Astro 448

Cosmic Microwave Background

Wayne Hu

Acoustic Kinematics

Recombination

- Equilibrium number density distribution of a non-relativistic species

$$
n_{i}=g_{i}\left(\frac{m_{i} T}{2 \pi}\right)^{3 / 2} e^{-m_{i} / T}
$$

- Apply to the $e^{-}+p \leftrightarrow H$ system: Saha Equation

$$
\begin{aligned}
\frac{n_{e} n_{p}}{n_{H} n_{b}} & =\frac{x_{e}^{2}}{1-x_{e}} \\
& =\frac{1}{n_{b}}\left(\frac{m_{e} T}{2 \pi}\right)^{3 / 2} e^{-B / T}
\end{aligned}
$$

where $B=m_{e}+m_{p}-m_{H}=13.6 \mathrm{eV}$

- Naive guess of $T=B$ for recombination would put $z_{*} \approx 45000$.

Recombination

But the photon-baryon ratio is very low

$$
\eta_{b \gamma} \equiv n_{b} / n_{\gamma} \approx 3 \times 10^{-8} \Omega_{b} h^{2}
$$

- Eliminate in favor of $\eta_{b \gamma}$ and B / T through

$$
n_{\gamma}=0.244 T^{3}, \quad \frac{m_{e}}{B}=3.76 \times 10^{4}
$$

- Big coefficient

$$
\begin{aligned}
\frac{x_{e}^{2}}{1-x_{e}} & =3.16 \times 10^{15}\left(\frac{B}{T}\right)^{3 / 2} e^{-B / T} \\
T=1 / 3 \mathrm{eV} \rightarrow x_{e} & =0.7, T=0.3 \mathrm{eV} \rightarrow x_{e}=0.2
\end{aligned}
$$

- Further delayed by inability to maintain equilibrium since net is through 2γ process and redshifting out of line

Thomson Scattering

- Thomson scattering of photons off of free electrons is the most important CMB process with a cross section (averaged over polarization states) of

$$
\sigma_{T}=\frac{8 \pi \alpha^{2}}{3 m_{e}^{2}}=6.65 \times 10^{-25} \mathrm{~cm}^{2}
$$

- Density of free electrons in a fully ionized $x_{e}=1$ universe

$$
n_{e}=\left(1-Y_{p} / 2\right) x_{e} n_{b} \approx 10^{-5} \Omega_{b} h^{2}(1+z)^{3} \mathrm{~cm}^{-3}
$$

where $Y_{p} \approx 0.24$ is the Helium mass fraction, creates a high (comoving) Thomson opacity

$$
\dot{\tau} \equiv n_{e} \sigma_{T} a
$$

where dots are conformal time $\eta \equiv \int d t / a$ derivatives and τ is the optical depth.

Temperature Fluctuations

- Observe blackbody radiation with a temperature that differs at 10^{-5} coming from the surface of last scattering, with distribution function (specific intensity $I_{\nu}=4 \pi \nu^{3} f(\nu)$ each polarization)

$$
f(\nu)=[\exp (2 \pi \nu / T(\hat{\mathbf{n}}))-1]^{-1}
$$

- Decompose the temperature perturbation in spherical harmonics

$$
T(\hat{\mathbf{n}})=\sum_{\ell m} T_{\ell m} Y_{\ell m}(\hat{\mathbf{n}})
$$

- For Gaussian random fluctuations, the statistical properties of the temperature field are determined by the power spectrum

$$
\left\langle T_{\ell m}^{*} T_{\ell^{\prime} m^{\prime}}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}
$$

where the δ-function comes from statistical isotropy

Spatial vs Angular Power

- Take the radiation distribution at last scattering to also be described by an isotropic temperature field $T(\mathbf{x})$ and recombination to be instantaneous

$$
T(\hat{\mathbf{n}})=\int d D T(\mathbf{x}) \delta\left(D-D_{*}\right)
$$

where D is the comoving distance and D_{*} denotes recombination.

- Describe the temperature field by its Fourier moments

$$
T(\mathbf{x})=\int \frac{d^{3} k}{(2 \pi)^{3}} T(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{x}}
$$

with a power spectrum

$$
\left\langle T(\mathbf{k})^{*} T\left(\mathbf{k}^{\prime}\right)\right\rangle=(2 \pi)^{3} \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right) P_{T}(k)
$$

Spatial vs Angular Power

- Note that the variance of the field

$$
\begin{aligned}
\langle T(\mathbf{x}) T(\mathbf{x})\rangle & =\int \frac{d^{3} k}{(2 \pi)^{3}} P(k) \\
& =\int d \ln k \frac{k^{3} P(k)}{2 \pi^{2}} \equiv \int d \ln k \Delta_{T}^{2}(k)
\end{aligned}
$$

so it is more convenient to think in the \log power spectrum $\Delta_{T}^{2}(k)$

- Temperature field

$$
T(\hat{\mathbf{n}})=\int \frac{d^{3} k}{(2 \pi)^{3}} T(\mathbf{k}) e^{i \mathbf{k} \cdot D_{*} \hat{\mathbf{n}}}
$$

- Expand out plane wave in spherical coordinates

$$
e^{i \mathbf{k} D_{*} \cdot \hat{\mathbf{n}}}=4 \pi \sum_{\ell m} i^{\ell} j_{\ell}\left(k D_{*}\right) Y_{\ell m}^{*}(\mathbf{k}) Y_{\ell m}(\hat{\mathbf{n}})
$$

Spatial vs Angular Power

- Multipole moments

$$
T_{\ell m}=\int \frac{d^{3} k}{(2 \pi)^{3}} T(\mathbf{k}) 4 \pi i^{\ell} j_{\ell}\left(k D_{*}\right) Y_{\ell m}(\mathbf{k})
$$

- Power spectrum

$$
\begin{aligned}
\left\langle T_{\ell m}^{*} T_{\ell^{\prime} m^{\prime}}\right\rangle & =\int \frac{d^{3} k}{(2 \pi)^{3}}(4 \pi)^{2}(i)^{\ell-\ell^{\prime}} j_{\ell}\left(k D_{*}\right) j_{\ell^{\prime}}\left(k D_{*}\right) Y_{\ell m}^{*}(\mathbf{k}) Y_{\ell^{\prime} m^{\prime}}(\mathbf{k}) P_{T}(k) \\
& =\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} 4 \pi \int d \ln k j_{\ell}^{2}\left(k D_{*}\right) \Delta_{T}^{2}(k)
\end{aligned}
$$

with $\int_{0}^{\infty} j_{\ell}^{2}(x) d \ln x=1 /(2 \ell(\ell+1))$, slowly varying Δ_{T}^{2}

$$
C_{\ell}=\frac{4 \pi \Delta_{T}^{2}\left(\ell / D_{*}\right)}{2 \ell(\ell+1)}=\frac{2 \pi}{\ell(\ell+1)} \Delta_{T}^{2}\left(\ell / D_{*}\right)
$$

so $\ell(\ell+1) C_{\ell} / 2 \pi=\Delta_{T}^{2}$ is commonly used \log power

Tight Coupling Approximation

Near recombination $z \approx 10^{3}$ and $\Omega_{b} h^{2} \approx 0.02$, the (comoving) mean free path of a photon

$$
\lambda_{C} \equiv \frac{1}{\dot{\tau}} \sim 2.5 \mathrm{Mpc}
$$

small by cosmological standards!

