Astro 448

Cosmic Microwave Background Wayne Hu

Astro 448 Acoustic Kinematics

Recombination

• Equilibrium number density distribution of a non-relativistic species

$$\boldsymbol{n_i} = g_i \left(\frac{m_i T}{2\pi}\right)^{3/2} e^{-m_i/T}$$

• Apply to the $e^- + p \leftrightarrow H$ system: Saha Equation

$$\frac{n_e n_p}{n_H n_b} = \frac{x_e^2}{1 - x_e}$$
$$= \frac{1}{n_b} \left(\frac{m_e T}{2\pi}\right)^{3/2} e^{-B/T}$$

where $B = m_e + m_p - m_H = 13.6 \text{eV}$

• Naive guess of T = B for recombination would put $z_* \approx 45000$.

Recombination

• But the photon-baryon ratio is very low

 $\overline{\eta_{b\gamma}} \equiv n_b/n_\gamma \approx 3 \times 10^{-8} \Omega_b h^{2}$

• Eliminate in favor of $\eta_{b\gamma}$ and B/T through

$$n_{\gamma} = 0.244T^3, \quad \frac{m_e}{B} = 3.76 \times 10^4$$

• Big coefficient

$$\frac{x_e^2}{1 - x_e} = 3.16 \times 10^{15} \left(\frac{B}{T}\right)^{3/2} e^{-B/T}$$

 $T = 1/3 \text{eV} \to x_e = 0.7, T = 0.3 \text{eV} \to x_e = 0.2$

• Further delayed by inability to maintain equilibrium since net is through 2γ process and redshifting out of line

Thomson Scattering

• Thomson scattering of photons off of free electrons is the most important CMB process with a cross section (averaged over polarization states) of

$$\sigma_T = \frac{8\pi\alpha^2}{3m_e^2} = 6.65 \times 10^{-25} \text{cm}^2$$

• Density of free electrons in a fully ionized $x_e = 1$ universe

$$n_e = (1 - Y_p/2) x_e n_b \approx 10^{-5} \Omega_b h^2 (1+z)^3 \text{cm}^{-3}$$
,

where $Y_p \approx 0.24$ is the Helium mass fraction, creates a high (comoving) Thomson opacity

$$\dot{\tau} \equiv n_e \sigma_T a$$

where dots are conformal time $\eta \equiv \int dt/a$ derivatives and τ is the optical depth.

Temperature Fluctuations

• Observe blackbody radiation with a temperature that differs at 10^{-5} coming from the surface of last scattering, with distribution function (specific intensity $I_{\nu} = 4\pi\nu^3 f(\nu)$ each polarization)

$$f(\nu) = [\exp(2\pi\nu/T(\hat{\mathbf{n}})) - 1]^{-1}$$

Decompose the temperature perturbation in spherical harmonics

$$T(\hat{\mathbf{n}}) = \sum_{\ell m} T_{\ell m} Y_{\ell m}(\hat{\mathbf{n}})$$

• For Gaussian random fluctuations, the statistical properties of the temperature field are determined by the power spectrum

$$\langle T_{\ell m}^* T_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}$$

where the δ -function comes from statistical isotropy

Spatial vs Angular Power

 Take the radiation distribution at last scattering to also be described by an isotropic temperature field T(x) and recombination to be instantaneous

$$T(\hat{\mathbf{n}}) = \int dD \, T(\mathbf{x}) \delta(D - D_*)$$

where D is the comoving distance and D_* denotes recombination.

• Describe the temperature field by its Fourier moments

$$T(\mathbf{x}) = \int \frac{d^3k}{(2\pi)^3} T(\mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{x}}$$

with a power spectrum

$$\langle T(\mathbf{k})^*T(\mathbf{k}')\rangle = (2\pi)^3 \delta(\mathbf{k} - \mathbf{k}') P_T(k)$$

Spatial vs Angular Power

• Note that the variance of the field

$$\langle T(\mathbf{x})T(\mathbf{x})\rangle = \int \frac{d^3k}{(2\pi)^3} P(k)$$

=
$$\int d\ln k \, \frac{k^3 P(k)}{2\pi^2} \equiv \int d\ln k \, \Delta_T^2(k)$$

so it is more convenient to think in the log power spectrum $\Delta_T^2(k)$ • Temperature field

$$T(\hat{\mathbf{n}}) = \int \frac{d^3k}{(2\pi)^3} T(\mathbf{k}) e^{i\mathbf{k}\cdot D_*\hat{\mathbf{n}}}$$

• Expand out plane wave in spherical coordinates

$$e^{i\mathbf{k}D_*\cdot\hat{\mathbf{n}}} = 4\pi \sum_{\ell m} i^\ell j_\ell (kD_*) Y^*_{\ell m}(\mathbf{k}) Y_{\ell m}(\hat{\mathbf{n}})$$

Spatial vs Angular Power

• Multipole moments

$$T_{\ell m} = \int \frac{d^3k}{(2\pi)^3} T(\mathbf{k}) 4\pi i^\ell j_\ell(kD_*) Y_{\ell m}(\mathbf{k})$$

• Power spectrum

$$\langle T_{\ell m}^* T_{\ell' m'} \rangle = \int \frac{d^3 k}{(2\pi)^3} (4\pi)^2 (i)^{\ell-\ell'} j_\ell (kD_*) j_{\ell'} (kD_*) Y_{\ell m}^* (\mathbf{k}) Y_{\ell' m'} (\mathbf{k}) P_T (k)$$

= $\delta_{\ell\ell'} \delta_{mm'} 4\pi \int d\ln k \, j_\ell^2 (kD_*) \Delta_T^2 (k)$

with $\int_0^\infty j_\ell^2(x) d\ln x = 1/(2\ell(\ell+1))$, slowly varying Δ_T^2

$$C_{\ell} = \frac{4\pi\Delta_T^2(\ell/D_*)}{2\ell(\ell+1)} = \frac{2\pi}{\ell(\ell+1)}\Delta_T^2(\ell/D_*)$$

so $\ell(\ell+1)C_{\ell}/2\pi = \Delta_T^2$ is commonly used log power

Tight Coupling Approximation

• Near recombination $z \approx 10^3$ and $\Omega_b h^2 \approx 0.02$, the (comoving) mean free path of a photon

$$\lambda_C \equiv \frac{1}{\dot{\tau}} \sim 2.5 \mathrm{Mpc}$$

small by cosmological standards!

- On scales λ ≫ λ_C photons are tightly coupled to the electrons by Thomson scattering which in turn are tightly coupled to the baryons by Coulomb interactions
- Specifically, their bulk velocities are defined by a single fluid velocity v_γ = v_b and the photons carry no anisotropy in the rest frame of the baryons
- \rightarrow No heat conduction or viscosity (anisotropic stress) in fluid

Zeroth Order Approximation

- Momentum density of a fluid is $(\rho + p)v$, where p is the pressure
- Neglect the momentum density of the baryons

$$R \equiv \frac{(\rho_b + p_b)v_b}{(\rho_\gamma + p_\gamma)v_\gamma} = \frac{\rho_b + p_b}{\rho_\gamma + p_\gamma} = \frac{3\rho_b}{4\rho_\gamma}$$
$$\approx 0.6 \left(\frac{\Omega_b h^2}{0.02}\right) \left(\frac{a}{10^{-3}}\right)$$

since $\rho_{\gamma} \propto T^4$ is fixed by the CMB temperature T = 2.73(1+z)K – OK substantially before recombination

• Neglect radiation in the expansion

$$\frac{\rho_m}{\rho_r} = 3.6 \left(\frac{\Omega_m h^2}{0.15}\right) \left(\frac{a}{10^{-3}}\right)$$

Number Continuity

• Photons are not created or destroyed. Without expansion

$$\dot{n}_{\gamma} + \nabla \cdot (n_{\gamma} \mathbf{v}_{\gamma}) = 0$$

but the expansion or Hubble flow causes $n_{\gamma} \propto a^{-3}$ or

$$\dot{n}_{\gamma} + 3n_{\gamma}\frac{\dot{a}}{a} + \nabla \cdot (n_{\gamma}\mathbf{v}_{\gamma}) = 0$$

• Linearize $\delta n_{\gamma} = n_{\gamma} - \bar{n}_{\gamma}$

$$(\delta n_{\gamma})^{\cdot} = -3\delta n_{\gamma}\frac{\dot{a}}{a} - n_{\gamma}\nabla\cdot\mathbf{v}_{\gamma}$$
$$\left(\frac{\delta n_{\gamma}}{n_{\gamma}}\right)^{\cdot} = -\nabla\cdot\mathbf{v}_{\gamma}$$

Continuity Equation

• Number density $n_{\gamma} \propto T^3$ so define temperature fluctuation Θ

$$\frac{\delta n_{\gamma}}{n_{\gamma}} = 3\frac{\delta T}{T} \equiv 3\Theta$$

• Real space continuity equation

$$\dot{\Theta} = -\frac{1}{3}\nabla \cdot \mathbf{v}_{\gamma}$$

• Fourier space

$$\dot{\Theta} = -\frac{1}{3}i\mathbf{k}\cdot\mathbf{v}_{\gamma}$$

Momentum Conservation

- No expansion: $\dot{\mathbf{q}} = \mathbf{F}$
- De Broglie wavelength stretches with the expansion

$$\dot{\mathbf{q}} + \frac{\dot{a}}{a}\mathbf{q} = \mathbf{F}$$

for photons this the redshift, for non-relativistic particles expansion drag on peculiar velocities

• Collection of particles: momentum \rightarrow momentum density $(\rho_{\gamma} + p_{\gamma})\mathbf{v}_{\gamma}$ and force \rightarrow pressure gradient

$$\begin{split} [(\rho_{\gamma} + p_{\gamma})\mathbf{v}_{\gamma}]^{\cdot} &= -4\frac{\dot{a}}{a}(\rho_{\gamma} + p_{\gamma})\mathbf{v}_{\gamma} - \nabla p_{\gamma} \\ &\frac{4}{3}\rho_{\gamma}\dot{\mathbf{v}}_{\gamma} = \frac{1}{3}\nabla\rho_{\gamma} \\ &\dot{\mathbf{v}}_{\gamma} = -\nabla\Theta \end{split}$$

Euler Equation

• Fourier space

 $\dot{\mathbf{v}}_{\gamma} = -ik\Theta$

- Pressure gradients (any gradient of a scalar field) generates a curl-free flow
- For convenience define velocity amplitude:

$$\mathbf{v}_{\gamma} \equiv -iv_{\gamma}\hat{\mathbf{k}}$$

• Euler Equation:

$$\dot{v}_{\gamma} = k\Theta$$

• Continuity Equation:

$$\dot{\Theta} = -\frac{1}{3}kv_{\gamma}$$

Oscillator: Take One

• Combine these to form the simple harmonic oscillator equation

 $\ddot{\Theta} + c_s^2 k^2 \Theta = 0$

where the adiabatic sound speed is defined through

here $c_s^2 = 1/3$ since we are photon-dominated

• General solution:

$$\Theta(\eta) = \Theta(0)\cos(ks) + \frac{\dot{\Theta}(0)}{kc_s}\sin(ks)$$

where the sound horizon is defined as $s \equiv \int c_s d\eta$

Harmonic Extrema

All modes are frozen in at recombination (denoted with a subscript *) yielding temperature perturbations of different amplitude for different modes. For the adiabatic (curvature mode) Θ(0) = 0

 $\Theta(\eta_*) = \Theta(0) \cos(ks_*)$

• Modes caught in the extrema of their oscillation will have enhanced fluctuations

$$k_n s_* = n\pi$$

yielding a fundamental scale or frequency, related to the inverse sound horizon

$$k_A = \pi/s_*$$

and a harmonic relationship to the other extrema as 1:2:3...

Peak Location

 The fundmental physical scale is translated into a fundamental angular scale by simple projection according to the angular diameter distance D_A

> $heta_A = \lambda_A / D_A$ $\ell_A = k_A D_A$

In a flat universe, the distance is simply D_A = D ≡ η₀ − η_{*} ≈ η₀, the horizon distance, and k_A = π/s_{*} = √3π/η_{*} so

$$\theta_A \approx \frac{\eta_*}{\eta_0}$$

• In a matter-dominated universe $\eta \propto a^{1/2}$ so $\theta_A \approx 1/30 \approx 2^\circ$ or

 $\ell_A \approx 200$

Curvature

- In a curved universe, the apparent or angular diameter distance is no longer the conformal distance $D_A = R \sin(D/R) \neq D$
- Objects in a closed universe are further than they appear! gravitational lensing of the background...
- Curvature scale of the universe must be substantially larger than current horizon
- Flat universe indicates critical density and implies missing energy given local measures of the matter density "dark energy"
- D also depends on dark energy density $\Omega_{\rm DE}$ and equation of state $w = p_{\rm DE}/\rho_{\rm DE}$.
- Expansion rate at recombination or matter-radiation ratio enters into calculation of k_A .

Doppler Effect

 Bulk motion of fluid changes the observed temperature via Doppler shifts

$$\left(\frac{\Delta T}{T}\right)_{\rm dop} = \hat{\mathbf{n}} \cdot \mathbf{v}_{\gamma}$$

• Averaged over directions

$$\left(\frac{\Delta T}{T}\right)_{\rm rms} = \frac{\boldsymbol{v_{\gamma}}}{\sqrt{3}}$$

• Acoustic solution

$$\frac{v_{\gamma}}{\sqrt{3}} = -\frac{\sqrt{3}}{k}\dot{\Theta} = \frac{\sqrt{3}}{k}kc_s\,\Theta(0)\sin(ks)$$
$$= \Theta(0)\sin(ks)$$

Doppler Peaks?

- Doppler effect for the photon dominated system is of equal amplitude and $\pi/2$ out of phase: extrema of temperature are turning points of velocity
- Effects add in quadrature:

$$\left(\frac{\Delta T}{T}\right)^2 = \Theta^2(0)[\cos^2(ks) + \sin^2(ks)] = \Theta^2(0)$$

- No peaks in k spectrum! However the Doppler effect carries an angular dependence that changes its projection on the sky $\hat{\mathbf{n}} \cdot \mathbf{v}_{\gamma} \propto \hat{\mathbf{n}} \cdot \hat{\mathbf{k}}$
- Coordinates where $\hat{\mathbf{z}} \parallel \hat{\mathbf{k}}$

$$Y_{10}Y_{\ell 0} \to Y_{\ell \pm 10}$$

recoupling $j'_{\ell}Y_{\ell 0}$: no peaks in Doppler effect

Restoring Gravity

- Take a simple photon dominated system with gravity
- Continuity altered since a gravitational potential represents a stretching of the spatial fabric that dilutes number densities – formally a spatial curvature perturbation
- Think of this as a perturbation to the scale factor a → a(1 + Φ) so that the cosmogical redshift is generalized to

$$\frac{\dot{a}}{a} \rightarrow \frac{\dot{a}}{a} + \dot{\Phi}$$

$$(\delta n_{\gamma})^{\cdot} = -3\delta n_{\gamma}\left(\frac{\dot{a}}{a} + \dot{\Phi}\right) - n_{\gamma}\nabla\cdot\mathbf{v}_{\gamma}$$

so that the continuity equation becomes

$$\dot{\Theta} = -\frac{1}{3}kv_{\gamma} - \dot{\Phi}$$

Restoring Gravity

• Gravitational force in momentum conservation $\mathbf{F} = -m\nabla\Psi$ generalized to momentum density modifies the Euler equation to

 $\dot{v}_{\gamma} = k(\Theta + \Psi)$

- General relativity says that Φ and Ψ are the relativistic analogues of the Newtonian potential and that $\Phi \approx -\Psi$.
- In our matter-dominated approximation, Φ represents matter density fluctuations through the cosmological Poisson equation

$$k^2 \Phi = 4\pi G a^2 \rho_m \Delta_m$$

where the difference comes from the use of comoving coordinates for k (a^2 factor), the removal of the background density into the background expansion ($\rho\Delta_m$) and finally a coordinate subtlety that enters into the definition of Δ_m

Astro 448 Acoustic Dynamics

Constant Potentials

- In the matter dominated epoch potentials are constant because infall generates velocities as $v_m \sim k\eta \Psi$
- Velocity divergence generates density perturbations as $\Delta_m \sim -k\eta v_m \sim -(k\eta)^2 \Psi$
- And density perturbations generate potential fluctuations as
 Φ ~ Δ_m/(kη)² ~ −Ψ, keeping them constant. Note that because
 of the expansion, density perturbations must grow to keep
 potentials constant.
- Here we have used the Friedman equation $H^2 = 8\pi G\rho_m/3$ and $\eta = \int d\ln a/(aH) \sim 1/(aH)$
- More generally, if stress perturbations are negligible compared with density perturbations ($\delta p \ll \delta \rho$) then potential will remain roughly constant – more specifically a variant called the Bardeen or comoving curvature ζ is constant

