the wavenumber

Harmonic peaks: 1:2:3 1n wavenumber

Recombination

ATIT

sound
horizon

k =m/
—|¥|/3

Recombination

AT/T

k =2k
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Angular Peaks



Peaks 1n Angular Power

The Anisotropy Formation Process



Projection into Angular Peaks

Peaks 1n spatial power spectrum Maximum power at /= kd

Projection on sphere Extended tail to / <<kd

Spherical harmonic Described by spherical bessel
decomposition function j(kd)
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Bond & Efstathiou (1987) Hu & Sugiyama (1995); Hu & White (1997)



Projection into Angular Peaks

Peaks in spatial power spectrum Maximum power at | =kd

Projection on sphere Extended tail to | <<kd

Spherical harmonic 2D Transfer Function
decomposition T2(k1) ~ (21+1)? [AT/T]? jA(kd)
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Hu & Sugiyama (1995)



Doppler Effect

Relative velocity of fluid and observer
Extrema of oscillations are turning points or velocity zero points

Velocity 1t/2 out of phase with temperature

Velocity maxima

YRS e” T
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Doppler Effect

Relative velocity of fluid and observer

Extrema of oscillations are turning points or velocity zero points
Velocity 1t/2 out of phase with temperature

Zero point not shifted by baryon drag

|_
Increased baryon inertia decreases effect =
M. V2 = const. V < mﬁff_”2 = (1+R e \
n
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Doppler Peaks?

Doppler effect has lower amplitude and weak features from projection
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Hu & Sugiyama (1995)



Relative Contributions
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Relative Contributions
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Acoustic Landscape
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The First Peak



Spatial Curvature

Physical scale of peak = distance sound travels

Angular scale measured: comoving angular
diameter distance test for curvature

Flat

Closed



Curvature 1n the Power Spectrum

Features scale with angular diameter distance

Angular location of the first peak



First Peak Precisely Measured
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Standard Rulers
Calibrating the Standard Rulers

Sound Horizon

Damping Scale




The Second Peak



Baryon & Inertia

Baryons add 1nertia to
the fluid

Equivalent to adding mass
on a spring

Same 1nitial conditions

Same null 1n fluctuations

Unequal amplitudes of
extrema



A Baryon-meter

Low baryons: symmetric compressions and
rarefactions
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A Baryon-meter
Load the fluid adding to gravitational force

Enhance compressional peaks (odd) over
rarefaction peaks (even)
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A Baryon-meter

Enhance compressional peaks (odd) over
rarefaction peaks (even)

e.g. relative suppression of second peak
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Baryon Loading

Baryons provide inertia Baryons drag photons into

Relative momentum density potential wells — zero point
R = (pp tPp)Vp / (Pyt P )V o Q. h° -~ Amplitude
Effective mass mq (1 +R) Frequency = (@ o< meg )

Constant R, ¥: (1+ )O+(k?%/3)0 =—(1+ ) (K2/3)¥
O+¥ =[0(0) +(1+ )F(0)] cos [ N3 (1+ )] - ¥
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Baryons in the Power Spectrum



Second Peak Detected
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Score Card
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Third Peak



Radiation and Dark Matter

Radiation domination:
potential wells created by CMB 1tself

Pressure support = potential decay = driving

Heights measures when dark matter dominates



Driving Effects and Matter/Radiation

Potential perturbation: kK2Y = —4nGa20p generated by radiation

Radiation — Potential: inside sound horizon 0p/p pressure supported
op hence ¥ decays with expansion

Hu & Sugiyama (1995)



Driving Effects and Matter/Radiation

Potential perturbation:

Radiation — Potential:

Potential - Radiation:

kK2Y = —4nGa20p generated by radiation

inside sound horizon 0p/p pressure supported
op hence ¥ decays with expansion

Y—decay timed to drive oscillation
2% + (1/3)¥ =—-(5/3)¥Y — 5x boost

Feedback stops at matter domination

Hu & Sugiyama (1995)

AT/T



Driving Effects and Matter/Radiation

Potential perturbation: kK2Y = —4nGa20p generated by radiation

Radiation — Potential: inside sound horizon 0p/p pressure supported
op hence ¥ decays with expansion

Potential — Radiation: Y—decay timed to drive oscillation
2% + (1/3)¥ =—-(5/3)¥Y — 5x boost

Feedback stops at matter domination

AT/T

0«

Hu & Sugiyama (1995)



Dark Matter in the Power Spectrum



Third Peak Constrained
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Clean Laundry: Standard Rulers
Calibrated the Standard Rulers