- On scales $\lambda \gg \lambda_{C}$ photons are tightly coupled to the electrons by Thomson scattering which in turn are tightly coupled to the baryons by Coulomb interactions
- Specifically, their bulk velocities are defined by a single fluid velocity $v_{\gamma}=v_{b}$ and the photons carry no anisotropy in the rest frame of the baryons
\rightarrow No heat conduction or viscosity (anisotropic stress) in fluid

Zeroth Order Approximation

- Momentum density of a fluid is $(\rho+p) v$, where p is the pressure
- Neglect the momentum density of the baryons

$$
\begin{aligned}
R & \equiv \frac{\left(\rho_{b}+p_{b}\right) v_{b}}{\left(\rho_{\gamma}+p_{\gamma}\right) v_{\gamma}}=\frac{\rho_{b}+p_{b}}{\rho_{\gamma}+p_{\gamma}}=\frac{3 \rho_{b}}{4 \rho_{\gamma}} \\
& \approx 0.6\left(\frac{\Omega_{b} h^{2}}{0.02}\right)\left(\frac{a}{10^{-3}}\right)
\end{aligned}
$$

since $\rho_{\gamma} \propto T^{4}$ is fixed by the CMB temperature $T=2.73(1+z) \mathrm{K}$

- OK substantially before recombination
- Neglect radiation in the expansion

$$
\frac{\rho_{m}}{\rho_{r}}=3.6\left(\frac{\Omega_{m} h^{2}}{0.15}\right)\left(\frac{a}{10^{-3}}\right)
$$

Number Continuity

- Photons are not created or destroyed. Without expansion

$$
\dot{n}_{\gamma}+\nabla \cdot\left(n_{\gamma} \mathbf{v}_{\gamma}\right)=0
$$

but the expansion or Hubble flow causes $n_{\gamma} \propto a^{-3}$ or

$$
\dot{n}_{\gamma}+3 n_{\gamma} \frac{\dot{a}}{a}+\nabla \cdot\left(n_{\gamma} \mathbf{v}_{\gamma}\right)=0
$$

- Linearize $\delta n_{\gamma}=n_{\gamma}-\bar{n}_{\gamma}$

$$
\begin{aligned}
\left(\delta n_{\gamma}\right)^{\cdot} & =-3 \delta n_{\gamma} \frac{\dot{a}}{a}-n_{\gamma} \nabla \cdot \mathbf{v}_{\gamma} \\
\left(\frac{\delta n_{\gamma}}{n_{\gamma}}\right)^{\cdot} & =-\nabla \cdot \mathbf{v}_{\gamma}
\end{aligned}
$$

Continuity Equation

- Number density $n_{\gamma} \propto T^{3}$ so define temperature fluctuation Θ

$$
\frac{\delta n_{\gamma}}{n_{\gamma}}=3 \frac{\delta T}{T} \equiv 3 \Theta
$$

- Real space continuity equation

$$
\dot{\Theta}=-\frac{1}{3} \nabla \cdot v_{\gamma}
$$

- Fourier space

$$
\dot{\Theta}=-\frac{1}{3} i \mathbf{k} \cdot \mathbf{v}_{\gamma}
$$

Momentum Conservation

- No expansion: $\dot{\mathrm{q}}=\mathrm{F}$
- De Broglie wavelength stretches with the expansion

$$
\dot{\mathrm{q}}+\frac{\dot{a}}{a} \mathrm{q}=\mathrm{F}
$$

for photons this the redshift, for non-relativistic particles expansion drag on peculiar velocities

- Collection of particles: momentum \rightarrow momentum density $\left(\rho_{\gamma}+p_{\gamma}\right) \mathbf{v}_{\gamma}$ and force \rightarrow pressure gradient

$$
\begin{aligned}
{\left[\left(\rho_{\gamma}+p_{\gamma}\right) \mathbf{v}_{\gamma}\right] } & =-4 \frac{\dot{a}}{a}\left(\rho_{\gamma}+p_{\gamma}\right) \mathbf{v}_{\gamma}-\nabla p_{\gamma} \\
\frac{4}{3} \rho_{\gamma} \dot{\mathbf{v}}_{\gamma} & =\frac{1}{3} \nabla \rho_{\gamma} \\
\dot{\mathbf{v}}_{\gamma} & =-\nabla \Theta
\end{aligned}
$$

Euler Equation

- Fourier space

$$
\dot{\mathbf{v}}_{\gamma}=-i k \Theta
$$

- Pressure gradients (any gradient of a scalar field) generates a curl-free flow
- For convenience define velocity amplitude:

$$
\mathbf{v}_{\gamma} \equiv-i v_{\gamma} \hat{\mathbf{k}}
$$

- Euler Equation:

$$
\dot{v}_{\gamma}=k \Theta
$$

- Continuity Equation:

$$
\dot{\Theta}=-\frac{1}{3} k v_{\gamma}
$$

Oscillator: Take One

- Combine these to form the simple harmonic oscillator equation

$$
\ddot{\Theta}+c^{2} k^{2} \Theta=0
$$

where the adiabatic sound speed is defined through

$$
\equiv \frac{\dot{p}_{\gamma}}{\dot{\rho}_{\gamma}}
$$

here $c_{s}^{2}=1 / 3$ since we are photon-dominated

- General solution:

$$
\Theta(\eta)=\Theta(0) \cos (k s)+\frac{\dot{\Theta}(0)}{k c_{s}} \sin (k s)
$$

where the sound horizon is defined as $s \equiv \int c_{s} d \eta$

Harmonic Extrema

All modes are frozen in at recombination (denoted with a subscript *) yielding temperature perturbations of different amplitude for different modes. For the adiabatic (curvature mode) $\dot{\Theta}(0)=0$

$$
\Theta\left(\eta_{*}\right)=\Theta(0) \cos \left(k s_{*}\right)
$$

- Modes caught in the extrema of their oscillation will have enhanced fluctuations

$$
k_{n} s_{*}=n \pi
$$

yielding a fundamental scale or frequency, related to the inverse sound horizon

$$
k_{A}=\pi / s_{*}
$$

and a harmonic relationship to the other extrema as $1: 2: 3 \ldots$

Peak Location

- The fundmental physical scale is translated into a fundamental angular scale by simple projection according to the angular diameter distance D_{A}

$$
\begin{aligned}
\theta_{A} & =\lambda_{A} / D_{A} \\
\ell_{A} & =k_{A} D_{A}
\end{aligned}
$$