Oscillator: Take Two

• Combine these to form the simple harmonic oscillator equation

$$\ddot{\Theta} + c_s^2 k^2 \Theta = -\frac{k^2}{3} \Psi - \ddot{\Phi}$$

• In a CDM dominated expansion $\dot{\Phi} = \dot{\Psi} = 0$. Also for photon domination $c_s^2 = 1/3$ so the oscillator equation becomes

$$\ddot{\Theta} + \ddot{\Psi} + c_s^2 k^2 (\Theta + \Psi) = 0$$

• Solution is just an offset version of the original

 $[\Theta + \Psi](\eta) = [\Theta + \Psi](0) \cos(ks)$

• $\Theta + \Psi$ is also the observed temperature fluctuation since photons lose energy climbing out of gravitational potentials at recombination

Effective Temperature

- Photons climb out of potential wells at last scattering
- Lose energy to gravitational redshifts
- Observed or effective temperature

$\Theta + \Psi$

- Effective temperature oscillates around zero with amplitude given by the initial conditions
- Note: initial conditions are set when the perturbation is outside of horizon, need inflation or other modification to matter-radiation FRW universe.
- GR says that initial temperature is given by initial potential

Sachs-Wolfe Effect and the Magic 1/3

• A gravitational potential is a perturbation to the temporal coordinate [formally a gauge transformation]

$$\frac{\partial t}{t} = \Psi$$

• Convert this to a perturbation in the scale factor,

$$t = \int \frac{da}{aH} \propto \int \frac{da}{a\rho^{1/2}} \propto a^{3(1+w)/2}$$

where $w \equiv p/\rho$ so that during matter domination

$$\frac{\delta a}{a} = \frac{2}{3} \frac{\delta t}{t}$$

• CMB temperature is cooling as $T \propto a^{-1}$ so

$$\Theta + \Psi \equiv \frac{\delta T}{T} + \Psi = -\frac{\delta a}{a} + \Psi = \frac{1}{3}\Psi$$

Baryon Loading

- Baryons add extra mass to the photon-baryon fluid
- Controlling parameter is the momentum density ratio:

$$R \equiv \frac{p_b + \rho_b}{p_\gamma + \rho_\gamma} \approx 30\Omega_b h^2 \left(\frac{a}{10^{-3}}\right)$$

of order unity at recombination

• Momentum density of the joint system is conserved

$$(\rho_{\gamma} + p_{\gamma})\boldsymbol{v_{\gamma}} + (\rho_{b} + p_{b})\boldsymbol{v_{b}} \approx (p_{\gamma} + p_{\gamma} + \rho_{b} + \rho_{\gamma})\boldsymbol{v_{\gamma}}$$
$$= (1 + \boldsymbol{R})(\rho_{\gamma} + p_{\gamma})\boldsymbol{v_{\gamma b}}$$

where the controlling parameter is the momentum density ratio:

$$R \equiv \frac{p_b + \rho_b}{p_\gamma + \rho_\gamma} \approx 30\Omega_b h^2 \left(\frac{a}{10^{-3}}\right)$$

of order unity at recombination

New Euler Equation

• Momentum density ratio enters as

$$[(1+\mathbf{R})(\rho_{\gamma}+p_{\gamma})\mathbf{v}_{\gamma b}]^{\cdot} = -4\frac{\dot{a}}{a}(1+\mathbf{R})(\rho_{\gamma}+p_{\gamma})\mathbf{v}_{\gamma b}$$
$$-\nabla p_{\gamma} - (1+\mathbf{R})(\rho_{\gamma}+p_{\gamma})\nabla \Psi$$

same as before except for $(1 + \mathbf{R})$ terms so

$$[(1+\mathbf{R})v_{\gamma b}]^{\cdot} = k\Theta + (1+\mathbf{R})k\Psi$$

• Photon continuity remains the same

$$\dot{\Theta} = -\frac{k}{3}v_{\gamma b} - \dot{\Phi}$$

Modification of oscillator equation

$$[(1+R)\dot{\Theta}]^{\cdot} + \frac{1}{3}k^2\Theta = -\frac{1}{3}k^2(1+R)\Psi - [(1+R)\dot{\Phi}]^{\cdot}$$

Oscillator: Take Three

• Combine these to form the not-quite-so simple harmonic oscillator equation

$$c_s^2 \frac{d}{d\eta} (c_s^{-2} \dot{\Theta}) + c_s^2 k^2 \Theta = -\frac{k^2}{3} \Psi - c_s^2 \frac{d}{d\eta} (c_s^{-2} \dot{\Phi})$$

where $c_s^2 \equiv \dot{p}_{\gamma b}/\dot{\rho}_{\gamma b}$

$$c_s^2 = \frac{1}{3} \frac{1}{1+R}$$

• In a CDM dominated expansion $\dot{\Phi} = \dot{\Psi} = 0$ and the adiabatic approximation $\dot{R}/R \ll \omega = kc_s$

 $[\Theta + (1 + \mathbf{R})\Psi](\eta) = [\Theta + (1 + \mathbf{R})\Psi](0)\cos(k\mathbf{s})$

Baryon Peak Phenomenology

- Photon-baryon ratio enters in three ways
- Overall larger amplitude:

$$[\Theta + (1 + \mathbf{R})\Psi](0) = \frac{1}{3}(1 + 3\mathbf{R})\Psi(0)$$

• Even-odd peak modulation of effective temperature

$$[\Theta + \Psi]_{\text{peaks}} = [\pm(1+3R) - 3R] \frac{1}{3}\Psi(0)$$
$$[\Theta + \Psi]_1 - [\Theta + \Psi]_2 = [-6R] \frac{1}{3}\Psi(0)$$

• Shifting of the sound horizon down or ℓ_A up

$$\ell_A \propto \sqrt{1+R}$$

• Actual effects smaller since *R* evolves

Photon Baryon Ratio Evolution

• Oscillator equation has time evolving mass

$$c_s^2 \frac{d}{d\eta} (c_s^{-2} \dot{\Theta}) + c_s^2 k^2 \Theta = 0$$

- Effective mass is is $m_{\text{eff}} = 3c_s^{-2} = (1 + R)$
- Adiabatic invariant

$$\frac{E}{\omega} = \frac{1}{2} m_{\text{eff}} \omega A^2 = \frac{1}{2} 3 c_s^{-2} k c_s A^2 \propto A^2 (1+R)^{1/2} = const.$$

• Amplitude of oscillation $A \propto (1 + R)^{-1/4}$ decays adiabatically as the photon-baryon ratio changes

Oscillator: Take Three and a Half

• The not-quite-so simple harmonic oscillator equation is a forced harmonic oscillator

$$c_s^2 \frac{d}{d\eta} (c_s^{-2} \dot{\Theta}) + c_s^2 k^2 \Theta = -\frac{k^2}{3} \Psi - c_s^2 \frac{d}{d\eta} (c_s^{-2} \Phi)$$

changes in the gravitational potentials alter the form of the acoustic oscillations

- If the forcing term has a temporal structure that is related to the frequency of the oscillation, this becomes a driven harmonic oscillator
- Term involving Ψ is the ordinary gravitational force
- Term involving Φ involves the Φ term in the continuity equation as a (curvature) perturbation to the scale factor

Potential Decay

• Matter-to-radiation ratio

$$\frac{\rho_m}{\rho_r} \approx 24\Omega_m h^2 \left(\frac{a}{10^{-3}}\right)$$

of order unity at recombination in a low Ω_m universe

• Radiation is not stress free and so impedes the growth of structure

$$k^2 \Phi = 4\pi G a^2 \rho_r \Delta_r$$

 $\Delta_r \sim 4\Theta$ oscillates around a constant value, $\rho_r \propto a^{-4}$ so the Netwonian curvature decays.

 General rule: potential decays if the dominant energy component has substantial stress fluctuations, i.e. below the generalized sound horizon or Jeans scale

Radiation Driving

Decay is timed precisely to drive the oscillator - close to fully coherent

$$[\Theta + \Psi](\eta) = [\Theta + \Psi](0) + \Delta \Psi - \Delta \Phi$$
$$= \frac{1}{3}\Psi(0) - 2\Psi(0) = \frac{5}{3}\Psi(0)$$

- $5 \times$ the amplitude of the Sachs-Wolfe effect!
- Coherent approximation is exact for a photon-baryon fluid but reality is reduced to ~ 4× because of neutrino contribution to radiation
- Actual initial conditions are $\Theta + \Psi = \Psi/2$ for radiation domination but comparison to matter dominated SW correct
External Potential Approach

Solution to homogeneous equation

 $(1+R)^{-1/4}\cos(ks)$, $(1+R)^{-1/4}\sin(ks)$

• Give the general solution for an external potential by propagating impulsive forces

$$(1+R)^{1/4}\Theta(\eta) = \Theta(0)\cos(ks) + \frac{\sqrt{3}}{k} \left[\dot{\Theta}(0) + \frac{1}{4}\dot{R}(0)\Theta(0)\right]\sin ks + \frac{\sqrt{3}}{k}\int_{0}^{\eta} d\eta'(1+R')^{3/4}\sin[ks-ks']F(\eta')$$

where

$$\boldsymbol{F} = -\boldsymbol{\ddot{\Phi}} - \frac{\dot{R}}{1+R}\boldsymbol{\dot{\Phi}} - \frac{k^2}{3}\boldsymbol{\Psi}$$

• Useful if general form of potential evolution is known

Damping

- Tight coupling equations assume a perfect fluid: no viscosity, no heat conduction
- Fluid imperfections are related to the mean free path of the photons in the baryons

$$\lambda_C = \dot{\tau}^{-1}$$
 where $\dot{\tau} = n_e \sigma_T a$

is the conformal opacity to Thompson scattering

• Dissipation is related to the diffusion length: random walk approximation

$$\lambda_D = \sqrt{N}\lambda_C = \sqrt{\eta/\lambda_C}\,\lambda_C = \sqrt{\eta\lambda_C}$$

the geometric mean between the horizon and mean free path

• $\lambda_D/\eta_* \sim$ few %, so expect the peaks :> 3 to be affected by dissipation

Equations of Motion

• Continuity

$$\dot{\Theta} = -\frac{k}{3}v_{\gamma} - \dot{\Phi} \,, \quad \dot{\delta}_b = -kv_b - 3\dot{\Phi}$$

where the photon equation remains unchanged and the baryons follow number conservation with $\rho_b = m_b n_b$

• Euler

$$\dot{v}_{\gamma} = k(\Theta + \Psi) - \frac{k}{6}\pi_{\gamma} - \dot{\tau}(v_{\gamma} - v_{b})$$
$$\dot{v}_{b} = -\frac{\dot{a}}{a}v_{b} + k\Psi + \dot{\tau}(v_{\gamma} - v_{b})/R$$

where the photons gain an anisotropic stress term π_{γ} from radiation viscosity and a momentum exchange term with the baryons and are compensated by the opposite term in the baryon Euler equation

Viscosity

• Viscosity is generated from radiation streaming from hot to cold regions

• Expect

$$au_{\gamma} \sim v_{\gamma} \frac{k}{\dot{ au}}$$

generated by streaming, suppressed by scattering in a wavelength of the fluctuation. Radiative transfer says

$$\pi_{\gamma} \approx 2A_v v_{\gamma} \frac{k}{\dot{\tau}}$$

where $A_v = 16/15$

$$\dot{v}_{\gamma} = k(\Theta + \Psi) - \frac{k}{3}A_v \frac{k}{\dot{\tau}}v_{\gamma}$$

Oscillator: Penultimate Take

• Adiabatic approximation ($\omega \gg \dot{a}/a$)

$$\dot{\Theta} \approx -\frac{k}{3}v_{\gamma}$$

• Oscillator equation contains a $\dot{\Theta}$ damping term

$$c_s^2 \frac{d}{d\eta} (c_s^{-2} \dot{\Theta}) + \frac{k^2 c_s^2}{\dot{\tau}} A_v \dot{\Theta} + k^2 c_s^2 \Theta = -\frac{k^2}{3} \Psi - c_s^2 \frac{d}{d\eta} (c_s^{-2} \dot{\Phi})$$

Heat conduction term similar in that it is proportional to v_γ and is suppressed by scattering k/τ. Expansion of Euler equations to leading order in kτ gives

$$A_h = \frac{R^2}{1+R}$$

since the effects are only significant if the baryons are dynamically important

Oscillator: Final Take

• Final oscillator equation

$$c_s^2 \frac{d}{d\eta} (c_s^{-2} \dot{\Theta}) + \frac{k^2 c_s^2}{\dot{\tau}} [A_v + A_h] \dot{\Theta} + k^2 c_s^2 \Theta = -\frac{k^2}{3} \Psi - c_s^2 \frac{d}{d\eta} (c_s^{-2} \dot{\Phi})$$

• Solve in the adiabatic approximation

$$\Theta \propto \exp(i \int \omega d\eta)$$

$$-\omega^{2} + \frac{k^{2}c_{s}^{2}}{\dot{\tau}}(A_{v} + A_{h})i\omega + k^{2}c_{s}^{2} = 0$$
(1)

Dispersion Relation

• Solve

$$\boldsymbol{\omega}^{2} = k^{2}c_{s}^{2}\left[1 + i\frac{\boldsymbol{\omega}}{\dot{\tau}}(A_{v} + A_{h})\right]$$
$$\boldsymbol{\omega} = \pm kc_{s}\left[1 + \frac{i}{2}\frac{\boldsymbol{\omega}}{\dot{\tau}}(A_{v} + A_{h})\right]$$
$$= \pm kc_{s}\left[1 \pm \frac{i}{2}\frac{kc_{s}}{\dot{\tau}}(A_{v} + A_{h})\right]$$

• Exponentiate

$$\exp(i\int\omega d\eta) = e^{\pm iks} \exp\left[-k^2 \int d\eta \frac{1}{2} \frac{c_s^2}{\dot{\tau}} (A_v + A_h)\right]$$
$$= e^{\pm iks} \exp\left[-(k/k_D)^2\right]$$
(2)

• Damping is exponential under the scale k_D

Diffusion Scale

• Diffusion wavenumber

$$k_D^{-2} = \int d\eta \frac{1}{\dot{\tau}} \frac{1}{6(1+R)} \left(\frac{16}{15} + \frac{R^2}{(1+R)}\right)$$

• Limiting forms

$$\lim_{R \to 0} k_D^{-2} = \frac{1}{6} \frac{16}{15} \int d\eta \frac{1}{\dot{\tau}}$$
$$\lim_{R \to \infty} k_D^{-2} = \frac{1}{6} \int d\eta \frac{1}{\dot{\tau}}$$

• Geometric mean between horizon and mean free path as expected from a random walk

$$\lambda_D = \frac{2\pi}{k_D} \sim \frac{2\pi}{\sqrt{6}} (\eta \dot{\tau}^{-1})^{1/2}$$

Astro 448 Polarization

Stokes Parameters

- Polarization state of radiation in direction n̂ described by the intensity matrix \$\langle E_i(\hat{n}) E_j^*(\hat{n}) \rangle\$, where E is the electric field vector and the brackets denote time averaging.
- As a hermitian matrix, it can be decomposed into the Pauli basis

 $\mathbf{P} = C \left\langle \mathbf{E}(\hat{\mathbf{n}}) \, \mathbf{E}^{\dagger}(\hat{\mathbf{n}}) \right\rangle$ = $\Theta(\hat{\mathbf{n}}) \boldsymbol{\sigma}_{0} + Q(\hat{\mathbf{n}}) \, \boldsymbol{\sigma}_{3} + U(\hat{\mathbf{n}}) \, \boldsymbol{\sigma}_{1} + V(\hat{\mathbf{n}}) \, \boldsymbol{\sigma}_{2} \,,$

where

$$\boldsymbol{\sigma}_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \boldsymbol{\sigma}_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \boldsymbol{\sigma}_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \boldsymbol{\sigma}_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

• Stokes parameters recovered as $Tr(\sigma_i \mathbf{P})/2$

Linear Polarization

- $Q \propto \langle E_1 E_1^* \rangle \langle E_2 E_2^* \rangle, U \propto \langle E_1 E_2^* \rangle + \langle E_2 E_1^* \rangle.$
- Counterclockwise rotation of axes by $\theta = 45^{\circ}$

$$E_1 = (E'_1 - E'_2)/\sqrt{2}, \quad E_2 = (E'_1 + E'_2)/\sqrt{2}$$

• $U \propto \langle E'_1 E'_1^* \rangle - \langle E'_2 E'_2^* \rangle$, difference of intensities at 45° or Q'

• More generally, P transforms as a tensor under rotations and

$$Q' = \cos(2\theta)Q + \sin(2\theta)U$$
$$U' = -\sin(2\theta)Q + \cos(2\theta)U$$

• or

$$Q' \pm iU' = e^{\pm 2i\theta} [Q \pm iU]$$

acquires a phase under rotation and is a spin ± 2 object

Coordinate Independent Representation

• Two directions: orientation of polarization and change in amplitude, i.e. Q and U in the basis of the Fourier wavevector for small sections of sky are called E and B components

$$E(\mathbf{l}) \pm iB(\mathbf{l}) = -\int d\hat{\mathbf{n}} [Q'(\hat{\mathbf{n}}) \pm iU'(\hat{\mathbf{n}})] e^{-i\mathbf{l}\cdot\hat{\mathbf{n}}}$$
$$= -e^{\mp 2i\phi_l} \int d\hat{\mathbf{n}} [Q(\hat{\mathbf{n}}) \pm iU(\hat{\mathbf{n}})] e^{i\mathbf{l}\cdot\hat{\mathbf{n}}}$$

- For the *B*-mode to not vanish, the polarization must point in a direction not related to the wavevector not possible for density fluctuations in linear theory
- Generalize to all-sky: plane waves are eigenmodes of the Laplace operator on the tensor **P**.