Sound Horizon

Baryon drag & Radiation driving




Damping Tail



Diffusion Damping
Diffusion inhibited by baryons

Random walk length scale depends on time to
diffuse: horizon scale at recombination



Diffusion Damping
Random walk during recombination
Dissipation as hot meets cold

Physical scale for standard ruler or calibration



Damping
Perfect fluid: no anisotropic stresses due to scattering
1sotropization; baryons and photons move as single fluid



Damping
Perfect fluid: no anisotropic stresses due to scattering

1sotropization; baryons and photons move as single fluid

Fluid imperfections are related to the mean free path of the
photons in the baryons

1

Ao =7 = Wwhere 7 =n.ora

1s the conformal opacity to Thomson scattering



Damping
Perfect fluid: no anisotropic stresses due to scattering

1sotropization; baryons and photons move as single fluid

Fluid imperfections are related to the mean free path of the
photons in the baryons

' where 7 =n.ora

Ao =T~
1s the conformal opacity to Thomson scattering

Dissipation 1s related to the diffusion length: random walk
approximation

Ap = VNAe = v/1/Ac Ao = /DA

the geometric mean between the horizon and mean free path



Damping
Perfect fluid: no anisotropic stresses due to scattering

1sotropization; baryons and photons move as single fluid

Fluid imperfections are related to the mean free path of the
photons in the baryons

L' where 7 =n.ora

Ao =T
1s the conformal opacity to Thomson scattering

Dissipation is related to the diffusion length: random walk
approximation

)\D — \/N)\C — \/77/)\0 >\C’ = \/77)\(;

the geometric mean between the horizon and mean free path

Ap /. ~ few %, so expect the peaks > 3rd to be affected by
dissipation



Equations of Motion

Continuity

. L .
@ = —gvv, 51) = —]ﬂ?}b

where gravitational effects ignored and © = AT/ T.

Euler
: k ;
v, = kO — e T(Vy — p)
: a :
Oy = ==y +7(v, — )/ R

where kO i1s the pressure gradient term, &7, is the viscous stress
term, and v, — v 1S the momentum exchange term with
R = 3py/4p., the baryon-photon momentum ratio.



Viscosity & Heat Conduction

Both fluid imperfections are related to the gradient of the velocity
kv, by opacity 7: slippage of fluids v, — v,

Viscosity 1s an anisotropic stress or quadrupole moment formed by
radiation streaming from hot to cold regions

m=0



Damping Term

Oscillator equation contains a © damping term

O+ A©+EcO=0

Solve 1n the adiabatic approximation

O exp(i/wdn)

exp(i / wdn) = T et exp[ (k) Y

Diffusion wavenumber, geometric mean between horizon and mfp:

1 [d
:—/andNﬂ.
2 T T



Dissipation / Diffusion Damping

Imperfections in the coupled fluid — mean free path A in the baryons

Random walk over diffusion scale: geometric mean of mfp & horizon

KD ~ xc\/N ~ '\/7\.Cn >> 7\‘C
Overtake wavelength: Ap ~ A ; second order in A-/A
Viscous damping for R<1; heat conduction damping for R>1

S
1.0p ]
N=n/Ac W\/\/\/\/\/
01k perfect fluid
eSS S S S S N S S N S
500 1000 1500

Silk (1968); Hu & Sugiyama (1995); Hu & White (1996)



Dissipation / Diffusion Damping

Rapid increase at recombination as mfp T
Independent of (robust to changes in) perturbation spectrum

Robust physical scale for angular diameter distance test (€2, €24)

Recombination N R e B

ok — perfect fluid

—— recombination

500 1000 1500

Silk (1968); Hu & Sugiyama (1995); Hu & White (1996)



Standard Ruler

Damping length 1s a fixed physical scale given properties at
recombination

Gemoetric mean of mean free path and horizon: depends on
baryon-photon ratio and matter-radiation ratio



Curvature

Calibration from lower peaks of Q2,7 and €2,,,h* allows
measurement of curvature from damping scale

Independently of peak scale, confirms flat geometry



Damping Tail Measured
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Beyond the Standard Model
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Implications of Damping

CMB anisotropies ~10% polarized

dissipation — viscosity — quadrupole
anisotropy — linear polarization

Secondary anisotropies are observable
dissipation — exponential suppression of

primary anisotropy — uncovery of secondary
anisotropy



The Peaks
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Summary

Precision cosmology has arrived
Sound physics seen (pun intended)
Consistent with inflationary initial conditions

First peak nailed: nearly flat universe

Second determined: baryonic dark matter
(consistent with Big Bang Nucleosynthesis)

Third measured: cold dark matter required
but does not add up to critical: dark energy

Damping detected: consistency checks passed
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