- In a flat universe, the distance is simply $D_{A}=D \equiv \eta_{0}-\eta_{*} \approx \eta_{0}$, the horizon distance, and $k_{A}=\pi / s_{*}=\sqrt{3} \pi / \eta_{*}$ so

$$
\theta_{A} \approx \frac{\eta_{*}}{\eta_{0}}
$$

- In a matter-dominated universe $\eta \propto a^{1 / 2}$ so $\theta_{A} \approx 1 / 30 \approx 2^{\circ}$ or

$$
\ell_{A} \approx 200
$$

Curvature

- In a curved universe, the apparent or angular diameter distance is no longer the conformal distance $D_{A}=R \sin (D / R) \neq D$
- Objects in a closed universe are further than they appear! gravitational lensing of the background...
- Curvature scale of the universe must be substantially larger than current horizon
- Flat universe indicates critical density and implies missing energy given local measures of the matter density "dark energy"
- D also depends on dark energy density Ω_{DE} and equation of state $w=p_{\mathrm{DE}} / \rho_{\mathrm{DE}}$.
- Expansion rate at recombination or matter-radiation ratio enters into calculation of k_{A}.

Doppler Effect

- Bulk motion of fluid changes the observed temperature via Doppler shifts

$$
\left(\frac{\Delta T}{T}\right)_{\mathrm{dop}}=\hat{\mathbf{n}} \cdot \mathbf{v}_{\gamma}
$$

- Averaged over directions

$$
\left(\frac{\Delta T}{T}\right)_{\mathrm{rms}}=\frac{v_{\gamma}}{\sqrt{3}}
$$

- Acoustic solution

$$
\begin{aligned}
\frac{v_{\gamma}}{\sqrt{3}} & =-\frac{\sqrt{3}}{k} \dot{\Theta}=\frac{\sqrt{3}}{k} k c_{s} \Theta(0) \sin (k s) \\
& =\Theta(0) \sin (k s)
\end{aligned}
$$

Doppler Peaks?

- Doppler effect for the photon dominated system is of equal amplitude and $\pi / 2$ out of phase: extrema of temperature are turning points of velocity
- Effects add in quadrature:

$$
\left(\frac{\Delta T}{T}\right)^{2}=\Theta^{2}(0)\left[\cos ^{2}(k s)+\sin ^{2}(k s)\right]=\Theta^{2}(0)
$$

- No peaks in k spectrum! However the Doppler effect carries an angular dependence that changes its projection on the sky $\hat{\mathbf{n}} \cdot \mathbf{v}_{\gamma} \propto \hat{\mathbf{n}} \cdot \hat{\mathbf{k}}$
- Coordinates where $\hat{\mathbf{z}} \| \hat{\mathbf{k}}$

$$
Y_{10} Y_{\ell 0} \rightarrow Y_{\ell \pm 10}
$$

recoupling $j_{\ell}^{\prime} Y_{\ell 0}$: no peaks in Doppler effect

Restoring Gravity

Take a simple photon dominated system with gravity

- Continuity altered since a gravitational potential represents a stretching of the spatial fabric that dilutes number densities formally a spatial curvature perturbation
- Think of this as a perturbation to the scale factor $a \rightarrow a(1+\Phi)$ so that the cosmogical redshift is generalized to

$$
\begin{gathered}
\frac{\dot{a}}{a} \rightarrow \frac{\dot{a}}{a}+\dot{\Phi} \\
\left(\delta n_{\gamma}\right)^{\cdot}=-3 \delta n_{\gamma}\left(\frac{\dot{a}}{a}+\dot{\Phi}\right)-n_{\gamma} \nabla \cdot \mathbf{v}_{\gamma}
\end{gathered}
$$

so that the continuity equation becomes

$$
\dot{\Theta}=-\frac{1}{3} k v_{\gamma}-\dot{\Phi}
$$

Restoring Gravity

- Gravitational force in momentum conservation $\mathbf{F}=-m \nabla \Psi$ generalized to momentum density modifies the Euler equation to

$$
\dot{v}_{\gamma}=k(\Theta+\Psi)
$$

- General relativity says that Φ and Ψ are the relativistic analogues of the Newtonian potential and that $\Phi \approx-\Psi$.
- In our matter-dominated approximation, Φ represents matter density fluctuations through the cosmological Poisson equation

$$
k^{2} \Phi=4 \pi G a^{2} \rho_{m} \Delta_{m}
$$

where the difference comes from the use of comoving coordinates for k (a^{2} factor), the removal of the background density into the background expansion $\left(\rho \Delta_{m}\right)$ and finally a coordinate subtlety that enters into the definition of Δ_{m}

Astro 448

Acoustic Dynamics

Constant Potentials

- In the matter dominated epoch potentials are constant because infall generates velocities as $v_{m} \sim k \eta \Psi$
- Velocity divergence generates density perturbations as
$\Delta_{m} \sim-k \eta v_{m} \sim-(k \eta)^{2} \Psi$
- And density perturbations generate potential fluctuations as $\Phi \sim \Delta_{m} /(k \eta)^{2} \sim-\Psi$, keeping them constant. Note that because of the expansion, density perturbations must grow to keep potentials constant.
- Here we have used the Friedman equation $H^{2}=8 \pi G \rho_{m} / 3$ and $\eta=\int d \ln a /(a H) \sim 1 /(a H)$
- More generally, if stress perturbations are negligible compared with density perturbations ($\delta p \ll \delta \rho$) then potential will remain roughly constant - more specifically a variant called the Bardeen or comoving curvature ζ is constant

Oscillator: Take Two

- Combine these to form the simple harmonic oscillator equation

$$
\ddot{\Theta}+c_{s}^{2} k^{2} \Theta=-\frac{k^{2}}{3} \Psi-\ddot{\Phi}
$$

- In a CDM dominated expansion $\dot{\Phi}=\dot{\Psi}=0$. Also for photon domination $c_{s}^{2}=1 / 3$ so the oscillator equation becomes

$$
\ddot{\Theta}+\ddot{\Psi}+c_{s}^{2} k^{2}(\Theta+\Psi)=0
$$

- Solution is just an offset version of the original

$$
[\Theta+\Psi](\eta)=[\Theta+\Psi](0) \cos (k s)
$$

- $\Theta+\Psi$ is also the observed temperature fluctuation since photons lose energy climbing out of gravitational potentials at recombination

Effective Temperature

- Photons climb out of potential wells at last scattering
- Lose energy to gravitational redshifts
- Observed or effective temperature

$$
\Theta+\Psi
$$

- Effective temperature oscillates around zero with amplitude given by the initial conditions
- Note: initial conditions are set when the perturbation is outside of horizon, need inflation or other modification to matter-radiation FRW universe.
- GR says that initial temperature is given by initial potential