Spin Harmonics

Laplace Eigenfunctions

 $\nabla^2_{\pm 2} Y_{\ell m} [\boldsymbol{\sigma}_3 \mp i \boldsymbol{\sigma}_1] = -[l(l+1) - 4]_{\pm 2} Y_{\ell m} [\boldsymbol{\sigma}_3 \mp i \boldsymbol{\sigma}_1]$

• Spin *s* spherical harmonics: orthogonal and complete

$$\int d\hat{\mathbf{n}}_{s} Y_{\ell m}^{*}(\hat{\mathbf{n}})_{s} Y_{\ell m}(\hat{\mathbf{n}}) = \delta_{\ell \ell'} \delta_{m m'}$$
$$\sum_{\ell m} {}_{s} Y_{\ell m}^{*}(\hat{\mathbf{n}})_{s} Y_{\ell m}(\hat{\mathbf{n}}') = \delta(\phi - \phi') \delta(\cos \theta - \cos \theta')$$

where the ordinary spherical harmonics are $Y_{\ell m} = {}_0Y_{\ell m}$ • Given in terms of the rotation matrix

$${}_{s}Y_{\ell m}(\beta \alpha) = (-1)^{m} \sqrt{\frac{2\ell+1}{4\pi}} D^{\ell}_{-ms}(\alpha \beta 0)$$

Statistical Representation

• All-sky decomposition

$$[Q(\hat{\mathbf{n}}) \pm iU(\hat{\mathbf{n}})] = \sum_{\ell m} [E_{\ell m} \pm iB_{\ell m}]_{\pm 2} Y_{\ell m}(\hat{\mathbf{n}})$$

• Power spectra

$$\langle E_{\ell m}^* E_{\ell m} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}^{EE}$$
$$\langle B_{\ell m}^* B_{\ell m} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}^{BB}$$

• Cross correlation

$$\langle E_{\ell m}^* E_{\ell m} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}^{\Theta E}$$

others vanish if parity is conserved

Thomson Scattering

Differential cross section

$$\frac{d\sigma}{d\Omega} = \frac{3}{8\pi} |\hat{\mathbf{E}}' \cdot \hat{\mathbf{E}}|^2 \sigma_T \,,$$

where $\sigma_T = 8\pi \alpha^2/3m_e$ is the Thomson cross section, $\hat{\mathbf{E}}'$ and $\hat{\mathbf{E}}$ denote the incoming and outgoing directions of the electric field or polarization vector.

Summed over angle and incoming polarization

$$\sum_{i=1,2} \int d\hat{\mathbf{n}}' \frac{d\sigma}{d\Omega} = \sigma_T$$

Polarization Generation

- Heuristic: incoming radiation shakes an electron in direction of electric field vector \hat{E}'
- \bullet Radiates photon with polarization also in direction \hat{E}'
- But photon cannot be longitudinally polarized so that scattering into 90° can only pass one polarization
- Linearly polarized radiation like polarization by reflection
- Unlike reflection of sunlight, incoming radiation is nearly isotropic
- Missing linear polarization supplied by scattering from direction orthogonal to original incoming direction
- Only quadrupole anisotropy generates polarization by Thomson scattering

Acoustic Polarization

• Break down of tight-coupling leads to quadrupole anisotropy of

$$\pi_{\gamma} \approx \frac{k}{\dot{\tau}} v_{\gamma}$$

- Scaling $k_D = (\dot{\tau}/\eta_*)^{1/2} \rightarrow \dot{\tau} = k_D^2 \eta_*$
- Know: $k_D s_* \approx k_D \eta_* \approx 10$
- So:

$$\pi_{\gamma} \approx \frac{k}{k_D} \frac{1}{10} v_{\gamma}$$

$$\Delta_P \approx \frac{\ell}{\ell_D} \frac{1}{10} \Delta_T$$

Acoustic Polarization

- Gradient of velocity is along direction of wavevector, so polarization is pure *E*-mode
- Velocity is 90° out of phase with temperature turning points of oscillator are zero points of velocity:

 $\Theta + \Psi \propto \cos(ks); \quad v_{\gamma} \propto \sin(ks)$

• Polarization peaks are at troughs of temperature power

Cross Correlation

• Cross correlation of temperature and polarization

 $(\Theta + \Psi)(v_{\gamma}) \propto \cos(ks) \sin(ks) \propto \sin(2ks)$

- Oscillation at twice the frequency
- Correlation: radial or tangential around hot spots
- Partial correlation: easier to measure if polarization data is noisy, harder to measure if polarization data is high S/N or if bands do not resolve oscillations
- Good check for systematics and foregrounds
- Comparison of temperature and polarization is proof against features in initial conditions mimicking acoustic features

Reionization

Ionization depth during reionization

$$\tau(z) = \int d\eta n_e \sigma_T a = \int d\ln a \frac{n_e \sigma_T}{H(a)} \propto (\Omega_b h^2) (\Omega_m h^2)^{-1/2} (1+z)^{3/2}$$
$$= \left(\frac{\Omega_b h^2}{0.02}\right) \left(\frac{\Omega_m h^2}{0.15}\right)^{-1/2} \left(\frac{1+z}{61}\right)^{3/2}$$

• Quasars say $z_{ri} \ge 7$ so $\tau > 0.04$

- During reionization, cosmic quadrupole of $\sim 30 \mu \text{K}$ from the Sachs-Wolfe effect scatters into *E*-polarization
- Few percent optical depth leads to fraction of a μK signal
- Peaks at horizon scale at recombination: quadrupole source $j_2(kD_*)$ maximal at $kD_* \approx k\eta \approx 2$

Breaking degeneracies

• First objects, breaking degeneracy of initial amplitude vs optical depth in the peak heights

 $C_\ell \propto e^{-2\tau}$

only below horizon scale at reionization

• Breaks degeneracies in angular diameter distance by removing an ambiguity for ISW-dark energy measure, helps in $\Omega_{DE} - w_{DE}$ plane

Gravitational Wave

- Gravitational waves produce a quadrupolar distortion in the temperature of the CMB like effect on a ring of test particles
- Like ISW effect, source is a metric perturbation with time dependent amplitude
- After recombination, is a source of observable temperature anisotropy but is therefore confined to low order multipoles
- Generated during inflation by quandum fluctuations

Gravitational Wave Polarization

• In the tight coupling regime, quadrupole anisotropy suppressed by scattering

$$\pi_{\gamma} \approx \frac{\dot{h}}{\dot{\tau}}$$

- Since gravitational waves oscillate and decay at horizon crossing, the polarization peaks at the horizon scale at recombination not the damping scale
- More distinct signature in the *B*-mode polarization since symmetry of plane wave is broken by the transverse nature of gravity wave polarization

Astro 448

Linear Perturbation Theory

Covariant Perturbation Theory

- Covariant = takes same form in all coordinate systems
- Invariant = takes the same value in all coordinate systems
- Fundamental equations: Einstein equations, covariant conservation of stress-energy tensor:

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$
$$\nabla_{\mu} T^{\mu\nu} = 0$$

 Preserve general covariance by keeping all degrees of freedom: 10 for each symmetric 4×4 tensor

1	2	3	4
	5	6	7
		8	9
			10

Metric Tensor

• Expand the metric tensor around the general FRW metric

$$g_{00} = -a^2, \qquad g_{ij} = a^2 \gamma_{ij}.$$

where the "0" component is conformal time $\eta = dt/a$ and γ_{ij} is a spatial metric of constant curvature $K = H_0^2(\Omega_{tot} - 1)$.

• Add in a general perturbation (Bardeen 1980)

$$g^{00} = -a^{-2}(1-2A),$$

$$g^{0i} = -a^{-2}B^{i},$$

$$g^{ij} = a^{-2}(\gamma^{ij} - 2H_L\gamma^{ij} - 2H_T^{ij}).$$

(1) A ≡ a scalar potential; (3) Bⁱ a vector shift, (1) H_L a perturbation to the spatial curvature; (5) H^{ij}_T a trace-free distortion to spatial metric = (10)

Matter Tensor

 Likewise expand the matter stress energy tensor around a homogeneous density ρ and pressure p:

$$T^{0}_{0} = -\rho - \delta \rho,$$

$$T^{0}_{i} = (\rho + p)(v_{i} - B_{i}),$$

$$T^{i}_{0} = -(\rho + p)v^{i},$$

$$T^{i}_{j} = (p + \delta p)\delta^{i}_{j} + p\Pi^{i}_{j}$$

- (1) δρ a density perturbation; (3) v_i a vector velocity, (1) δp a pressure perturbation; (5) Π_{ij} an anisotropic stress perturbation
- So far this is fully general and applies to any type of matter or coordinate choice including non-linearities in the matter, e.g. cosmological defects.

Counting DOF's

- 20 Variables (10 metric; 10 matter)
- -10 Einstein equations
 - -4 Conservation equations
 - +4 Bianchi identities
 - -4 Gauge (coordinate choice 1 time, 3 space)

6 Degrees of freedom

- Without loss of generality these can be taken to be the 6 components of the matter stress tensor
- For the background, specify p(a) or equivalently
 w(a) ≡ p(a)/ρ(a) the equation of state parameter.

Scalar, Vector, Tensor

- In linear perturbation theory, perturbations may be separated by their transformation properties under rotation and translation.
- The eigenfunctions of the Laplacian operator form a complete set

$$egin{array}{rcl}
abla^2 Q^{(0)} &=& -k^2 Q^{(0)} & {f S}\,, \
abla^2 Q^{(\pm 1)}_i &=& -k^2 Q^{(\pm 1)}_i & {f V}\,, \
abla^2 Q^{(\pm 2)}_{ij} &=& -k^2 Q^{(\pm 2)}_{ij} & {f T}\,, \end{array}$$

 Vector and tensor modes satisfy divergence-free and transverse-traceless conditions

$$\nabla^{i}Q_{i}^{(\pm 1)} = 0$$
$$\nabla^{i}Q_{ij}^{(\pm 2)} = 0$$
$$\gamma^{ij}Q_{ij}^{(\pm 2)} = 0$$

Vector and Tensor Modes vs. Vector and Tensor Quantities

- A scalar mode carries with it associated vector (curl-free) and tensor (longitudinal) quantities
- A vector mode carries and associated tensor (neither longitudinal or transverse) quantities
- These are built from the mode basis out of covariant derivatives and the metric

$$Q_{i}^{(0)} = -k^{-1}\nabla_{i}Q^{(0)},$$

$$Q_{ij}^{(0)} = (k^{-2}\nabla_{i}\nabla_{j} + \frac{1}{3}\gamma_{ij})Q^{(0)},$$

$$Q_{ij}^{(\pm 1)} = -\frac{1}{2k} [\nabla_{i}Q_{j}^{(\pm 1)} + \nabla_{j}Q_{i}^{(\pm 1)}],$$

Spatially Flat Case

• For a spatially flat background metric, harmonics are related to plane waves:

$$Q^{(0)} = \exp(i\mathbf{k} \cdot \mathbf{x})$$

$$Q^{(\pm 1)}_{i} = \frac{-i}{\sqrt{2}}(\hat{\mathbf{e}}_{1} \pm i\hat{\mathbf{e}}_{2})_{i}\exp(i\mathbf{k} \cdot \mathbf{x})$$

$$Q^{(\pm 2)}_{ij} = -\sqrt{\frac{3}{8}}(\hat{\mathbf{e}}_{1} \pm i\hat{\mathbf{e}}_{2})_{i}(\hat{\mathbf{e}}_{1} \pm i\hat{\mathbf{e}}_{2})_{j}\exp(i\mathbf{k} \cdot \mathbf{x})$$

where $\hat{\mathbf{e}}_3 \parallel \mathbf{k}$. Chosen as spin states, c.f. polarization.

- For vectors, the harmonic points in a direction orthogonal to k suitable for the vortical component of a vector
- For tensors, the harmonic is transverse and traceless as appropriate for the decompositon of gravitational waves

Perturbation k-Modes

• For the *k*th eigenmode, the scalar components become

 $A(\mathbf{x}) = A(k) Q^{(0)}, \qquad H_L(\mathbf{x}) = H_L(k) Q^{(0)},$ $\delta \rho(\mathbf{x}) = \delta \rho(k) Q^{(0)}, \qquad \delta p(\mathbf{x}) = \delta p(k) Q^{(0)},$

the vectors components become

$$B_i(\mathbf{x}) = \sum_{m=-1}^{1} B^{(m)}(k) Q_i^{(m)}, \qquad v_i(\mathbf{x}) = \sum_{m=-1}^{1} v^{(m)}(k) Q_i^{(m)},$$

and the tensors components

$$H_{Tij}(\mathbf{x}) = \sum_{m=-2}^{2} H_T^{(m)}(k) Q_{ij}^{(m)}, \quad \Pi_{ij}(\mathbf{x}) = \sum_{m=-2}^{2} \Pi^{(m)}(k) Q_{ij}^{(m)},$$

Homogeneous Einstein Equations

• Einstein (Friedmann) equations:

$$\left(\frac{1}{a}\frac{da}{dt}\right)^2 = \frac{8\pi G}{3}\rho$$
$$\frac{1}{a}\frac{d^2a}{dt^2} = -\frac{4\pi G}{3}(\rho + 3p)$$

so that $w \equiv p/\rho < -1/3$ for acceleration

• Conservation equation $\nabla^{\mu}T_{\mu\nu} = 0$ implies

$$\frac{\dot{\rho}}{\rho} = -3(1+w)\frac{\dot{a}}{a}$$

Homogeneous Einstein Equations

• Counting exercise:

- 20 Variables (10 metric; 10 matter)
- -17 Homogeneity and Isotropy
 - -2 Einstein equations
 - -1 Conservation equations
 - +1 Bianchi identities
 - 1 Degree of freedom
- without loss of generality choose ratio of homogeneous & isotropic component of the stress tensor to the density w(a) = p(a)/p(a).

Acceleration Implies Negative Pressure

- Role of stresses in the background cosmology
- Homogeneous Einstein equations $G_{\mu\nu} = 8\pi G T_{\mu\nu}$ imply the two Friedman equations (flat universe, or associating curvature $\rho_K = -3K/8\pi G a^2$)

$$\left(\frac{1}{a}\frac{da}{dt}\right)^2 = \frac{8\pi G}{3}\rho$$
$$\frac{1}{a}\frac{d^2a}{dt^2} = -\frac{4\pi G}{3}(\rho + 3p)$$

so that the total equation of state $w \equiv p/\rho < -1/3$ for acceleration

• Conservation equation $\nabla^{\mu}T_{\mu\nu} = 0$ implies

$$\frac{\dot{\rho}}{\rho} = -3(1+w)\frac{\dot{a}}{a}$$

• so that ρ must scale more slowly than a^{-2}

Questions regarding Dark Energy

- Coincidence: given the very different scalings of matter and dark energy with *a*, why are they comparable now?
- Stability: why doesn't negative pressure imply accelerated collapse? or why doesn't the vacuum suck?
- Answer: stability is associated with stress (pressure) gradients not stress (pressure) itself.
- Example: the cosmological constant w_Λ = -1, a constant in time and space – no gradients.
- Example: a scalar field where $w = p/\rho \neq \delta p/\delta \rho$ = sound speed.
Covariant Scalar Equations

• Einstein equations (suppressing 0) superscripts (Hu & Eisenstein 1999):

$$\begin{split} (k^{2} - 3K)[H_{L} + \frac{1}{3}H_{T} + \frac{\dot{a}}{a}\frac{1}{k^{2}}(kB - \dot{H}_{T})] \\ &= 4\pi Ga^{2}\left[\delta\rho + 3\frac{\dot{a}}{a}(\rho + p)(v - B)/k\right], \quad \text{Poisson Equation} \\ k^{2}(A + H_{L} + \frac{1}{3}H_{T}) + \left(\frac{d}{d\eta} + 2\frac{\dot{a}}{a}\right)(kB - \dot{H}_{T}) \\ &= 8\pi Ga^{2}p\Pi, \\ \frac{\dot{a}}{a}A - \dot{H}_{L} - \frac{1}{3}\dot{H}_{T} - \frac{K}{k^{2}}(kB - \dot{H}_{T}) \\ &= 4\pi Ga^{2}(\rho + p)(v - B)/k, \\ \left[2\frac{\ddot{a}}{a} - 2\left(\frac{\dot{a}}{a}\right)^{2} + \frac{\dot{a}}{a}\frac{d}{d\eta} - \frac{k^{2}}{3}\right]A - \left[\frac{d}{d\eta} + \frac{\dot{a}}{a}\right](\dot{H}_{L} + \frac{1}{3}kB) \\ &= 4\pi Ga^{2}(\delta p + \frac{1}{3}\delta \rho). \end{split}$$

Covariant Scalar Equations

Conservation equations: continuity and Navier Stokes

$$\begin{split} & \left[\frac{d}{d\eta} + 3\frac{\dot{a}}{a}\right]\boldsymbol{\delta\rho} + 3\frac{\dot{a}}{a}\boldsymbol{\delta p} &= -(\rho+p)(k\boldsymbol{v} + 3\dot{H}_{L})\,, \\ & \left[\frac{d}{d\eta} + 4\frac{\dot{a}}{a}\right]\left[(\rho+p)\frac{(\boldsymbol{v}-\boldsymbol{B})}{k}\right] &= \boldsymbol{\delta p} - \frac{2}{3}(1-3\frac{K}{k^{2}})p\Pi + (\rho+p)\boldsymbol{A}\,, \end{split}$$

- Equations are not independent since ∇_μG^{μν} = 0 via the Bianchi identities.
- Related to the ability to choose a coordinate system or "gauge" to represent the perturbations.

Covariant Scalar Equations

- DOF counting exercise
 - 8 Variables (4 metric; 4 matter)
 - -4 Einstein equations
 - -2 Conservation equations
 - +2 Bianchi identities
 - **Gauge (coordinate choice 1 time, 1 space)**
 - 2 Degrees of freedom
- without loss of generality choose scalar components of the stress tensor $\delta p, \Pi$.

Covariant Vector Equations

• Einstein equations

$$(1 - 2K/k^2)(kB^{(\pm 1)} - \dot{H}_T^{(\pm 1)})$$

= $16\pi Ga^2(\rho + p)(v^{(\pm 1)} - B^{(\pm 1)})/k$,
 $\left[\frac{d}{d\eta} + 2\frac{\dot{a}}{a}\right](kB^{(\pm 1)} - \dot{H}_T^{(\pm 1)})$
= $-8\pi Ga^2 p\Pi^{(\pm 1)}$.

• Conservation Equations

$$\left[\frac{d}{d\eta} + 4\frac{\dot{a}}{a}\right] \left[(\rho + p)(\mathbf{v}^{(\pm 1)} - \mathbf{B}^{(\pm 1)})/k \right]$$
$$= -\frac{1}{2}(1 - 2K/k^2)p\Pi^{(\pm 1)},$$

• Gravity provides no source to vorticity \rightarrow decay

Covariant Vector Equations

- DOF counting exercise
 - 8 Variables (4 metric; 4 matter)
 - -4 Einstein equations
 - -2 Conservation equations
 - +2 Bianchi identities
 - -2 Gauge (coordinate choice 1 time, 1 space)
 - 2 Degrees of freedom
- without loss of generality choose vector components of the stress tensor Π^(±1).

Covariant Tensor Equation

• Einstein equation

$$\left[\frac{d^2}{d\eta^2} + 2\frac{\dot{a}}{a}\frac{d}{d\eta} + (k^2 + 2K)\right]H_T^{(\pm 2)} = 8\pi G a^2 p \Pi^{(\pm 2)}$$

• DOF counting exercise

- 4 Variables (2 metric; 2 matter)
- -2 Einstein equations
- **-0** Conservation equations
- +0 Bianchi identities
- -0 Gauge (coordinate choice 1 time, 1 space)
 - 2 Degrees of freedom

• wlog choose tensor components of the stress tensor $\Pi^{(\pm 2)}$.

Arbitrary Dark Components

- Total stress energy tensor can be broken up into individual pieces
- Dark components interact only through gravity and so satisfy separate conservation equations
- Einstein equation source remains the sum of components.
- To specify an arbitrary dark component, give the behavior of the stress tensor: 6 components: δp, Π⁽ⁱ⁾, where i = -2, ..., 2.
- Many types of dark components (dark matter, scalar fields, massive neutrinos,...) have simple forms for their stress tensor in terms of the energy density, i.e. described by equations of state.
- An equation of state for the background w = p/ρ is *not* sufficient to determine the behavior of the perturbations.

- Metric and matter fluctuations take on different values in different coordinate system
- No such thing as a "gauge invariant" density perturbation!
- General coordinate transformation:

 $\tilde{\eta} = \eta + T$ $\tilde{x}^i = x^i + L^i$

free to choose (T, L^i) to simplify equations or physics. Decompose these into scalar and vector harmonics.

• $G_{\mu\nu}$ and $T_{\mu\nu}$ transform as tensors, so components in different frames can be related

Gauge Transformation

• Scalar Metric:

$$\begin{split} \tilde{A} &= A - \dot{T} - \frac{\dot{a}}{a}T, \\ \tilde{B} &= B + \dot{L} + kT, \\ \tilde{H}_L &= H_L - \frac{k}{3}L - \frac{\dot{a}}{a}T, \\ \tilde{H}_T &= H_T + kL, \end{split}$$

• Scalar Matter (*J*th component):

$$\begin{split} \delta \tilde{\rho}_J &= \delta \rho_J - \dot{\rho}_J T, \\ \delta \tilde{p}_J &= \delta p_J - \dot{p}_J T, \\ \tilde{v}_J &= v_J + \dot{L}, \end{split}$$

• Vector:

 $\tilde{B}^{(\pm 1)} = \overline{B^{(\pm 1)} + \dot{L}^{(\pm 1)}, \, \tilde{H}_T^{(\pm 1)} = H_T^{(\pm 1)} + kL^{(\pm 1)}, \, \tilde{v}_J^{(\pm 1)} = v_J^{(\pm 1)} + \dot{L}^{(\pm 1)}, \, v_J^{(\pm 1)} = v_J^{(\pm 1)} + \dot{L}^{(\pm 1)} + \dot{L}^{(\pm$

• A coordinate system is fully specified if there is an explicit prescription for (T, L^i) or for scalars (T, L)

• Newtonian:

 $\tilde{B} = \tilde{H}_T = 0$ $\Psi \equiv \tilde{A} \quad \text{(Newtonian potential)}$ $\Phi \equiv \tilde{H}_L \quad \text{(Newtonian curvature)}$ $L = -H_T/k$ $T = -B/k + \dot{H}_T/k^2$

Good: intuitive Newtonian like gravity; matter and metric algebraically related; commonly chosen for analytic CMB and lensing work

Bad: numerically unstable

Example: Newtonian Reduction

• In the general equations, set $B = H_T = 0$:

$$(k^{2} - 3K)\Phi = 4\pi Ga^{2} \left[\frac{\delta\rho}{\delta\rho} + 3\frac{\dot{a}}{a}(\rho + p)v/k \right]$$
$$k^{2}(\Psi + \Phi) = 8\pi Ga^{2}p\Pi$$

so $\Psi = -\Phi$ if anisotropic stress $\Pi = 0$ and

$$\begin{split} \left[\frac{d}{d\eta} + 3\frac{\dot{a}}{a}\right] \boldsymbol{\delta\rho} + 3\frac{\dot{a}}{a}\boldsymbol{\delta p} &= -(\rho + p)(k\boldsymbol{v} + 3\dot{\Phi}), \\ \left[\frac{d}{d\eta} + 4\frac{\dot{a}}{a}\right](\rho + p)\boldsymbol{v} &= k\boldsymbol{\delta p} - \frac{2}{3}(1 - 3\frac{K}{k^2})p\,k\Pi + (\rho + p)\,k\Psi, \end{split}$$

Competition between stress (pressure and viscosity) and potential gradients

Common Scalar Gauge ChoicesComoving:

$$\tilde{B} = \tilde{v} \quad (T_i^0 = 0)$$

$$H_T = 0$$

$$\xi = \tilde{A}$$

$$\zeta = \tilde{H}_L \quad (\text{Bardeen curvature})$$

$$\Delta = \tilde{\delta} \quad (\text{comoving density pert})$$

$$T = (v - B)/k$$

$$L = -H_T/k$$

Good: Algebraic relations between matter and metric

• Euler equation becomes an algebraic relation between stress and potential

$$(\rho + p)\xi = -\delta p + \frac{2}{3}\left(1 - \frac{3K}{k}\right)p\Pi$$

• Einstein equation lacks momentum density source

$$\frac{\dot{a}}{a}\xi - \dot{\zeta} - \frac{K}{k^2}kv = 0$$

• Combine: ζ is conserved if stress fluctuations negligible, e.g. above the horizon if $|K| \ll H^2$

$$\dot{\boldsymbol{\zeta}} + Kv/k = \frac{\dot{a}}{a} \left[-\frac{\delta p}{\rho + p} + \frac{2}{3} \left(1 - \frac{3K}{k^2} \right) \frac{p}{\rho + p} \Pi \right] \to 0$$

Bad: explicitly relativistic choice

• Synchronous:

$$\tilde{A} = \tilde{B} = 0$$

$$\eta_L \equiv -\tilde{H}_L - \frac{1}{3}\tilde{H}_T$$

$$h_T = \tilde{H}_T \text{ or } h = 6H_L$$

$$T = a^{-1}\int d\eta a A + c_1 a^{-1}$$

$$L = -\int d\eta (B + kT) + c_2$$

Good: stable, the choice of numerical codes Bad: residual gauge freedom in constants c_1 , c_2 must be specified as an initial condition, intrinsically relativistic.

• Spatially Unperturbed:

 $\tilde{H}_{L} = \tilde{H}_{T} = 0$ $L = -H_{T}/k$ $\tilde{A}, \tilde{B} = \text{metric perturbations}$ $T = \left(\frac{\dot{a}}{a}\right)^{-1} \left(H_{L} + \frac{1}{3}H_{T}\right)$

Good: eliminates spatial metric in evolution equations; useful in inflationary calculations (Mukhanov et al)

Bad: intrinsically relativistic.

• Caution: perturbation evolution is governed by the behavior of stress fluctuations and an isotropic stress fluctuation δp is gauge dependent.

Hybrid "Gauge Invariant" Approach

- With the gauge transformation relations, express variables of one gauge in terms of those in another allows a mixture in the equations of motion
- Example: Newtonian curvature and comoving density

 $(k^2 - 3K)\Phi = 4\pi G a^2 \rho \Delta$

ordinary Poisson equation then implies Φ approximately constant if stresses negligible.

• Example: Exact Newtonian curvature above the horizon derived through Bardeen curvature conservation

Gauge transformation

$$\Phi = \zeta + \frac{\dot{a}}{a} \frac{v}{k}$$

Hybrid "Gauge Invariant" Approach

Einstein equation to eliminate velocity

$$\frac{\dot{a}}{a}\Psi - \dot{\Phi} = 4\pi G a^2 (\rho + p) v/k$$

Friedman equation with no spatial curvature

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}a^2\rho$$

With $\dot{\Phi} = 0$ and $\Psi \approx -\Phi$

$$\frac{\dot{a}}{a}\frac{v}{k} = -\frac{2}{3(1+w)}\Phi$$

Hybrid "Gauge Invariant" Approach Combining gauge transformation with velocity relation

$$\Phi = \frac{3+3w}{5+3w}\zeta$$

Usage: calculate ζ from inflation determines Φ for any choice of matter content or causal evolution.

Example: Scalar field ("quintessence" dark energy) equations in comoving gauge imply a sound speed δp/δρ = 1 independent of potential V(φ). Solve in synchronous gauge (Hu 1998).

Astro 448

Inflationary Perturbations

Scalar Fields

• Stress-energy tensor of a scalar field

$$T^{\mu}_{\ \nu} = \nabla^{\mu}\varphi \,\nabla_{\nu}\varphi - \frac{1}{2} (\nabla^{\alpha}\varphi \,\nabla_{\alpha}\varphi + 2V) \delta^{\mu}_{\ \nu} \,.$$

• For the background $\langle \phi \rangle \equiv \phi_0$

$$\rho_{\phi} = \frac{1}{2}a^{-2}\dot{\phi}_{0}^{2} + V \quad p_{\phi} = \frac{1}{2}a^{-2}\dot{\phi}_{0}^{2} + -V$$

- So for kinetic dominated $w_{\phi} = p_{\phi}/\rho_{\phi} \rightarrow 1$
- And potential dominated $w_{\phi} = p_{\phi}/\rho_{\phi} \rightarrow -1$
- A slowly rolling (potential dominated) scalar field can accelerate the expansion and so solve the horizon problem or act as a dark energy candidate

Equation of Motion

 Can use general equations of motion of dictated by stress energy conservation

$$\dot{\rho}_{\phi} = -3(\rho_{\phi} + p_{\phi})\frac{a}{a} \,,$$

to obtain the equation of motion of the background field ϕ

$$\ddot{\phi}_0 + 2\frac{\dot{a}}{a}\dot{\phi}_0 + a^2V' = 0\,,$$

• Likewise for the perturbations $\phi = \phi_0 + \phi_1$

$$\delta \rho_{\phi} = a^{-2} (\dot{\phi}_{0} \dot{\phi}_{1} - \dot{\phi}_{0}^{2} A) + V' \phi_{1} ,$$

$$\delta p_{\phi} = a^{-2} (\dot{\phi}_{0} \dot{\phi}_{1} - \dot{\phi}_{0}^{2} A) - V' \phi_{1} ,$$

$$(\rho_{\phi} + p_{\phi}) (v_{\phi} - B) = a^{-2} k \dot{\phi}_{0} \phi_{1} ,$$

$$p_{\phi} \pi_{\phi} = 0 ,$$

Equation of Motion

• The stress of the perturbations is defined through

$$\delta p_{\phi} = \delta \rho_{\phi} + 3(\rho_{\phi} + p_{\phi})\frac{v_{\phi} - B}{k}\frac{\dot{a}}{a}(1 - c_{\phi}^2)$$

where $c_{\phi}^2 \equiv \dot{p}_{\phi}/\dot{\rho}_{\phi}$ is the "adiabatic" sound speed

- So for the comoving gauge where v_φ = B, δp_φ = δρ_φ so the sound speed relevant for stability is δp_φ/δρ_φ = 1. Very useful for solving system since in this gauge everything is specified by w(a)
- Scalar field fluctuations are stable inside the horizon and are a good candidate for the smooth dark energy
- More generally, continuity and Euler equations imply

$$\ddot{\phi}_1 = -2\frac{\dot{a}}{a}\dot{\phi}_1 - (k^2 + a^2 V'')\phi_1 + (\dot{A} - 3\dot{H}_L - kB)\dot{\phi}_0 - 2Aa^2V'.$$

Inflationary Perturbations

- Classical equations of motion for scalar field inflaton determine the evolution of scalar field fluctuations generated by quantum fluctuations
- Since the Bardeen or comoving curvature ζ is conserved in the absence of stress fluctuations (i.e. outside the apparent horizon, calculate this and we're done no matter what happens in between inflation and the late universe (reheating etc.)
- But in the comoving gauge $\phi_1 = 0!$ no scalar-field perturbation
- Solution: solve the scalar field equation in the dual gauge where the curvature H_L = 0 (and H_T = 0 to fix the gauge completely, as the "spatially unperturbed" or "spatially flat" gauge) and transform the result to the comoving gauge

Transformation to Comoving Gauge

• Scalar field transforms as scalar field

$$\tilde{\phi}_1 = \phi_1 - \dot{\phi}_0 T$$

• To get to comoving frame $\tilde{\phi}_1 = 0$, $T = \phi_1/\dot{\phi}_0$, and $\tilde{H}_T = H_T + kL$ so

$$\zeta = H_L - \frac{k}{3}L - \frac{\dot{a}}{a}T,$$
$$= H_L + \frac{H_T}{3} - \frac{\dot{a}}{a}\frac{\phi_1}{\dot{\phi}_0}$$