Sachs-Wolfe Effect and the Magic 1/3

- A gravitational potential is a perturbation to the temporal coordinate [formally a gauge transformation]

$$
\frac{\delta t}{t}=\Psi
$$

- Convert this to a perturbation in the scale factor,

$$
t=\int \frac{d a}{a H} \propto \int \frac{d a}{a \rho^{1 / 2}} \propto a^{3(1+w) / 2}
$$

where $w \equiv p / \rho$ so that during matter domination

$$
\frac{\delta a}{a}=\frac{2 \delta t}{3} \frac{\delta}{t}
$$

- CMB temperature is cooling as $T \propto a^{-1}$ so

$$
\Theta+\Psi \equiv \frac{\delta T}{T}+\Psi=-\frac{\delta a}{a}+\Psi=\frac{1}{3} \Psi
$$

Baryon Loading

- Baryons add extra mass to the photon-baryon fluid
- Controlling parameter is the momentum density ratio:

$$
R \equiv \frac{p_{b}+\rho_{b}}{p_{\gamma}+\rho_{\gamma}} \approx 30 \Omega_{b} h^{2}\left(\frac{a}{10^{-3}}\right)
$$

of order unity at recombination

- Momentum density of the joint system is conserved

$$
\begin{aligned}
\left(\rho_{\gamma}+p_{\gamma}\right) v_{\gamma}+\left(\rho_{b}+p_{b}\right) v_{b} & \approx\left(p_{\gamma}+p_{\gamma}+\rho_{b}+\rho_{\gamma}\right) v_{\gamma} \\
& =(1+R)\left(\rho_{\gamma}+p_{\gamma}\right) v_{\gamma b}
\end{aligned}
$$

where the controlling parameter is the momentum density ratio:

$$
R \equiv \frac{p_{b}+\rho_{b}}{p_{\gamma}+\rho_{\gamma}} \approx 30 \Omega_{b} h^{2}\left(\frac{a}{10^{-3}}\right)
$$

of order unity at recombination

New Euler Equation

- Momentum density ratio enters as

$$
\begin{aligned}
{\left[(1+R)\left(\rho_{\gamma}+p_{\gamma}\right) \mathbf{v}_{\gamma b}\right]=- } & -\frac{\dot{a}}{a}(1+R)\left(\rho_{\gamma}+p_{\gamma}\right) \mathbf{v}_{\gamma b} \\
& -\nabla p_{\gamma}-(1+R)\left(\rho_{\gamma}+p_{\gamma}\right) \nabla \Psi
\end{aligned}
$$

same as before except for $(1+R)$ terms so

$$
\left[(1+R) v_{\gamma b}\right]=k \Theta+(1+R) k \Psi
$$

- Photon continuity remains the same

$$
\dot{\Theta}=-\frac{k}{3} v_{\gamma b}-\dot{\Phi}
$$

- Modification of oscillator equation

$$
[(1+R) \dot{\Theta}]^{\cdot}+\frac{1}{3} k^{2} \Theta=-\frac{1}{3} k^{2}(1+R) \Psi-[(1+R) \dot{\Phi}]^{\cdot}
$$

Oscillator: Take Three

- Combine these to form the not-quite-so simple harmonic oscillator equation

$$
c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Theta}\right)+c_{s}^{2} k^{2} \Theta=-\frac{k^{2}}{3} \Psi-c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Phi}\right)
$$

where $c_{s}^{2} \equiv \dot{p}_{\gamma b} / \dot{\rho}_{\gamma b}$

$$
c_{s}^{2}=\frac{1}{3} \frac{1}{1+R}
$$

- In a CDM dominated expansion $\dot{\Phi}=\dot{\Psi}=0$ and the adiabatic approximation $\dot{R} / R \ll \omega=k c_{s}$

$$
[\Theta+(1+R) \Psi](\eta)=[\Theta+(1+R) \Psi](0) \cos (k s)
$$

Baryon Peak Phenomenology

- Photon-baryon ratio enters in three ways
- Overall larger amplitude:

$$
[\Theta+(1+R) \Psi](0)=\frac{1}{3}(1+3 R) \Psi(0)
$$

- Even-odd peak modulation of effective temperature

$$
\begin{aligned}
{[\Theta+\Psi]_{\text {peaks }} } & =[\pm(1+3 R)-3 R] \frac{1}{3} \Psi(0) \\
{[\Theta+\Psi]_{1}-[\Theta+\Psi]_{2} } & =[-6 R] \frac{1}{3} \Psi(0)
\end{aligned}
$$

- Shifting of the sound horizon down or ℓ_{A} up

$$
\ell_{A} \propto \sqrt{1+R}
$$

- Actual effects smaller since R evolves

Photon Baryon Ratio Evolution

- Oscillator equation has time evolving mass

$$
\frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Theta}\right)+c^{2} k^{2} \Theta=0
$$

- Effective mass is is $m_{\mathrm{eff}}=3 c_{s}^{-2}=(1+R)$
- Adiabatic invariant

$$
\frac{E}{\omega}=\frac{1}{2} m_{\mathrm{e}} \omega A^{2}=\frac{1}{2} 3 c_{s}^{-2} k A^{2} \propto A^{2}(1+R)^{1 / 2}=\text { const } .
$$

- Amplitude of oscillation $A \propto(1+R)^{-1 / 4}$ decays adiabatically as the photon-baryon ratio changes

Oscillator: Take Three and a Half

- The not-quite-so simple harmonic oscillator equation is a forced harmonic oscillator

$$
c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Theta}\right)+c_{s}^{2} k^{2} \Theta=-\frac{k^{2}}{3} \Psi-c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \Phi\right)
$$

changes in the gravitational potentials alter the form of the acoustic oscillations

- If the forcing term has a temporal structure that is related to the frequency of the oscillation, this becomes a driven harmonic oscillator
- Term involving Ψ is the ordinary gravitational force
- Term involving Φ involves the Φ term in the continuity equation as a (curvature) perturbation to the scale factor

Potential Decay

Matter-to-radiation ratio

$$
\frac{\rho_{m}}{\rho_{r}} \approx 24 \Omega_{m} h^{2}\left(\frac{a}{10^{-3}}\right)
$$

of order unity at recombination in a low Ω_{m} universe

- Radiation is not stress free and so impedes the growth of structure

$$
k^{2} \Phi=4 \pi G a^{2} \rho_{r} \Delta_{r}
$$

$\Delta_{r} \sim 4 \Theta$ oscillates around a constant value, $\rho_{r} \propto a^{-4}$ so the Netwonian curvature decays.