• Transformation particularly simple from a gauge with $H_T = H_L = 0$, i.e. spatially unperturbed metric

$$\zeta = -\frac{\dot{a}}{a}\frac{\phi_1}{\dot{\phi}_0}$$

Scalar Field Eqn of Motion

- Scalar field perturbation in spatially unperturbed gauge is simply proportional to resulting Bardeen curvature with the proportionality constant as the expansion rate over roll rate – enhanced
- Scalar field fluctuation satisfies classical equation of motion

$$\ddot{\phi}_1 = -2\frac{\dot{a}}{a}\dot{\phi}_1 - (k^2 + a^2 V'')\phi_1 + (\dot{A} - kB)\dot{\phi}_0 - 2Aa^2V'.$$

• Metric terms may be eliminated through Einstein equations

$$A = 4\pi G a^2 \left(\frac{\dot{a}}{a}\right)^{-1} (\rho_{\phi} + p_{\phi})(v_{\phi} - B)/k$$
$$= 4\pi G \left(\frac{\dot{a}}{a}\right)^{-1} \dot{\phi}_0 \phi_1$$

Scalar Field Eqn of Motion

• And

$$kB = 4\pi G a^{2} \left[\left(\frac{\dot{a}}{a} \right)^{-1} \delta \rho_{\phi} + 3 \frac{\dot{a}}{a} (\rho_{\phi} + p_{\phi}) (v_{\phi} - B) / k \right]$$

= $4\pi G \left[\left(\frac{\dot{a}}{a} \right)^{-1} (\dot{\phi}_{0} \dot{\phi}_{1} + a^{2} V' \phi_{1}) - \left(\frac{\dot{a}}{a} \right)^{-2} (4\pi G \dot{\phi}_{0})^{2} \dot{\phi}_{0} \phi_{1} + 3 \dot{\phi}_{0} \phi_{1} \right]$

- So A kB ∝ φ₁ with proportionality that depends only on the background evolution Einstein & scalar field equations reduce to a single second order diff eq!
- Equation resembles a damped oscillator equation with a particular dispersion relation

$$\ddot{\phi}_1 + 2\frac{\dot{a}}{a}\dot{\phi}_1 + [k^2 + f(\eta)]\phi_1$$

Exact Equation

- Rewrite equations of motion in terms of slow roll parameters but do not require them to be small or constant.
- Deviation from de Sitter expansion

$$\epsilon \equiv \frac{3}{2}(1+w_{\phi})$$
$$= \frac{\frac{3}{2}\dot{\phi}_{0}^{2}/a^{2}V}{1+\frac{1}{2}\dot{\phi}_{0}^{2}/a^{2}V}$$

• Deviation from overdamped limit of $d^2\phi_0/dt^2 = 0$

$$\delta \equiv \frac{\ddot{\phi}_0}{\dot{\phi}} \left(\frac{\dot{a}}{a}\right)^{-1} - 1$$

Exact Equation

• Friedman equations:

$$\left(\frac{\dot{a}}{a}\right)^2 = 4\pi G \dot{\phi}_0^2 \epsilon^{-1}$$
$$\frac{d}{d\eta} \left(\frac{\dot{a}}{a}\right) = \left(\frac{\dot{a}}{a}\right)^2 (1-\epsilon)$$

• Homogenous scalar field equation

$$\dot{\phi}_0 \frac{\dot{a}}{a} (3+\delta) = -a^2 V'$$

• Combination

$$\dot{\epsilon} = 2\epsilon(\delta + \epsilon)\frac{\dot{a}}{a}$$

Exact equation

• Rewrite in $u \equiv a\phi$ to remove expansion damping

 $\ddot{u} + [k^2 + g(\eta)]u = 0$

where Mukhanov

$$g(\eta) \equiv f(\eta) + \epsilon - 2$$

= $-\left(\frac{\dot{a}}{a}\right)^2 [2 + 3\delta + 2\epsilon + (\delta + \epsilon)(\delta + 2\epsilon)] - \frac{\dot{a}}{a}\dot{\delta}$
= $-\frac{\ddot{z}}{z}$

and

$$z \equiv a \left(\frac{\dot{a}}{a}\right)^{-1} \dot{\phi}_0$$

Slow Roll Limit

• Slow roll $\epsilon \ll 1, \delta \ll 1, \dot{\delta} \ll \frac{\dot{a}}{a}$

$$\ddot{u} + \left[k^2 - 2\left(\frac{\dot{a}}{a}\right)^2\right]u = 0$$

• or for conformal time measured from the end of inflation

$$\begin{split} \tilde{\eta} &= \eta - \eta_{\text{end}} \\ \tilde{\eta} &= \int_{a_{\text{end}}}^{a} \frac{da}{Ha^2} \approx -\frac{1}{aH} \end{split}$$

• Compact, slow-roll equation:

$$\ddot{u} + [k^2 - \frac{2}{\tilde{\eta}^2}]u = 0$$

Slow Roll Limit

• Slow roll equation has the exact solution:

$$u = A(k \pm \frac{i}{\tilde{\eta}})e^{\mp ik\tilde{\eta}}$$

• For $|k\tilde{\eta}| \gg 1$ (early times, inside Hubble length) behaves as free oscillator

$$\lim_{|k\tilde{\eta}|\to\infty} u = Ake^{\mp ik\tilde{\eta}}$$

• Normalization A will be set by origin in quantum fluctuations of free field

Slow Roll Limit

• For $|k\tilde{\eta}| \ll 1$ (late times, \gg Hubble length) fluctuation freezes in

$$\lim_{k\tilde{\eta}|\to 0} u = \pm \frac{i}{\tilde{\eta}}A = \pm iHaA$$
$$\phi_1 = \pm iHA$$
$$\zeta = \mp iHA\left(\frac{\dot{a}}{a}\right)\frac{1}{\dot{\phi}_0}$$

• Slow roll replacement

$$\left(\frac{\dot{a}}{a}\right)^2 \frac{1}{\dot{\phi}_0^2} = \frac{8\pi G a^2 V}{3} \frac{3}{2a^2 V \epsilon} = 4\pi G = \frac{4\pi}{m_{\rm pl}^2}$$

• Bardeen curvature power spectrum

$$\Delta_{\zeta}^{2} \equiv \frac{k^{3} |\zeta|^{2}}{2\pi^{2}} = \frac{2k^{3}}{\pi} \frac{H^{2}}{\epsilon m_{\rm pl}^{2}} A^{2}$$

Quantum Fluctuations

• Simple harmonic oscillator \ll Hubble length

 $\ddot{u} + k^2 u = 0$

• Quantize the simple harmonic oscillator

 $\hat{u} = u(k,\eta)\hat{a} + u^*(k,\eta)\hat{a}^{\dagger}$

where $u(k, \eta)$ satisfies classical equation of motion and the creation and annihilation operators satisfy

$$[a, a^{\dagger}] = 1, \qquad a|0\rangle = 0$$

• Normalize wavefunction $[\hat{u}, d\hat{u}/d\eta] = i$

$$u(k,\eta) = \frac{1}{\sqrt{2k}} e^{-ik\tilde{\eta}}$$

Quantum Fluctuations

• Zero point fluctuations of ground state

$$\begin{split} u^{2} \rangle &= \langle 0 | u^{\dagger} u | 0 \rangle \\ &= \langle 0 | (u^{*} \hat{a}^{\dagger} + u \hat{a}) (u \hat{a} + u^{*} \hat{a}^{\dagger}) | 0 \rangle \\ &= \langle 0 | \hat{a} \hat{a}^{\dagger} | 0 \rangle | u(k, \tilde{\eta}) |^{2} \\ &= \langle 0 | [\hat{a}, \hat{a}^{\dagger}] + \hat{a}^{\dagger} \hat{a} | 0 \rangle | u(k, \tilde{\eta}) |^{2} \\ &= |u(k, \tilde{\eta})|^{2} = \frac{1}{2k} \end{split}$$

• Classical equation of motion take this quantum fluctuation outside horizon where it freezes in. Slow roll equation

• So $A = (2k^3)^{1/2}$ and curvature power spectrum

$$\Delta_{\zeta}^2 \equiv \frac{1}{\pi} \frac{H^2}{\epsilon m_{\rm pl}^2}$$

Tilt

- Curvature power spectrum is scale invariant to the extent that *H* is constant
- Scalar spectral index

$$\frac{d\ln\Delta_{\zeta}^2}{d\ln k} \equiv n_S - 1$$
$$= 2\frac{d\ln H}{d\ln k} - \frac{d\ln\epsilon}{d\ln k}$$

• Evaluate at horizon crossing where fluctuation freezes

$$\frac{d\ln H}{d\ln k}\Big|_{-k\tilde{\eta}=1} = \frac{k}{H}\frac{dH}{d\tilde{\eta}}\Big|_{-k\tilde{\eta}=1}\frac{d\tilde{\eta}}{dk}\Big|_{-k\tilde{\eta}=1}$$
$$= \frac{k}{H}(-aH^{2}\epsilon)\Big|_{-k\tilde{\eta}=1}\frac{1}{k^{2}} = -\epsilon$$

where $aH = -1/\tilde{\eta} = k$

Tilt

• Evolution of ϵ

$$\frac{d\ln\epsilon}{d\ln k} = -\frac{d\ln\epsilon}{d\ln\tilde{\eta}} = -2(\delta+\epsilon)\frac{\dot{a}}{a}\tilde{\eta} = 2(\delta+\epsilon)$$

• Tilt in the slow-roll approximation

$$n_S = 1 - 4\epsilon - 2\delta$$
Relationship to Potential

• To leading order in slow roll parameters

$$\begin{aligned} \epsilon &= \frac{\frac{3}{2}\dot{\phi}_0^2/a^2 V}{1 + \frac{1}{2}\dot{\phi}_0^2/a^2 V} \\ &\approx \frac{3}{2}\dot{\phi}_0^2/a^2 V \\ &\approx \frac{3}{a^2 V}\frac{a^4 V'^2}{9(\dot{a}/a)^2}, \qquad (3\dot{\phi}_0\frac{\dot{a}}{a} = -a^2 V') \\ &\approx \frac{1}{6}\frac{3}{8\pi G}\left(\frac{V'}{V}\right)^2, \qquad \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}a^2 V \\ &\approx \frac{1}{16\pi G}\left(\frac{V'}{V}\right)^2 \end{aligned}$$

so $\epsilon \ll 1$ is related to the first derivative of potential being small

Relationship to Potential

• And

$$\begin{split} \delta &= \frac{\ddot{\phi}_0}{\dot{\phi}_0} \left(\frac{\dot{a}}{a}\right)^{-1} - 1 \\ &\quad (\dot{\phi}_0 \approx -a^2 \left(\frac{\dot{a}}{a}\right)^{-1} \frac{V'}{3}) \\ &\quad (\ddot{\phi}_0 \approx -\frac{a^2 V'}{3} (1+\epsilon) + a^4 \left(\frac{\dot{a}}{a}\right)^{-2} \frac{V' V''}{9}) \\ &\approx -\frac{1}{a^2 V'/3} \left(-\frac{a^2 V'}{3} (1+\epsilon) + \frac{a^2}{9} \frac{3}{8\pi G} \frac{V' V''}{V}\right) - 1 \quad \approx \epsilon - \frac{1}{8\pi G} \frac{V''}{V} \end{split}$$

so δ is related to second derivative of potential being small. Very flat potential.

Gravitational Waves

Gravitational wave amplitude satisfies Klein-Gordon equation (K = 0), same as scalar field

$$\ddot{H}_T^{(\pm 2)} + 2\frac{\dot{a}}{a}\dot{H}_T^{(\pm 2)} + k^2 H_T^{(\pm 2)} = 0.$$

Acquires quantum fluctuations in same manner as \u03c6. Lagrangian sets the normalization

$$\phi_1 \to H_T^{(\pm 2)} \sqrt{\frac{3}{16\pi G}}$$

• Scale-invariant gravitational wave amplitude (each component: NB more traditional notation $H_T^{(\pm 2)} = (h_+ \pm ih_{\times})/\sqrt{6}$)

$$\Delta_H^2 = \frac{16\pi G}{3 \cdot 2\pi^2} \frac{H^2}{2} = \frac{4}{3\pi} \frac{H^2}{m_{\rm pl}^2}$$

Gravitational Waves

- Gravitational wave power $\propto H^2 \propto V \propto E_i^4$ where E_i is the energy scale of inflation
- Tensor tilt:

$$\frac{d\ln\Delta_H^2}{d\ln k} \equiv n_T = 2\frac{d\ln H}{d\ln k} = -2\epsilon$$

• Consistency relation between tensor-scalar ratio and tensor tilt

$$\frac{\Delta_H^2}{\Delta_\zeta^2} = \frac{4}{3}\epsilon = -\frac{2}{3}\epsilon$$

- Measurement of scalar tilt and gravitational wave amplitude constrains inflationary model in the slow roll context
- Comparision of tensor-scalar ratio and tensor tilt tests the idea of slow roll itself

Gravitational Wave Phenomenology

• Equation of motion

$$\ddot{H}_T^{(\pm 2)} + 2\frac{\dot{a}}{a}\dot{H}_T^{(\pm 2)} + k^2 H_T^{(\pm 2)} = 0.$$

• has solutions

 $H_T^{(\pm 2)} = C_1 H_1(k\eta) + C_2 H_2(k\eta)$ $H_1 \propto x^{-m} j_m(x)$ $H_2 \propto x^{-m} n_m(x)$

where m = (1 - 3w)/(1 + 3w)

- If w > −1/3 then gravity wave is constant above horizon x ≪ 1 and then oscillates and damps
- If w < -1/3 then gravity wave oscillates and freezes into some value, just like scalar field

Gravitational Wave Phenomenology

- A gravitational wave makes a quadrupolar (transverse-traceless) distortion to metric
- Just like the scale factor or spatial curvature, a temporal variation in its amplitude leaves a residual temperature variation in CMB photons – here anisotropic
- Before recombination, anisotropic variation is eliminated by scattering
- Gravitational wave temperature effect drops sharply at the horizon scale at recombination
- Source to polarization goes as $\dot{\tau}/\dot{H}_T$ and peaks at the horizon not damping scale
- *B* modes formed as photons propagate the spatial variation in the plane waves modulate the signal: described by Boltzmann eqn.

Astro 448

Boltzmann Formalism

Boltzmann Equation

- CMB radiation is generally described by the phase space distribution function for each polarization state f_a(x, q, η), where x is the comoving position and q is the photon momentum
- Boltzmann equation describes the evolution of the distribution function under gravity and collisions
- Low order moments of the Boltzmann equation are simply the covariant conservation equations
- Higher moments provide the closure condition to the conservation law (specification of stress tensor) and the CMB observable – fine scale anisotropy
- Higher moments mainly describe the simple geometry of source projection

Liouville Equation

- In absence of scattering, the phase space distribution of photons is conserved along the propagation path
- Rewrite variables in terms of the photon propagation direction
 q = qn̂, so f_a(x, n̂, q, η) and

$$\frac{d}{d\eta}f_a(\mathbf{x}, \hat{\mathbf{n}}, q, \eta) = 0$$
$$= \left(\frac{\partial}{\partial\eta} + \frac{d\mathbf{x}}{d\eta} \cdot \frac{\partial}{\partial\mathbf{x}} + \frac{d\hat{\mathbf{n}}}{d\eta} \cdot \frac{\partial}{\partial\hat{\mathbf{n}}} + \frac{dq}{d\eta} \cdot \frac{\partial}{\partial q}\right)f_a$$

• For simplicity, assume spatially flat universe K = 0 then $d\hat{\mathbf{n}}/d\eta = 0$ and $d\mathbf{x} = \hat{\mathbf{n}}d\eta$

$$\dot{f}_a + \hat{\mathbf{n}} \cdot \nabla f_a + \dot{q} \frac{\partial}{\partial q} f_a = 0$$

Correspondence to Einstein Eqn.

• Geodesic equation gives the redshifting term

$$\frac{\dot{q}}{q} = -\frac{\dot{a}}{a} - \frac{1}{2}n^i n^j \dot{H}_{Tij} - \dot{H}_L + n^i \dot{B}_i - \hat{\mathbf{n}} \cdot \nabla A$$

- which is incorporated in the conservation and gauge transformation equations
- Stress energy tensor involves integrals over the distribution function the two polarization states

$$T^{\mu\nu} = \int \frac{d^3q}{(2\pi)^3} \frac{q^{\mu}q^{\nu}}{E} (f_a + f_b)$$

Components are simply the low order angular moments of the distribution function

Angular Moments

• Define the angularly dependent temperature perturbation

$$\Theta(\mathbf{x}, \hat{\mathbf{n}}, \eta) = \frac{1}{4\rho_{\gamma}} \int \frac{q^3 dq}{2\pi^2} (f_a + f_b) - 1$$

and likewise for the linear polarization states Q and U

 Decompose into normal modes: plane waves for spatial part and spherical harmonics for angular part

$$G_{\ell}^{m}(\mathbf{k}, \mathbf{x}, \hat{\mathbf{n}}) \equiv (-i)^{\ell} \sqrt{\frac{4\pi}{2\ell+1}} Y_{\ell}^{m}(\hat{\mathbf{n}}) \exp(i\mathbf{k} \cdot \mathbf{x})$$
$${}_{\pm 2}G_{\ell}^{m}(\mathbf{k}, \mathbf{x}, \hat{\mathbf{n}}) \equiv (-i)^{\ell} \sqrt{\frac{4\pi}{2\ell+1}} {}_{\pm 2}Y_{\ell}^{m}(\hat{\mathbf{n}}) \exp(i\mathbf{k} \cdot \mathbf{x})$$

• In a spatially curved universe generalize the plane wave part

Normal Modes

• Temperature and polarization fields

$$\Theta(\mathbf{x}, \hat{\mathbf{n}}, \eta) = \int \frac{d^3k}{(2\pi)^3} \sum_{\ell m} \Theta_\ell^{(m)} G_\ell^m$$
$$[Q \pm iU](\mathbf{x}, \hat{\mathbf{n}}, \eta) = \int \frac{d^3k}{(2\pi)^3} \sum_{\ell m} [E_\ell^{(m)} \pm iB_\ell^{(m)}]_{\pm 2} G_\ell^m$$

For each k mode, work in coordinates where k || z and so m = 0 represents scalar modes, m = ±1 vector modes, m = ±2 tensor modes, |m| > 2 vanishes. Since modes add incoherently and Q±iU is invariant up to a phase, rotation back to a fixed coordinate system is trivial.

Scalar, Vector, Tensor

 Normalization of modes is chosen so that the lowest angular mode for scalars, vectors and tensors are normalized in the same way as the mode function

$$G_0^0 = Q^{(0)} \quad G_1^0 = n^i Q_i^{(0)} \quad G_2^0 \propto n^i n^j Q_{ij}^{(0)}$$
$$G_1^{\pm 1} = n^i Q_i^{(\pm 1)} \quad G_2^{\pm 1} \propto n^i n^j Q_{ij}^{(\pm 1)}$$
$$G_2^{\pm 2} = n^i n^j Q_{ij}^{(\pm 2)}$$

where recall

$$Q^{(0)} = \exp(i\mathbf{k} \cdot \mathbf{x})$$

$$Q^{(\pm 1)}_{i} = \frac{-i}{\sqrt{2}}(\hat{\mathbf{e}}_{1} \pm i\hat{\mathbf{e}}_{2})_{i}\exp(i\mathbf{k} \cdot \mathbf{x})$$

$$Q^{(\pm 2)}_{ij} = -\sqrt{\frac{3}{8}}(\hat{\mathbf{e}}_{1} \pm i\hat{\mathbf{e}}_{2})_{i}(\hat{\mathbf{e}}_{1} \pm i\hat{\mathbf{e}}_{2})_{j}\exp(i\mathbf{k} \cdot \mathbf{x})$$

Geometrical Projection

- Main content of Liouville equation is purely geometrical and describes the projection of inhomogeneities into anisotropies
- Spatial gradient term hits plane wave:

$$\hat{\mathbf{n}} \cdot \nabla e^{i\mathbf{k} \cdot \mathbf{x}} = i\hat{\mathbf{n}} \cdot \mathbf{k}e^{i\mathbf{k} \cdot \mathbf{x}} = i\sqrt{\frac{4\pi}{3}}kY_1^0(\hat{\mathbf{n}})e^{i\mathbf{k} \cdot \mathbf{x}}$$

• Dipole term adds to angular dependence through the addition of angular momentum

$$\sqrt{\frac{4\pi}{3}}Y_1^0 Y_\ell^m = \frac{\kappa_\ell^m}{\sqrt{(2\ell+1)(2\ell-1)}}Y_{\ell-1}^m + \frac{\kappa_{\ell+1}^m}{\sqrt{(2\ell+1)(2\ell+3)}}Y_{\ell+1}^m$$

where $\kappa_{\ell}^{m} = \sqrt{\ell^{2} - m^{2}}$ is given by Clebsch-Gordon coefficients.

Temperature Hierarchy

• Absorb recoupling of angular momentum into evolution equation for normal modes

$$\dot{\Theta}_{\ell}^{(m)} = k \left[\frac{\kappa_{\ell}^{m}}{2\ell + 1} \Theta_{\ell-1}^{(m)} - \frac{\kappa_{\ell+1}^{m}}{2\ell + 3} \Theta_{\ell+1}^{(m)} \right] - \dot{\tau} \Theta_{\ell}^{(m)} + S_{\ell}^{(m)}$$

where $S_{\ell}^{(m)}$ are the gravitational (and later scattering sources; added scattering suppression of anisotropy)

- An originally isotropic l = 0 temperature perturbation will eventually become a high order anisotropy by "free streaming" or simple projection
- Original CMB codes solved the full hierarchy equations out to the ℓ of interest.

Integral Solution

- Hierarchy equation simply represents geometric projection, exactly as we have seen before in the projection of temperature perturbations on the last scattering surface
- In general, the solution describes the decomposition of the source S_l^(m) with its local angular dependence as seen at a distance x = Dn̂.
- Proceed by decomposing the angular dependence of the plane wave

$$e^{i\mathbf{k}\cdot\mathbf{x}} = \sum_{\ell} (-i)^{\ell} \sqrt{4\pi(2\ell+1)} j_{\ell}(kD) Y_{\ell}^{0}(\hat{\mathbf{n}})$$

• Recouple to the local angular dependence of G_{ℓ}^m

$$G_{\ell_s}^m = \sum_{\ell} (-i)^{\ell} \sqrt{4\pi (2\ell+1)} \alpha_{\ell_s \ell}^{(m)}(kD) Y_{\ell}^m(\hat{\mathbf{n}})$$

Integral Solution

• Projection kernels:

$$\ell_s = 0, \quad m = 0 \qquad \qquad \alpha_{0\ell}^{(0)} \equiv j_\ell$$
$$\ell_s = 1, \quad m = 0 \qquad \qquad \alpha_{1\ell}^{(0)} \equiv j'_\ell$$

• Integral solution:

$$\frac{\Theta_{\ell}^{(m)}(k,\eta_0)}{2\ell+1} = \int_0^{\eta_0} d\eta e^{-\tau} \sum_{\ell_s} S_{\ell_s}^{(m)} \alpha_{\ell_s\ell}^{(m)}(k(\eta_0-\eta))$$

• Power spectrum:

$$C_{\ell} = \frac{2}{\pi} \int \frac{dk}{k} \sum_{m} \frac{k^3 \langle \Theta_{\ell}^{(m)*} \Theta_{\ell}^{(m)} \rangle}{(2\ell+1)^2}$$

Solving for C_ℓ reduces to solving for the behavior of a handful of sources

Polarization Hiearchy

 In the same way, the coupling of a gradient or dipole angular momentum to the spin harmonics leads to the polarization hiearchy:

$$\dot{E}_{\ell}^{(m)} = k \left[\frac{2\kappa_{\ell}^{m}}{2\ell - 1} E_{\ell-1}^{(m)} - \frac{2m}{\ell(\ell+1)} B_{\ell}^{(m)} - \frac{2\kappa_{\ell+1}^{m}}{2\ell + 3} \right] - \dot{\tau} E_{\ell}^{(m)} + \mathcal{E}_{\ell}^{(m)}$$
$$\dot{B}_{\ell}^{(m)} = k \left[\frac{2\kappa_{\ell}^{m}}{2\ell - 1} B_{\ell-1}^{(m)} + \frac{2m}{\ell(\ell+1)} B_{\ell}^{(m)} - \frac{2\kappa_{\ell+1}^{m}}{2\ell + 3} \right] - \dot{\tau} E_{\ell}^{(m)} + \mathcal{B}_{\ell}^{(m)}$$

where $_{2}\kappa_{\ell}^{m} = \sqrt{(\ell^{2} - m^{2})(\ell^{2} - 4)/\ell^{2}}$ is given by the Clebsch-Gordon coefficients and \mathcal{E} , \mathcal{B} are the sources (scattering only).

 Note that for vectors and tensors |m| > 0 and B modes may be generated from E modes by projection. Cosmologically \$\mathcal{B}_{\ell}^{(m)} = 0\$

Polarization Integral Solution

• Again, we can recouple the plane wave angular momentum of the source inhomogeneity to its local angular dependence directly

$$\frac{E_{\ell}^{(m)}(k,\eta_0)}{2\ell+1} = \int_0^{\eta_0} d\eta e^{-\tau} \mathcal{E}_{\ell_s}^{(m)} \epsilon_{\ell_s\ell}^{(m)}(k(\eta_0-\eta))$$
$$\frac{B_{\ell}^{(m)}(k,\eta_0)}{2\ell+1} = \int_0^{\eta_0} d\eta e^{-\tau} \mathcal{E}_{\ell_s}^{(m)} \beta_{\ell_s\ell}^{(m)}(k(\eta_0-\eta))$$

• The only source to the polarization is from the quadrupole anisotropy so we only need $\ell_s = 2$, e.g. for scalars

$$\epsilon_{2\ell}^{(0)}(x) = \sqrt{\frac{3}{8} \frac{(\ell+2)!}{(\ell-2)!}} \frac{j_{\ell}(x)}{x^2} \qquad \beta_{2\ell}^{(0)} = 0$$

Truncated Hierarchy

- CMBFast uses the integral solution and relies on a fast j_{ℓ} generator
- However sources are not external to system and are defined through the Boltzmann hierarchy itself
- Solution: recall that we used this technique in the tight coupling regime by applying a closure condition from tight coupling
- CMBFast extends this idea by solving a truncated hierarchy of equations, e.g. out to $\ell = 25$ with non-reflecting boundary conditions

Thomson Collision Term

• Full Boltzmann equation

$$\frac{d}{d\eta}f_{a,b} = C[f_a, f_b]$$

- Collision term describes the scattering out of and into a phase space element
- Thomson collision based on differential cross section

$$\frac{d\sigma}{d\Omega} = \frac{3}{8\pi} |\hat{\mathbf{E}}' \cdot \hat{\mathbf{E}}|^2 \sigma_T \,,$$

where $\hat{\mathbf{E}}'$ and $\hat{\mathbf{E}}$ denote the incoming and outgoing directions of the electric field or polarization vector.

Scattering Calculation

- Start in the electron rest frame and in a coordinate system fixed by the scattering plane, spanned by incoming and outgoing directional vectors - n̂' · n̂ = cos β, where β is the scattering angle
- Θ_{\parallel} : in-plane polarization state; Θ_{\perp} : \perp -plane polarization state
- Transfer probability (constant set by $\dot{\tau}$)

$$\Theta_{\parallel} \propto \cos^2 eta \, \Theta_{\parallel}', \qquad \Theta_{\perp} \propto \Theta_{\perp}'$$

• and with the 45° axes as

$$\hat{\mathbf{E}}_1 = \frac{1}{\sqrt{2}} (\hat{\mathbf{E}}_{\parallel} + \hat{\mathbf{E}}_{\perp}), \qquad \hat{\mathbf{E}}_2 = \frac{1}{\sqrt{2}} (\hat{\mathbf{E}}_{\parallel} - \hat{\mathbf{E}}_{\perp})$$

Stokes Parameters

• Define the temperature in this basis

$$\Theta_1 \propto |\hat{\mathbf{E}}_1 \cdot \hat{\mathbf{E}}_1|^2 \Theta_1' + |\hat{\mathbf{E}}_1 \cdot \hat{\mathbf{E}}_2|^2 \Theta_2'$$

$$\propto \frac{1}{4} (\cos\beta + 1)^2 \Theta_1' + \frac{1}{4} (\cos\beta - 1)^2 \Theta_2'$$

$$\Theta_2 \propto |\hat{\mathbf{E}}_2 \cdot \hat{\mathbf{E}}_2|^2 \Theta_2' + |\hat{\mathbf{E}}_2 \cdot \hat{\mathbf{E}}_1|^2 \Theta_1'$$

$$\propto \frac{1}{4} (\cos\beta + 1)^2 \Theta_2' + \frac{1}{4} (\cos\beta - 1)^2 \Theta_1'$$

or $\Theta_1 - \Theta_2 \propto \cos \beta (\Theta_1' - \Theta_2')$

• Define Θ , Q, U in the scattering coordinates

$$\Theta \equiv \frac{1}{2}(\Theta_{\parallel} + \Theta_{\perp}), \quad Q \equiv \frac{1}{2}(\Theta_{\parallel} - \Theta_{\perp}), \quad U \equiv \frac{1}{2}(\Theta_{1} - \Theta_{2})$$

Scattering Matrix

• Transfer of Stokes states, e.g.

$$\Theta = \frac{1}{2}(\Theta_{\parallel} + \Theta_{\perp}) \propto \frac{1}{4}(\cos^2\beta + 1)\Theta' + \frac{1}{4}(\cos^2\beta - 1)Q'$$

• Transfer matrix of Stokes state $\mathbf{T} \equiv (\Theta, Q + iU, Q - iU)$

 $\mathbf{T} \propto \mathbf{S}(\beta) \mathbf{T}'$

$$\mathbf{S}(\beta) = \frac{3}{4} \begin{pmatrix} \cos^2 \beta + 1 & -\frac{1}{2} \sin^2 \beta & -\frac{1}{2} \sin^2 \beta \\ -\frac{1}{2} \sin^2 \beta & \frac{1}{2} (\cos \beta + 1)^2 & \frac{1}{2} (\cos \beta - 1)^2 \\ -\frac{1}{2} \sin^2 \beta & \frac{1}{2} (\cos \beta - 1)^2 & \frac{1}{2} (\cos \beta + 1)^2 \end{pmatrix}$$

normalization factor of 3 is set by photon conservation in scattering

Scattering Matrix

Transform to a fixed basis, by a rotation of the incoming and outgoing states T = R(\u03c6)T where

$$\mathbf{R}(\psi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{-2i\psi} & 0 \\ 0 & 0 & e^{2i\psi} \end{pmatrix}$$

giving the scattering matrix

$$\begin{split} \mathbf{R}(-\gamma)\mathbf{S}(\beta)\mathbf{R}(\alpha) &= \\ \frac{1}{2}\sqrt{\frac{4\pi}{5}} \begin{pmatrix} Y_2^0(\beta,\alpha) + 2\sqrt{5}Y_0^0(\beta,\alpha) & -\sqrt{\frac{3}{2}}Y_2^{-2}(\beta,\alpha) & -\sqrt{\frac{3}{2}}Y_2^2(\beta,\alpha) \\ -\sqrt{6}_2Y_2^0(\beta,\alpha)e^{2i\gamma} & 3_2Y_2^{-2}(\beta,\alpha)e^{2i\gamma} & 3_2Y_2^2(\beta,\alpha)e^{2i\gamma} \\ -\sqrt{6}_{-2}Y_2^0(\beta,\alpha)e^{-2i\gamma} & 3_{-2}Y_2^{-2}(\beta,\alpha)e^{-2i\gamma} & 3_{-2}Y_2^2(\beta,\alpha)e^{-2i\gamma} \\ \end{pmatrix} \end{split}$$

Addition Theorem for Spin Harmonics

• Spin harmonics are related to rotation matrices as

$${}_{s}Y_{\ell}^{m}(\theta,\phi) = \sqrt{\frac{2\ell+1}{4\pi}}\mathcal{D}_{-ms}^{\ell}(\phi,\theta,0)$$

Note: for explicit evaluation sign convention differs from usual (e.g. Jackson) by $(-1)^m$

• Multiplication of rotations

$$\sum_{m''} \mathcal{D}^{\ell}_{mm''}(\alpha_2, \beta_2, \gamma_2) \mathcal{D}^{\ell}_{m''m}(\alpha_1, \beta_1, \gamma_1) = \mathcal{D}^{\ell}_{mm'}(\alpha, \beta, \gamma)$$