- General rule: potential decays if the dominant energy component has substantial stress fluctuations, i.e. below the generalized sound horizon or Jeans scale

Radiation Driving

- Decay is timed precisely to drive the oscillator - close to fully coherent

$$
\begin{aligned}
{[\Theta+\Psi](\eta) } & =[\Theta+\Psi](0)+\Delta \Psi-\Delta \Phi \\
& =\frac{1}{3} \Psi(0)-2 \Psi(0)=\frac{5}{3} \Psi(0)
\end{aligned}
$$

- $5 \times$ the amplitude of the Sachs-Wolfe effect!
- Coherent approximation is exact for a photon-baryon fluid but reality is reduced to $\sim 4 \times$ because of neutrino contribution to radiation
- Actual initial conditions are $\Theta+\Psi=\Psi / 2$ for radiation domination but comparison to matter dominated SW correct

External Potential Approach

- Solution to homogeneous equation

$$
(1+R)^{-1 / 4} \cos (k s), \quad(1+R)^{-1 / 4} \sin (k s)
$$

- Give the general solution for an external potential by propagating impulsive forces

$$
\begin{aligned}
(1+R)^{1 / 4} \Theta(\eta)=\Theta & (0) \cos (k s)+\frac{\sqrt{3}}{k}\left[\dot{\Theta}(0)+\frac{1}{4} \dot{R}(0) \Theta(0)\right] \sin k s \\
& +\frac{\sqrt{3}}{k} \int_{0}^{\eta} d \eta^{\prime}\left(1+R^{\prime}\right)^{3 / 4} \sin \left[k s-k s^{\prime}\right] F\left(\eta^{\prime}\right)
\end{aligned}
$$

where

$$
F=-\ddot{\Phi}-\frac{\dot{R}}{1+R} \dot{\Phi}-\frac{k^{2}}{3} \Psi
$$

- Useful if general form of potential evolution is known

Damping

- Tight coupling equations assume a perfect fluid: no viscosity, no heat conduction
- Fluid imperfections are related to the mean free path of the photons in the baryons

$$
\lambda_{C}=\dot{\tau}^{-1} \quad \text { where } \quad \dot{\tau}=n_{e} \sigma_{T} a
$$

is the conformal opacity to Thompson scattering

- Dissipation is related to the diffusion length: random walk approximation

$$
\lambda_{D}=\sqrt{N} \lambda_{C}=\sqrt{\eta / \lambda_{C}} \lambda_{C}=\sqrt{\eta \lambda_{C}}
$$

the geometric mean between the horizon and mean free path

- $\lambda_{D} / \eta_{*} \sim$ few $\%$, so expect the peaks :> 3 to be affected by dissipation

Equations of Motion

- Continuity

$$
\dot{\Theta}=-\frac{k}{3} v_{\gamma}-\dot{\Phi}, \quad \dot{\delta}_{b}=-k v_{b}-3 \dot{\Phi}
$$

where the photon equation remains unchanged and the baryons follow number conservation with $\rho_{b}=m_{b} n_{b}$

- Euler

$$
\begin{aligned}
& \dot{v}_{\gamma}=k(\Theta+\Psi)-\frac{k}{6} \pi_{\gamma}-\dot{\tau}\left(v_{\gamma}-v_{b}\right) \\
& \dot{v}_{b}=-\frac{\dot{a}}{a} v_{b}+k \Psi+\dot{\tau}\left(v_{\gamma}-v_{b}\right) / R
\end{aligned}
$$

where the photons gain an anisotropic stress term π_{γ} from radiation viscosity and a momentum exchange term with the baryons and are compensated by the opposite term in the baryon Euler equation

Viscosity

- Viscosity is generated from radiation streaming from hot to cold regions
- Expect

$$
\pi_{\gamma} \sim v_{\gamma}
$$

generated by streaming, suppressed by scattering in a wavelength of the fluctuation. Radiative transfer says

$$
\pi_{\gamma} \approx 2 A_{v} v_{\gamma}
$$

where $A_{v}=16 / 15$

$$
\dot{v}_{\gamma}=k(\Theta+\Psi)-\frac{k}{3} A_{v} \stackrel{k}{\underset{\tau}{\tau}} v_{\gamma}
$$

Oscillator: Penultimate Take

- Adiabatic approximation $(\omega \gg \dot{a} / a)$

$$
\dot{\Theta} \approx-\frac{k}{3} v_{\gamma}
$$

- Oscillator equation contains a $\dot{\Theta}$ damping term

$$
c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Theta}\right)+\frac{k^{2} c_{s}^{2}}{\dot{\tau}^{2}} A_{v} \dot{\Theta}+k^{2} c_{s}^{2} \Theta=-\frac{k^{2}}{3} \Psi-c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Phi}\right)
$$

- Heat conduction term similar in that it is proportional to v_{γ} and is suppressed by scattering k / τ. Expansion of Euler equations to leading order in $k \tau$ gives

$$
A_{h}=\frac{R^{2}}{1+R}
$$

since the effects are only significant if the baryons are dynamically important

Oscillator: Final Take

- Final oscillator equation

$$
c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Theta}\right)+\frac{k^{2} c_{s}^{2}}{\dot{\tau}}\left[A_{v}+A_{h} \dot{\Theta}+k^{2} c_{s}^{2} \Theta=-\frac{k^{2}}{3} \Psi-c_{s}^{2} \frac{d}{d \eta}\left(c_{s}^{-2} \dot{\Phi}\right)\right.
$$

- Solve in the adiabatic approximation

$$
\begin{gather*}
\Theta \propto \exp \left(i \int \omega d \eta\right) \\
-\omega^{2}+\frac{h^{2} c_{s}^{2}}{-}\left(A_{v}+A_{h}\right) i \omega+k^{2} c_{s}^{2}=0 \tag{1}
\end{gather*}
$$

Dispersion Relation

- Solve

$$
\begin{aligned}
\omega^{2} & =k^{2} c_{s}^{2}\left[1+i \frac{\omega}{\dot{\tau}}\left(A_{v}+A_{h}\right)\right] \\
\omega & = \pm k c_{s}\left[1+\frac{i}{2}\left(A_{v}+A_{h}\right)\right] \\
& = \pm k c_{s}\left[1 \pm \frac{i}{2} \frac{i c_{s}}{\dot{\tau}}\left(A_{v}+A_{h}\right)\right]
\end{aligned}
$$

- Exponentiate

$$
\begin{align*}
\exp \left(i \int \omega d \eta\right) & =e^{ \pm i k s} \exp \left[-k^{2} \int d \eta \frac{1}{2} \frac{c_{s}^{2}}{\dot{\tau}}\left(A_{v}+A_{h}\right)\right] \\
& =e^{ \pm i k s} \exp \left[-\left(k / k_{D}\right)^{2}\right] \tag{2}
\end{align*}
$$

Damping is exponential under the scale

Diffusion Scale

Diffusion wavenumber

$$
k_{D}^{-2}=\int \ln \frac{1}{\frac{1}{\tau}} \frac{1}{6(1+R)}\left(\frac{16}{15}+\frac{R^{2}}{(1+R)}\right)
$$

- Limiting forms

$$
\begin{aligned}
& \lim _{R \rightarrow 0} k_{D}^{-2}=\frac{1}{6} \frac{16}{15} \\
& \lim _{R \rightarrow \infty} k_{D}^{-2}=\frac{1}{6} \int d n
\end{aligned}
$$

- Geometric mean between horizon and mean free path as expected from a random walk

$$
\lambda_{D}=\frac{2 \pi}{k_{D}} \sim \frac{2 \pi}{\sqrt{6}}\left(n \dot{T}^{-1}\right)^{1 / 2}
$$

Astro 448
 Polarization

Stokes Parameters

- Polarization state of radiation in direction $\hat{\mathbf{n}}$ described by the intensity matrix $\left\langle E_{i}(\hat{\mathbf{n}}) E_{j}^{*}(\hat{\mathbf{n}})\right\rangle$, where E is the electric field vector and the brackets denote time averaging.
- As a hermitian matrix, it can be decomposed into the Pauli basis

$$
\begin{aligned}
\mathbf{P} & =C\left\langle\mathbf{E}(\hat{\mathbf{n}}) \mathbf{E}^{\dagger}(\hat{\mathbf{n}})\right\rangle \\
& =\Theta(\hat{\mathbf{n}}) \boldsymbol{\sigma}_{0}+Q(\hat{\mathbf{n}}) \boldsymbol{\sigma}_{3}+U(\hat{\mathbf{n}}) \boldsymbol{\sigma}_{1}+V(\hat{\mathbf{n}}) \boldsymbol{\sigma}_{2}
\end{aligned}
$$

where

$$
\sigma_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \boldsymbol{\sigma}_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Stokes parameters recovered as $\operatorname{Tr}\left(\sigma_{i} \mathbf{P}\right) / 2$

Linear Polarization

$Q \propto\left\langle E_{1} E_{1}^{*}\right\rangle-\left\langle E_{2} E_{2}^{*}\right\rangle, U \propto\left\langle E_{1} E_{2}^{*}\right\rangle+\left\langle E_{2} E_{1}^{*}\right\rangle$.

- Counterclockwise rotation of axes by $\theta=45^{\circ}$

$$
E_{1}=\left(E_{1}^{\prime}-E_{2}^{\prime}\right) / \sqrt{2}, \quad E_{2}=\left(E_{1}^{\prime}+E_{2}^{\prime}\right) / \sqrt{2}
$$

- $U \propto\left\langle E_{1}^{\prime} E_{1}^{\prime *}\right\rangle-\left\langle E_{2}^{\prime} E_{2}^{\prime *}\right\rangle$, difference of intensities at 45° or Q^{\prime}
o More generally, P transforms as a tensor under rotations and

$$
\begin{aligned}
& Q^{\prime}=\cos (2 \theta) Q+\sin (2 \theta) U \\
& U^{\prime}=-\sin (2 \theta) Q+\cos (2 \theta) U
\end{aligned}
$$

or

$$
Q^{\prime} \pm i U^{\prime}=e^{\mp 2 i \theta}[Q \pm i U]
$$

acquires a phase under rotation and is a spin ± 2 object

Coordinate Independent Representation

- Two directions: orientation of polarization and change in amplitude, i.e. Q and U in the basis of the Fourier wavevector for small sections of sky are called E and B components

$$
\begin{aligned}
E(\mathbf{l}) \pm i B(\mathbf{l}) & =-\int d \hat{\mathbf{n}}\left[Q^{\prime}(\hat{\mathbf{n}}) \pm i U^{\prime}(\hat{\mathbf{n}})\right] e^{-i \cdot \hat{\mathbf{n}}} \\
& =-e^{\mp 2 i \phi_{l}} \int d \hat{\mathbf{n}}[Q(\hat{\mathbf{n}}) \pm i U(\hat{\mathbf{n}})] e^{i \mathbf{l} \cdot \hat{\mathbf{n}}}
\end{aligned}
$$

- For the B-mode to not vanish, the polarization must point in a direction not related to the wavevector - not possible for density fluctuations in linear theory
- Generalize to all-sky: plane waves are eigenmodes of the Laplace operator on the tensor P .

Spin Harmonics

- Laplace Eigenfunctions

$$
\nabla_{ \pm 2}^{2} Y_{\ell m}\left[\boldsymbol{\sigma}_{3} \mp i \boldsymbol{\sigma}_{1}\right]=-[l(l+1)-4]_{ \pm 2} Y_{\ell m}\left[\boldsymbol{\sigma}_{3} \mp i \boldsymbol{\sigma}_{1}\right]
$$

- Spin s spherical harmonics: orthogonal and complete

$$
\begin{aligned}
\int d \hat{\mathbf{n}}_{s} Y_{\ell m}^{*}(\hat{\mathbf{n}})_{s} Y_{\ell m}(\hat{\mathbf{n}}) & =\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} \\
\sum_{\ell m}{ }_{s} Y_{\ell m}^{*}(\hat{\mathbf{n}})_{s} Y_{\ell m}\left(\hat{\mathbf{n}}^{\prime}\right) & =\delta\left(\phi-\phi^{\prime}\right) \delta\left(\cos \theta-\cos \theta^{\prime}\right)
\end{aligned}
$$

where the ordinary spherical harmonics are $Y_{\ell m}={ }_{0} Y_{\ell m}$
Given in terms of the rotation matrix

$$
{ }_{s} Y_{\ell m}(\beta \alpha)=(-1)^{m} \sqrt{\frac{2 \ell+1}{4 \pi}} D_{-m s}^{\ell}(\alpha \beta 0)
$$

Statistical Representation

All-sky decomposition

$$
[Q(\hat{\mathbf{n}}) \pm i U(\hat{\mathbf{n}})]=\sum_{\ell m}\left[E_{\ell m} \pm i B_{\ell m}\right]_{ \pm 2} Y_{\ell m}(\hat{\mathbf{n}})
$$

- Power spectra

$$
\begin{aligned}
& \left\langle E_{\ell m}^{*} E_{\ell m}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{E E} \\
& \left\langle B_{\ell m}^{*} B_{\ell m}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{B B}
\end{aligned}
$$

- Cross correlation

$$
\left\langle E_{\ell m}^{*} E_{\ell m}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{\Theta E}
$$

others vanish if parity is conserved

Thomson Scattering

Differential cross section

$$
\frac{d \sigma}{d \Omega}=\frac{3}{8 \pi}\left|\hat{\mathbf{E}}^{\prime} \cdot \hat{\mathbf{E}}\right|^{2} \sigma_{T},
$$

where $\sigma_{T}=8 \pi \alpha^{2} / 3 m_{e}$ is the Thomson cross section, $\hat{\mathbf{E}}^{\prime}$ and $\hat{\mathbf{E}}$ denote the incoming and outgoing directions of the electric field or polarization vector.