• Implies

$$\sum_{m} {}_{s_1} Y_{\ell}^{m*}(\theta',\phi') {}_{s_2} Y_{\ell}^m(\theta,\phi) = (-1)^{s_1-s_2} \sqrt{\frac{2\ell+1}{4\pi}} {}_{s_2} Y_{\ell}^{-s_1}(\beta,\alpha) e^{is_2\gamma}$$

Sky Basis

• Scattering into the state (rest frame)

$$C_{\rm in}[\mathbf{T}] = \dot{\tau} \int \frac{d\hat{\mathbf{n}}'}{4\pi} \mathbf{R}(-\gamma) \mathbf{S}(\beta) \mathbf{R}(\alpha) \mathbf{T}(\hat{\mathbf{n}}'),$$

$$= \dot{\tau} \int \frac{d\hat{\mathbf{n}}'}{4\pi} (\Theta', 0, 0) + \frac{1}{10} \dot{\tau} \int d\hat{\mathbf{n}}' \sum_{m=-2}^{2} \mathbf{P}^{(m)}(\hat{\mathbf{n}}, \hat{\mathbf{n}}') \mathbf{T}(\hat{\mathbf{n}}').$$

where the quadrupole coupling term is $\mathbf{P}^{(m)}(\hat{\mathbf{n}}, \hat{\mathbf{n}}') =$

$$\begin{pmatrix} Y_{2}^{m*}(\hat{\mathbf{n}}') Y_{2}^{m}(\hat{\mathbf{n}}) & -\sqrt{\frac{3}{2}} {}_{2}Y_{2}^{m*}(\hat{\mathbf{n}}') Y_{2}^{m}(\hat{\mathbf{n}}) & -\sqrt{\frac{3}{2}} {}_{-2}Y_{2}^{m*}(\hat{\mathbf{n}}') Y_{2}^{m}(\hat{\mathbf{n}}) \\ -\sqrt{6}Y_{2}^{m*}(\hat{\mathbf{n}}') {}_{2}Y_{2}^{m}(\hat{\mathbf{n}}) & 3 {}_{2}Y_{2}^{m*}(\hat{\mathbf{n}}') {}_{2}Y_{2}^{m}(\hat{\mathbf{n}}) & 3 {}_{-2}Y_{2}^{m*}(\hat{\mathbf{n}}') {}_{2}Y_{2}^{m}(\hat{\mathbf{n}}) \\ -\sqrt{6}Y_{2}^{m*}(\hat{\mathbf{n}}') {}_{-2}Y_{2}^{m}(\hat{\mathbf{n}}) & 3 {}_{2}Y_{2}^{m*}(\hat{\mathbf{n}}') {}_{-2}Y_{2}^{m}(\hat{\mathbf{n}}) & 3 {}_{-2}Y_{2}^{m*}(\hat{\mathbf{n}}') {}_{-2}Y_{2}^{m}(\hat{\mathbf{n}}) \end{pmatrix},$$

expression uses angle addition relation above. We call this term C_Q .

Scattering Matrix

• Full scattering matrix involves difference of scattering into and out of state

$$C[\mathbf{T}] = C_{\rm in}[\mathbf{T}] - C_{\rm out}[\mathbf{T}]$$

• In the electron rest frame

$$C[\mathbf{T}] = \dot{\tau} \int \frac{d\hat{\mathbf{n}}'}{4\pi} (\Theta', 0, 0) - \dot{\tau}\mathbf{T} + C_Q[\mathbf{T}]$$

which describes isotropization in the rest frame. All moments have $e^{-\tau}$ suppression except for isotropic temperature Θ_0 . Transformation into the background frame simply induces a dipole term

$$C[\mathbf{T}] = \dot{\tau} \left(\hat{\mathbf{n}} \cdot \mathbf{v}_b + \int \frac{d\hat{\mathbf{n}}'}{4\pi} \Theta', 0, 0 \right) - \dot{\tau} \mathbf{T} + C_Q[\mathbf{T}]$$

Source Terms

• Temperature source terms $S_l^{(m)}$ (rows $\pm |m|$; flat assumption

$$\begin{pmatrix} \dot{\tau}\Theta_{0}^{(0)} - \dot{H}_{L}^{(0)} & \dot{\tau}v_{b}^{(0)} + \dot{B}^{(0)} & \dot{\tau}P^{(0)} - \frac{2}{3}\dot{H}_{T}^{(0)} \\ 0 & \dot{\tau}v_{b}^{(\pm 1)} + \dot{B}^{(\pm 1)} & \dot{\tau}P^{(\pm 1)} - \frac{\sqrt{3}}{3}\dot{H}_{T}^{(\pm 1)} \\ 0 & 0 & \dot{\tau}P^{(\pm 2)} - \dot{H}_{T}^{(\pm 2)} \end{pmatrix}$$

where

$$P^{(m)} \equiv \frac{1}{10} (\Theta_2^{(m)} - \sqrt{6} E_2^{(m)})$$

• Polarization source term

$$\mathcal{E}_{\ell}^{(m)} = -\dot{\tau}\sqrt{6}P^{(m)}\delta_{\ell,2}$$
$$\mathcal{B}_{\ell}^{(m)} = 0$$

Astro 448 Secondary Anisotropy

Secondary Anisotropy

- CMB photons traverse the large-scale structure of the universe from z = 1000 to the present.
- With the nearly scale-invariant adiabatic fluctuations observed in the CMB, structures form from the bottom up, i.e. small scales first, a.k.a. hierarchical structure formation.
- First objects reionize the universe between $z\sim7-30$
- Main sources of secondary anisotropy
- Gravitational: Integrated Sachs-Wolfe effect (gravitational redshift) and gravitational lensing
- Scattering: peak suppression, large-angle polarization, Doppler effect(s), inverse Compton scattering

Transfer Function

• Transfer function transfers the initial Newtonian curvature to its value today (linear response theory)

$$T(k) = \frac{\Phi(k, a = 1)}{\Phi(k, a_{\text{init}})} \frac{\Phi(k_{\text{norm}}, a_{\text{init}})}{\Phi(k_{\text{norm}}, a = 1)}$$

- Conservation of Bardeen curvature: Newtonian curvature is a constant when stress perturbations are negligible: above the horizon during radiation and dark energy domination, on all scales during matter domination
- When stress fluctuations dominate, perturbations are stabilized by the Jeans mechanism
- Hybrid Poisson equation: Newtonian curvature, comoving density perturbation $\Delta \equiv (\delta \rho / \rho)_{com}$ implies Φ decays

$$(k^2 - 3K)\Phi = 4\pi G\rho\Delta \sim \eta^{-2}\Delta$$

Transfer Function

- Matter-radiation example: Jeans scale is horizon scale and Δ freezes into its value at horizon crossing Δ_H ≈ Φ_{init}
- Freezing of Δ stops at $\eta_{\rm eq}$

$$\Phi \sim (k\eta_{\rm eq})^{-2} \Delta_H \sim (k\eta_{\rm eq})^{-2} \Phi_{\rm init}$$

- Conventionally k_{norm} is chosen as a scale between the horizon at matter radiation equality and dark energy domination.
- Small correction since growth with a smooth radiation component is logarithmic not frozen
- Run CMBfast to get transfer function or use fits

Transfer Function

• Transfer function has a k^{-2} fall-off beyond $k_{\rm eq} \sim \eta_{\rm eq}^{-1}$

 Additional baryon wiggles are due to acoustic oscillations at recombination – an interesting means of measuring distances

Growth Function

- Same physics applies to the dark energy dominated universe
- Under the dark energy sound horizon, dark energy density frozen.
 Potential decays at the same rate for all scales

$$g(a) = rac{\Phi(k_{
m norm}, a)}{\Phi(k_{
m norm}, a_{
m init})}$$

• Pressure growth suppression: $\delta \equiv \delta \rho_m / \rho_m \propto a \phi$

$$\frac{d^2 g}{d \ln a^2} + \left[\frac{5}{2} - \frac{3}{2} w(z) \Omega_{DE}(z)\right] \frac{dg}{d \ln a} + \frac{3}{2} [1 - w(z)] \Omega_{DE}(z) g = 0,$$

where $w \equiv p_{DE}/\rho_{DE}$ and $\Omega_{DE} \equiv \rho_{DE}/(\rho_m + \rho_{DE})$ with initial conditions g = 1, $dg/d \ln a = 0$

As Ω_{DE} → 0 g =const. is a solution. The other solution is the decaying mode, elimated by initial conditions

ISW effect

- Potential decay leads to gravitational redshifts through the integrated Sachs-Wolfe effect
- Intrinsically a large effect since $2\Delta \Phi = 6\Psi_{\text{init}}/3$
- But net redshift is integral along along line of sight

$$\frac{\Theta_{\ell}(k,\eta_0)}{2\ell+1} = \int_0^{\eta_0} d\eta e^{-\tau} [2\dot{\Phi}(k,\eta)] j_{\ell}(k(\eta_0-\eta))$$
$$= 2\Phi(k,\eta_{MD}) \int_0^{\eta_0} d\eta e^{-\tau} \dot{g}(D) j_{\ell}(kD)$$

• On small scales where $k \gg \dot{g}/g$, can pull source out of the integral

$$\int_0^{\eta_0} d\eta \dot{g}(D) j_\ell(kD) \approx \dot{g}(D = \ell/k) \frac{1}{k} \sqrt{\frac{\pi}{2\ell}}$$

evaluated at peak, where we have used $\int dx j_{\ell}(x) = \sqrt{\pi/2\ell}$
ISW effect

• Power spectrum

$$C_{\ell} = \frac{2}{\pi} \int \frac{dk}{k} \frac{k^3 \langle \Theta_{\ell}^*(k,\eta_0) \Theta_{\ell}(k,\eta_0) \rangle}{(2\ell+1)^2}$$
$$= \frac{2\pi^2}{l^3} \int d\eta D \dot{g}^2(\eta) \Delta_{\Phi}^2(\ell/D,\eta_{MD})$$

- Or l²C_l/2π ∝ 1/ℓ for scale invariant potential. This is the Limber equation in spherical coordinates. Projection of 3D power retains only the transverse piece. For a general dark energy model, add in the scale dependence of growth rate on large scales.
- Cancellation of redshifts and blueshifts as the photon traverses many crests and troughs of a small scale fluctuation during decay. Enhancement of the l < 10 multipoles. Difficult to extract from cosmic variance and galaxy. Current ideas: cross correlation with other tracers of structure

Gravitational Lensing

• Lensing is a surface brightness conserving remapping of source to image planes by the gradient of the projected potential

$$\phi(\hat{\mathbf{n}}) = 2 \int_{\eta_*}^{\eta_0} d\eta \, \frac{(D_* - D)}{D \, D_*} \Phi(D\hat{\mathbf{n}}, \eta) \, .$$

such that the fields are remapped as

$$x(\hat{\mathbf{n}}) \to x(\hat{\mathbf{n}} + \nabla \phi),$$

where $x \in \{\Theta, Q, U\}$ temperature and polarization.

• Taylor expansion leads to product of fields and Fourier mode-coupling

Flat-sky Treatment

• Talyor expand

 $\Theta(\hat{\mathbf{n}}) = \tilde{\Theta}(\hat{\mathbf{n}} + \nabla\phi)$

 $=\tilde{\Theta}(\hat{\mathbf{n}})+\nabla_i\phi(\hat{\mathbf{n}})\nabla^i\tilde{\Theta}(\hat{\mathbf{n}})+\frac{1}{2}\nabla_i\phi(\hat{\mathbf{n}})\nabla_j\phi(\hat{\mathbf{n}})\nabla^i\nabla^j\tilde{\Theta}(\hat{\mathbf{n}})+\dots$

• Fourier decomposition

$$\phi(\hat{\mathbf{n}}) = \int \frac{d^2 l}{(2\pi)^2} \phi(\mathbf{l}) e^{i\mathbf{l}\cdot\hat{\mathbf{n}}}$$
$$\tilde{\Theta}(\hat{\mathbf{n}}) = \int \frac{d^2 l}{(2\pi)^2} \tilde{\Theta}(\mathbf{l}) e^{i\mathbf{l}\cdot\hat{\mathbf{n}}}$$

Flat-sky Treatment

• Mode coupling of harmonics

$$\Theta(\mathbf{l}) = \int d\hat{\mathbf{n}} \,\Theta(\hat{\mathbf{n}}) e^{-il\cdot\hat{\mathbf{n}}}$$
$$= \tilde{\Theta}(\mathbf{l}) - \int \frac{d^2\mathbf{l}_1}{(2\pi)^2} \tilde{\Theta}(\mathbf{l}_1) L(\mathbf{l},\mathbf{l}_1) ,$$

where

$$\begin{split} L(\mathbf{l},\mathbf{l}_{1}) &= \phi(\mathbf{l}-\mathbf{l}_{1}) \, (\mathbf{l}-\mathbf{l}_{1}) \cdot \mathbf{l}_{1} \\ &+ \frac{1}{2} \int \frac{d^{2}\mathbf{l}_{2}}{(2\pi)^{2}} \phi(\mathbf{l}_{2}) \phi^{*}(\mathbf{l}_{2}+\mathbf{l}_{1}-\mathbf{l}) \, (\mathbf{l}_{2}\cdot\mathbf{l}_{1}) (\mathbf{l}_{2}+\mathbf{l}_{1}-\mathbf{l}) \cdot \mathbf{l}_{1} \, . \end{split}$$

• Represents a coupling of harmonics separated by $L \approx 60$ peak of deflection power

Power Spectrum

• Power spectra

$$\langle \Theta^*(\mathbf{l})\Theta(\mathbf{l}')\rangle = (2\pi)^2 \delta(\mathbf{l}-\mathbf{l}') C_l^{\Theta\Theta},$$

$$\langle \phi^*(\mathbf{l})\phi(\mathbf{l}')\rangle = (2\pi)^2 \delta(\mathbf{l}-\mathbf{l}') C_l^{\phi\phi},$$

becomes

$$C_l^{\Theta\Theta} = \left(1 - l^2 R\right) \tilde{C}_l^{\Theta\Theta} + \int \frac{d^2 \mathbf{l}_1}{(2\pi)^2} \tilde{C}_{|\mathbf{l}-\mathbf{l}_1|}^{\Theta\Theta} C_{l_1}^{\phi\phi} \left[(\mathbf{l} - \mathbf{l}_1) \cdot \mathbf{l}_1 \right]^2,$$

where

$$R = \frac{1}{4\pi} \int \frac{dl}{l} l^4 C_l^{\phi\phi} \,. \tag{3}$$

Smoothing Power Spectrum

• If $\tilde{C}_l^{\Theta\Theta}$ slowly varying then two term cancel

$$\tilde{C}_{l}^{\Theta\Theta} \int \frac{d^{2}\mathbf{l}_{1}}{(2\pi)^{2}} C_{l}^{\phi\phi} (\mathbf{l} \cdot \mathbf{l}_{1})^{2} \approx l^{2} R \tilde{C}_{l}^{\Theta\Theta}$$

- So lensing acts to smooth features in the power spectrum.
 Smoothing kernel is L ~ 60 the peak of deflection power spectrum
- Because acoustic feature appear on a scale l_A ~ 300, smoothing is a subtle effect in the power spectrum.
- Lensing generates power below the damping scale which directly reflect power in deflections on the same scale

Polarization Lensing

• Polarization field harmonics lensed similarly

$$[Q \pm iU](\hat{\mathbf{n}}) = -\int \frac{d^2l}{(2\pi)^2} [E \pm iB](\mathbf{l})e^{\pm 2i\phi_{\mathbf{l}}}e^{\mathbf{l}\cdot\hat{\mathbf{n}}}$$

so that

$$\begin{split} [Q \pm iU](\hat{\mathbf{n}}) &= [\tilde{Q} \pm i\tilde{U}](\hat{\mathbf{n}} + \nabla\phi) \\ &\approx [\tilde{Q} \pm i\tilde{U}](\hat{\mathbf{n}}) + \nabla_i\phi(\hat{\mathbf{n}})\nabla^i[\tilde{Q} \pm i\tilde{U}](\hat{\mathbf{n}}) \\ &\quad + \frac{1}{2}\nabla_i\phi(\hat{\mathbf{n}})\nabla_j\phi(\hat{\mathbf{n}})\nabla^i\nabla^j[\tilde{Q} \pm i\tilde{U}](\hat{\mathbf{n}}) \end{split}$$

Polarization Power Spectra

• Carrying through the algebra

$$\begin{split} C_{l}^{EE} &= \left(1 - l^{2}R\right)\tilde{C}_{l}^{EE} + \frac{1}{2}\int\frac{d^{2}\mathbf{l}_{1}}{(2\pi)^{2}}[(\mathbf{l} - \mathbf{l}_{1})\cdot\mathbf{l}_{1}]^{2}C_{|\mathbf{l}-\mathbf{l}_{1}|}^{\phi\phi} \\ &\times \left[(\tilde{C}_{l_{1}}^{EE} + \tilde{C}_{l_{1}}^{BB}) + \cos(4\varphi_{l_{1}})(\tilde{C}_{l_{1}}^{EE} - \tilde{C}_{l_{1}}^{BB})\right], \\ C_{l}^{BB} &= \left(1 - l^{2}R\right)\tilde{C}_{l}^{BB} + \frac{1}{2}\int\frac{d^{2}\mathbf{l}_{1}}{(2\pi)^{2}}[(\mathbf{l} - \mathbf{l}_{1})\cdot\mathbf{l}_{1}]^{2}C_{|\mathbf{l}-\mathbf{l}_{1}|}^{\phi\phi} \\ &\times \left[(\tilde{C}_{l_{1}}^{EE} + \tilde{C}_{l_{1}}^{BB}) - \cos(4\varphi_{l_{1}})(\tilde{C}_{l_{1}}^{EE} - \tilde{C}_{l_{1}}^{BB})\right], \\ C_{l}^{\Theta E} &= \left(1 - l^{2}R\right)\tilde{C}_{l}^{\Theta E} + \int\frac{d^{2}\mathbf{l}_{1}}{(2\pi)^{2}}[(\mathbf{l} - \mathbf{l}_{1})\cdot\mathbf{l}_{1}]^{2}C_{|\mathbf{l}-\mathbf{l}_{1}|}^{\phi\phi} \\ &\times \tilde{C}_{l_{1}}^{\Theta E}\cos(2\varphi_{l_{1}}), \end{split}$$

• Lensing generates B-modes out of the acoustic polaraization E-modes contaminates gravitational wave signature if $E_i < 10^{16}$ GeV.

Reconstruction from the CMB

• Correlation between Fourier moments reflect lensing potential

 $\langle x(\mathbf{l})x'(\mathbf{l}')\rangle_{\mathrm{CMB}} = f_{\alpha}(\mathbf{l},\mathbf{l}')\phi(\mathbf{l}+\mathbf{l}'),$

where $x \in$ temperature, polarization fields and f_{α} is a fixed weight that reflects geometry

- Each pair forms a noisy estimate of the potential or projected mass
 just like a pair of galaxy shears
- Minimum variance weight all pairs to form an estimator of the lensing mass

Scattering Secondaries

• Optical depth during reionization

$$\tau \approx 0.066 \left(\frac{\Omega_b h^2}{0.02}\right) \left(\frac{\Omega_m h^2}{0.15}\right)^{-1/2} \left(\frac{1+z}{10}\right)^{3/2}$$

• Anisotropy suppressed as $e^{-\tau}$. Integral solution

$$\frac{\Theta_{\ell}(k,\eta_0)}{2\ell+1} = \int_0^{\eta_0} d\eta e^{-\tau} S_0^{(0)} j_{\ell}(k(\eta_0-\eta)) + \dots$$

- Isotropic (lare scale) fluctuations not supressed since suppression represents isotropization by scattering
- Quadrupole from the Sachs-Wolfe effect scatters into a large angle polarization bump

Doppler Effects

- Velocity fields of 10⁻³ and optical depths of 10⁻² would imply large Doppler effect due to reionization
- Limber approximation says only fluctuations transverse to line of sight survive
- In linear theory, transverse fluctuations have no line of sight velocity and so Doppler effect is highly suppressed.
- Beyond linear theory: modulate the optical depth in the transverse direction using density fluctuations or ionization fraction fluctuations. Generate a modulated Doppler effect
- Linear fluctuations: Vishniac effect; Clusters: kinetic SZ effect; ionization patches: inhomogeneous reionization effect

Thermal SZ Effect

- Thermal velocities also lead to Doppler effect but first order contribution cancels because of random directions
- Residual effect is of order $v^2 \tau \approx T_e/m_e \tau$ and can reach a sizeable level for clusters with $T_e \approx 10$ keV.
- Raleigh-Jeans decrement and Wien enhancement described by second order collision term in Boltzmann equation: Kompaneets equation
- Clusters are rare objects so contribution to power spectrum suppressed, but may have been detected by CBI/BIMA: extremely sensitive to power spectrum normalization σ_8
- White noise on large-scales (l < 2000), turnover as cluster profile is resolved

Astro 448 Data Pipeline

Gaussian Statistics

 Statistical isotropy says two-point correlation depends only on the power spectrum

$$\Theta(\hat{\mathbf{n}}) = \sum_{\ell m} \Theta_{\ell m} Y_{\ell m}(\hat{\mathbf{n}})$$
$$\langle \Theta_{\ell m}^* \Theta_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}^{\Theta \Theta}$$

- Reality of field says $\Theta_{\ell m} = (-1)^m \Theta_{\ell(-m)}$
- For a Gaussian random field, power spectrum defines all higher order statistics, e.g.

$$\langle \Theta_{\ell_1 m_1} \Theta_{\ell_2 m_2} \Theta_{\ell_3 m_3} \Theta_{\ell_4 m_4} \rangle$$

= $(-1)^{m_1 + m_2} \delta_{\ell_1 \ell_3} \delta_{m_1 (-m_3)} \delta_{\ell_2 \ell_4} \delta_{m_2 (-m_4)} C_{\ell_1}^{\Theta\Theta} C_{\ell_2}^{\Theta\Theta} + \text{all pairs}$

Idealized Statistical Errors

• Take a noisy estimator of the multipoles in the map

$$\hat{\Theta}_{\ell m} = \Theta_{\ell m} + N_{\ell m}$$

and take the noise to be statistically isotropic

$$\langle N_{\ell m}^* N_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}^{NN}$$

• Construct an unbiased estimator of the power spectrum $\langle \hat{C}_{\ell}^{\Theta\Theta} \rangle = C_{\ell}^{\Theta\Theta}$

$$\hat{C}_{\ell}^{\Theta\Theta} = \frac{1}{2\ell+1} \sum_{m=-l}^{l} \hat{\Theta}_{\ell m}^* \hat{\Theta}_{\ell m} - C_{\ell}^{NN}$$

• Variance in estimator

$$\langle \hat{C}_{\ell}^{\Theta\Theta} \hat{C}_{\ell}^{\Theta\Theta} \rangle - \langle \hat{C}_{\ell}^{\Theta\Theta} \rangle^2 = \frac{2}{2\ell+1} (C_{\ell}^{\Theta\Theta} + C_{\ell}^{NN})^2$$

Cosmic and Noise Variance

- RMS in estimator is simply the total power spectrum reduced by $\sqrt{2/N_{\text{modes}}}$ where N_{modes} is the number of *m*-mode measurements
- Even a perfect experiment where $C_{\ell}^{NN} = 0$ has statistical variance due to the Gaussian random realizations of the field. This cosmic variance is the result of having only one realization to measure.
- Noise variance is often approximated as white detector noise.
 Removing the beam to place the measurement on the sky

$$N_{\ell}^{\Theta\Theta} = \left(\frac{T}{d_T}\right)^2 e^{\ell(\ell+1)\sigma^2} = \left(\frac{T}{d_T}\right)^2 e^{\ell(\ell+1)\text{FWHM}^2/8\ln 2}$$

where d_T can be thought of as a noise level per steradian of the temperature measurement, σ is the Gaussian beam width, FWHM is the full width at half maximum of the beam

Idealized Parameter Forecasts

- A crude propagation of errors is often useful for estimation purposes.
- Suppose C_{αβ} describes the covariance matrix of the estimators for a given parameter set π_α.
- Define F = C⁻¹ [formalized as the Fisher matrix later]. Making an infinitesimal transformation to a new set of parameters p_μ

$$F_{\mu\nu} = \sum_{\alpha\beta} \frac{\partial \pi_{\alpha}}{\partial p_{\mu}} F_{\alpha\beta} \frac{\partial \pi_{\beta}}{\partial p_{\nu}}$$

• In our case π_{α} are the C_{ℓ} the covariance is diagonal and p_{μ} are cosmological parameters

$$F_{\mu\nu} = \sum_{\ell} \frac{2\ell + 1}{2(C_{\ell}^{\Theta\Theta} + C_{\ell}^{NN})^2} \frac{\partial C_{\ell}^{\Theta\Theta}}{\partial p_{\mu}} \frac{\partial C_{\ell}^{\Theta\Theta}}{\partial p_{\nu}}$$

Idealized Parameter Forecasts

- Polarization handled in same way (requires covariance)
- Fisher matrix represents a local approximation to the transformation of the covariance and hence is only accurate for well constrained directions in parameter space
- Derivatives evaluated by finite difference
- Fisher matrix identifies parameter degeneracies but only the local direction – i.e. all errors are ellipses not bananas

Beyond Idealizations: Time Ordered Data

- For the data analyst the starting point is a string of "time ordered" data coming out of the instrument (post removal of systematic errors!)
- Begin with a model of the time ordered data as

 $d_t = P_{ti}\Theta_i + n_t$

where *i* denotes pixelized positions indexed by *i*, d_t is the data in a time ordered stream indexed by *t*. Number of time ordered data will be of the order 10^{10} for a satellite! number of pixels $10^6 - 10^7$.

• The noise n_t is drawn from a distribution with a known power spectrum

$$\langle n_t n_{t'} \rangle = C_{d,tt'}$$

Pointing Matrix

- The pointing matrix **P** is the mapping between pixel space and the time ordered data
- Simplest incarnation: row with all zeros except one column which just says what point in the sky the telescope is pointing at that time

$$\mathbf{P} = \begin{pmatrix} 0 & 0 & 1 & \dots & 0 \\ 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 1 & \dots & 0 \end{pmatrix}$$

More generally encorporates differencing, beam, rotation (for polarization)

Maximum Likelihood Mapmaking

- What is the best estimator of the underlying map Θ_i
- Likelihood function: the probability of getting the data given the theory L = P[data|theory]. In this case, the *theory* is the set of parameters Θ_i.

$$\mathcal{L}_{\Theta}(d_t) = \frac{1}{(2\pi)^{N_t/2}\sqrt{\det \mathbf{C}_d}} \exp\left[-\frac{1}{2}\left(d_t - P_{ti}\Theta_i\right)C_{d,tt'}^{-1}\left(d_{t'} - P_{t'j}\Theta_j\right)\right]$$

• Bayes theorem says that $P[\Theta_i | d_t]$, the probability that the temperatures are equal to Θ_i given the data, is proportional to the likelihood function times a *prior* $P(\Theta_i)$, taken to be uniform

 $P[\Theta_i|d_t] \propto P[d_t|\Theta_i] \equiv \mathcal{L}_{\Theta}(d_t)$

Maximum Likelihood Mapmaking

- Maximizing the likelihood of Θ_i is simple since the log-likelihood is quadratic.
- Differentiating the argument of the exponential with respect to Θ_i and setting to zero leads immediately to the estimator

 $\hat{\Theta}_i = C_{N,ij} P_{jt} C_{d,tt'}^{-1} d_{t'} ,$

where $\mathbf{C}_N \equiv (\mathbf{P}^{\mathrm{tr}} \mathbf{C}_d^{-1} \mathbf{P})^{-1}$ is the covariance of the estimator

• Given the large dimension of the time ordered data, direct matrix manipulation is unfeasible. A key simplifying assumption is the stationarity of the noise, that $C_{d,tt'}$ depends only on t - t' (temporal statistical homogeneity)

Power Spectrum

• The next step in the chain of inference is the power spectrum extraction. Here the correlation between pixels is modelled through the power spectrum

$$C_{S,ij} \equiv \langle \Theta_i \Theta_j \rangle = \sum_{\ell} \Delta_{T,\ell}^2 W_{\ell,ij}$$

- Here W_ℓ, the window function, is derived by writing down the expansion of Θ(n̂) in harmonic space, including smoothing by the beam and pixelization
- For example in the simple case of a gaussian beam of width σ it is proportional to the Legendre polynomial P_ℓ(n̂_i · n̂_j) for the pixel separation multiplied by b²_ℓ ∝ e^{-ℓ(ℓ+1)σ²}

Band Powers

- In principle the underlying theory to extract from maximum likelihood is the power spectrum at every ℓ
- However with a finite patch of sky, it is not possible to extract multipoles separated by $\Delta \ell < 2\pi/L$ where L is the dimension of the survey
- So consider instead a theory parameterization of Δ²_{T,ℓ} constant in bands of Δℓ chosen to match the survey forming a set of band powers B_a
- The likelihood of the bandpowers given the pixelized data is

$$\mathcal{L}_B(\Theta_i) = \frac{1}{(2\pi)^{N_p/2} \sqrt{\det \mathbf{C}_{\Theta}}} \exp\left(-\frac{1}{2} \Theta_i C_{\Theta,ij}^{-1} \Theta_j\right)$$

where $C_{\Theta} = C_S + C_N$ and N_p is the number of pixels in the map.

Band Power Esitmation

- As before, L_B is Gaussian in the anisotropies Θ_i, but in this case
 Θ_i are *not* the parameters to be determined; the theoretical parameters are the B_a, upon which the covariance matrix depends.
- The likelihood function is not Gaussian in the parameters, and there is no simple, analytic way to find the maximum likelihood bandpowers
- Iterative approach to maximizing the likelihood: take a trial point B_a⁽⁰⁾ and improve estimate based a Newton-Rhapson approach to finding zeros

$$\hat{B}_{a} = \hat{B}_{a}^{(0)} + F_{B,ab} \frac{\partial \ln \mathcal{L}_{B}}{\partial B_{b}}$$
$$= \hat{B}_{a}^{(0)} + \frac{1}{2} F_{B,ab}^{-1} \left(\Theta_{i} C_{\Theta,ij}^{-1} \frac{\partial C_{\Theta,jk}}{\partial B_{b}} C_{\Theta,kl}^{-1} \Theta_{l} - C_{\Theta,ij}^{-1} \frac{\partial C_{\Theta,ji}}{\partial B_{b}} \right) ,$$

Fisher Matrix

• The expectation value of the local curvature is the Fisher matrix

$$F_{B,ab} \equiv \left\langle -\frac{\partial^2 \ln \mathcal{L}_{\Theta}}{\partial B_a \partial B_b} \right\rangle$$
$$= \frac{1}{2} C_{\Theta,ij}^{-1} \frac{\partial C_{\Theta,jk}}{\partial B_a} C_{\Theta,kl}^{-1} \frac{\partial C_{\Theta,li}}{\partial B_b}$$

• This is a general statement: for a gaussian distribution the Fisher matrix

$$F_{ab} = \frac{1}{2} \operatorname{Tr} [\mathbf{C}^{-1} \mathbf{C}_{,a} \mathbf{C}^{-1} \mathbf{C}_{,b}]$$

- Kramer-Rao identity says that the best possible covariance matrix on a set of parameters is $\mathbf{C} = \mathbf{F}^{-1}$
- Thus, the iteration returns an estimate of the covariance matrix of the estimators C_B

Cosmological Parameters

• The probability distribution of the bandpowers given the cosmological parameters c_i is not Gaussian but it is often an adequate approximation

$$\mathcal{L}_c(\hat{B}_a) \approx \frac{1}{(2\pi)^{N_c/2} \sqrt{\det \mathbf{C}_B}} \exp\left[-\frac{1}{2}(\hat{B}_a - B_a)C_{B,ab}^{-1}(\hat{B}_b - B_b)\right]$$

- Grid based approaches evaluate the likelihood in cosmological parameter space and maximize
- Faster approaches monte carlo the exploration of the likelihood space intelligently ("Monte Carlo Markov Chains")
- Since the number of cosmological parameters in the working model is $N_c \sim 10$ this represents a final radical compression of information in the original timestream which recall has up to $N_t \sim 10^{10}$ data points.

Parameter Forecasts

• The Fisher matrix of the cosmological parameters becomes

$$F_{c,ij} = \frac{\partial B_a}{\partial c_i} C_{B,ab}^{-1} \frac{\partial B_b}{\partial c_j}$$

which is the error propagation formula discussed above

- The Fisher matrix can be more accurately defined for an experiment by taking the pixel covariance and using the general formula for the Fisher matrix of gaussian data
- Corrects for edge effects with the approximate effect of

$$F_{\mu\nu} = \sum_{\ell} \frac{(2\ell+1)f_{\rm sky}}{2(C_{\ell}^{\Theta\Theta} + C_{\ell}^{NN})^2} \frac{\partial C_{\ell}^{\Theta\Theta}}{\partial p_{\mu}} \frac{\partial C_{\ell}^{\Theta\Theta}}{\partial p_{\nu}}$$

where the sky fraction f_{sky} quantifies the loss of independent modes due to the sky cut