- Summed over angle and incoming polarization

$$
\sum_{i=1,2} \int d \hat{\mathbf{n}}^{\prime} \frac{d \sigma}{d \Omega}=\sigma_{T}
$$

Polarization Generation

- Heuristic: incoming radiation shakes an electron in direction of electric field vector $\hat{\mathbf{E}}^{\prime}$
- Radiates photon with polarization also in direction $\hat{\mathbf{E}}^{\prime}$
- But photon cannot be longitudinally polarized so that scattering into 90° can only pass one polarization
- Linearly polarized radiation like polarization by reflection
- Unlike reflection of sunlight, incoming radiation is nearly isotropic
- Missing linear polarization supplied by scattering from direction orthogonal to original incoming direction
- Only quadrupole anisotropy generates polarization by Thomson scattering

Acoustic Polarization

- Break down of tight-coupling leads to quadrupole anisotropy of

$$
\pi_{\gamma} \approx \frac{k}{\dot{\tau}} v_{\gamma}
$$

- Scaling $k_{D}=\left(\dot{\tau} / \eta_{*}\right)^{1 / 2} \rightarrow \dot{\tau}=k_{D}^{2} \eta_{*}$

Know: $k_{D} s_{*} \approx k_{D} \eta_{*} \approx 10$

- So:

$$
\begin{aligned}
\pi_{\gamma} & \approx \frac{k}{k_{D}} \frac{1}{10} v_{\gamma} \\
\Delta_{P} & \approx \frac{\ell}{\ell_{D}} \frac{1}{10} \Delta_{T}
\end{aligned}
$$

Acoustic Polarization

- Gradient of velocity is along direction of wavevector, so polarization is pure E-mode
- Velocity is 90° out of phase with temperature - turning points of oscillator are zero points of velocity:

$$
\Theta+\Psi \propto \cos (k s) ; \quad v_{\gamma} \propto \sin (k s)
$$

- Polarization peaks are at troughs of temperature power

Cross Correlation

- Cross correlation of temperature and polarization

$$
(\Theta+\Psi)\left(v_{\gamma}\right) \propto \cos (k s) \sin (k s) \propto \sin (2 k s)
$$

- Oscillation at twice the frequency
- Correlation: radial or tangential around hot spots
- Partial correlation: easier to measure if polarization data is noisy, harder to measure if polarization data is high S / N or if bands do not resolve oscillations
- Good check for systematics and foregrounds
- Comparison of temperature and polarization is proof against features in initial conditions mimicking acoustic features

Reionization

- Ionization depth during reionization

$$
\begin{aligned}
\tau(z) & =\int d \eta n_{e} \sigma_{T} a=\int d \ln a \frac{n_{e} \sigma_{T}}{H(a)} \propto\left(\Omega_{b} h^{2}\right)\left(\Omega_{m} h^{2}\right)^{-1 / 2}(1+z)^{3 / 2} \\
& =\left(\frac{\Omega_{b} h^{2}}{0.02}\right)\left(\frac{\Omega_{m} h^{2}}{0.15}\right)^{-1 / 2}\left(\frac{1+z}{61}\right)^{3 / 2}
\end{aligned}
$$

- Quasars say $z_{r i} \geq 7$ so $\tau>0.04$
- During reionization, cosmic quadrupole of $\sim 30 \mu \mathrm{~K}$ from the Sachs-Wolfe effect scatters into E-polarization
- Few percent optical depth leads to fraction of a $\mu \mathrm{K}$ signal
- Peaks at horizon scale at recombination: quadrupole source $j_{2}\left(k D_{*}\right)$ maximal at $k D_{*} \approx k \eta \approx 2$

Breaking degeneracies

- First objects, breaking degeneracy of initial amplitude vs optical depth in the peak heights

$$
C_{\ell} \propto e^{-2 \tau}
$$

only below horizon scale at reionization

- Breaks degeneracies in angular diameter distance by removing an ambiguity for ISW-dark energy measure, helps in $\Omega_{D E}-w_{D E}$ plane

Gravitational Wave

- Gravitational waves produce a quadrupolar distortion in the temperature of the CMB like effect on a ring of test particles
- Like ISW effect, source is a metric perturbation with time dependent amplitude
- After recombination, is a source of observable temperature anisotropy - but is therefore confined to low order multipoles
- Generated during inflation by quandum fluctuations

Gravitational Wave Polarization

- In the tight coupling regime, quadrupole anisotropy suppressed by scattering

$$
\pi_{\gamma} \approx \frac{\dot{h}}{\dot{\tau}}
$$

- Since gravitational waves oscillate and decay at horizon crossing, the polarization peaks at the horizon scale at recombination not the damping scale
- More distinct signature in the B-mode polarization since symmetry of plane wave is broken by the transverse nature of gravity wave polarization

Linear Perturbation Theory

Covariant Perturbation Theory

- Covariant $=$ takes same form in all coordinate systems
- Invariant = takes the same value in all coordinate systems
- Fundamental equations: Einstein equations, covariant conservation of stress-energy tensor:

$$
\begin{aligned}
G_{\mu \nu} & =8 \pi G T_{\mu \nu} \\
\nabla_{\mu} T^{\mu \nu} & =0
\end{aligned}
$$

- Preserve general covariance by keeping all degrees of freedom: 10 for each symmetric 4×4 tensor

1	2	3	4
	5	6	7
		8	9
			10

Metric Tensor

- Expand the metric tensor around the general FRW metric

$$
g_{00}=-a^{2}, \quad g_{i j}=a^{2} \gamma_{i j} .
$$

where the " 0 " component is conformal time $\eta=d t / a$ and $\gamma_{i j}$ is a spatial metric of constant curvature $K=H_{0}^{2}\left(\Omega_{\mathrm{tot}}-1\right)$.

- Add in a general perturbation (Bardeen 1980)

$$
\begin{aligned}
g^{00} & =-a^{-2}(1-2 A) \\
g^{0 i} & =-a^{-2} B^{i} \\
g^{i j} & =a^{-2}\left(\gamma^{i j}-2 H_{L} \gamma^{i j}-2 H_{T}^{i j}\right) .
\end{aligned}
$$

- (1) $A \equiv$ a scalar potential; (3) B^{i} a vector shift, (1) H_{L} a perturbation to the spatial curvature; (5) $H_{T}^{i j}$ a trace-free distortion to spatial metric $=$

Matter Tensor

- Likewise expand the matter stress energy tensor around a homogeneous density ρ and pressure p :

$$
\begin{aligned}
T_{0}^{0} & =-\rho-\delta \rho, \\
T_{i}^{0} & =(\rho+p)\left(v_{i}-B_{i}\right), \\
T_{0}^{i} & =-(\rho+p) v^{i}, \\
T_{j}^{i} & =(p+\delta p) \delta_{j}^{i}+p \Pi_{j}^{i},
\end{aligned}
$$

- (1) $\delta \rho$ a density perturbation; (3) v_{i} a vector velocity, (1) δp a pressure perturbation; (5) $\Pi_{i j}$ an anisotropic stress perturbation
- So far this is fully general and applies to any type of matter or coordinate choice including non-linearities in the matter, e.g. cosmological defects.

Counting DOF's

20 Variables (10 metric; 10 matter)
-10 Einstein equations
-4 Conservation equations
$+4 \quad$ Bianchi identities
-4 Gauge (coordinate choice 1 time, 3 space)

6 Degrees of freedom

- Without loss of generality these can be taken to be the 6 components of the matter stress tensor
- For the background, specify $p(a)$ or equivalently $w(a) \equiv p(a) / \rho(a)$ the equation of state parameter.

Scalar, Vector, Tensor

- In linear perturbation theory, perturbations may be separated by their transformation properties under rotation and translation.
- The eigenfunctions of the Laplacian operator form a complete set

$$
\begin{aligned}
\nabla^{2} Q^{(0)} & =-k^{2} Q^{(0)} \\
\nabla^{2} Q_{i}^{(\pm 1)} & =-k^{2} Q_{i}^{(\pm 1)} \\
\nabla^{2} Q_{i j}^{(\pm 2)} & =-k^{2} Q_{i j}^{(\pm 2)}
\end{aligned}
$$

- Vector and tensor modes satisfy divergence-free and transverse-traceless conditions

$$
\begin{aligned}
\nabla^{i} Q_{i}^{(\pm 1)} & =0 \\
\nabla^{i} Q_{i j}^{(\pm 2)} & =0 \\
\gamma^{i j} Q_{i j}^{(\pm 2)} & =0
\end{aligned}
$$

Vector and Tensor Modes vs. Vector and Tensor Quantities

- A scalar mode carries with it associated vector (curl-free) and tensor (longitudinal) quantities
- A vector mode carries and associated tensor (neither longitudinal or transverse) quantities
- These are built from the mode basis out of covariant derivatives and the metric

$$
\begin{aligned}
Q_{i}^{(0)} & =-k^{-1} \nabla_{i} Q^{(0)} \\
Q_{i j}^{(0)} & =\left(k^{-2} \nabla_{i} \nabla_{j}+\frac{1}{3} \gamma_{i j}\right) Q^{(0)}, \\
Q_{i j}^{(\pm 1)} & =-\frac{1}{2 k}\left[\nabla_{i} Q_{j}^{(\pm 1)}+\nabla_{j} Q_{i}^{(\pm 1)}\right],
\end{aligned}
$$

Spatially Flat Case

- For a spatially flat background metric, harmonics are related to plane waves:

$$
\begin{aligned}
Q^{(0)} & =\exp (i \mathbf{k} \cdot \mathbf{x}) \\
Q_{i}^{(\pm 1)} & =\frac{-i}{\sqrt{2}}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{i} \exp (i \mathbf{k} \cdot \mathbf{x}) \\
Q_{i j}^{(\pm 2)} & =-\sqrt{\frac{3}{8}}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{i}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{j} \exp (i \mathbf{k} \cdot \mathbf{x})
\end{aligned}
$$

where $\hat{e}_{3} \| \mathrm{k}$. Chosen as spin states, c.f. polarization.

- For vectors, the harmonic points in a direction orthogonal to k suitable for the vortical component of a vector
- For tensors, the harmonic is transverse and traceless as appropriate for the decompositon of gravitational waves

Perturbation k-Modes

- For the k th eigenmode, the scalar components become

$$
\begin{aligned}
A(\mathbf{x}) & =A(k) Q^{(0)}, & H_{L}(\mathbf{x}) & =H_{L}(k) Q^{(0)}, \\
\delta \rho(\mathbf{x}) & =\delta \rho(k) Q^{(0)}, & \delta p(\mathbf{x}) & =\delta p(k) Q^{(0)},
\end{aligned}
$$

the vectors components become

$$
B_{i}(\mathrm{x})=\sum_{m=-1}^{1} B^{(m)}(k) Q_{i}^{(m)}, \quad v_{i}(\mathbf{x})=\sum_{m=-1}^{1} v^{(m)}(k) Q_{i}^{(m)}
$$

and the tensors components

$$
H_{T i j}(\mathrm{x})=\sum_{m=-2}^{2} H_{T}^{(m)}(k) Q_{i j}^{(m)}, \quad \Pi_{i j}(\mathrm{x})=\sum_{m=-2}^{2} \Pi^{(m)}(k) Q_{i j}^{(m)},
$$

Homogeneous Einstein Equations

- Einstein (Friedmann) equations:

$$
\begin{aligned}
\left(\frac{1}{a} \frac{d a}{d t}\right)^{2} & =\frac{8 \pi G}{3} \rho \\
\frac{1}{a} \frac{d^{2} a}{d t^{2}} & =-\frac{4 \pi G}{3}(\rho+3 p)
\end{aligned}
$$

so that $w \equiv p / \rho<-1 / 3$ for acceleration

- Conservation equation $\nabla^{\mu} T_{\mu \nu}=0$ implies

$$
\frac{\dot{\rho}}{\rho}=-3(1+w) \frac{\dot{a}}{a}
$$

Homogeneous Einstein Equations

Counting exercise:

20	Variables (10 metric; 10 matter)
-17	Homogeneity and Isotropy
-2	Einstein equations
-1	Conservation equations
+1	Bianchi identities
-1	
	Degree of freedom

without loss of generality choose ratio of homogeneous \& isotropic component of the stress tensor to the density $w(a)=p(a) / \rho(a)$.

Acceleration Implies Negative Pressure

- Role of stresses in the background cosmology
- Homogeneous Einstein equations $G_{\mu \nu}=8 \pi G T_{\mu \nu}$ imply the two Friedman equations (flat universe, or associating curvature $\rho_{K}=-3 K / 8 \pi G a^{2}$)

$$
\begin{aligned}
\left(\frac{1}{a} \frac{d a}{d t}\right)^{2} & =\frac{8 \pi G}{3} \rho \\
\frac{1}{a} \frac{d^{2} a}{d t^{2}} & =-\frac{4 \pi G}{3}(\rho+3 p)
\end{aligned}
$$

so that the total equation of state $w \equiv p / \rho<-1 / 3$ for acceleration
Conservation equation $\nabla^{\mu} T_{\mu \nu}=0$ implies

$$
\frac{\dot{\rho}}{\rho}=-3(1+w) \frac{\dot{a}}{a}
$$

- so that ρ must scale more slowly than a^{-2}

Questions regarding Dark Energy

- Coincidence: given the very different scalings of matter and dark energy with a, why are they comparable now?
- Stability: why doesn't negative pressure imply accelerated collapse? or why doesn't the vacuum suck?
- Answer: stability is associated with stress (pressure) gradients not stress (pressure) itself.
- Example: the cosmological constant $w_{\Lambda}=-1$, a constant in time and space - no gradients.
- Example: a scalar field where $w=p / \rho \neq \delta p / \delta \rho=$ sound speed.

Covariant Scalar Equations

Einstein equations (suppressing 0) superscripts (Hu \& Eisenstein 1999):

$$
\begin{aligned}
& \left(k^{2}-3 K\right)\left[H_{L}+\frac{1}{3} H_{T}+\frac{\dot{a}}{a} \frac{1}{k^{2}}\left(k B-\dot{H}_{T}\right)\right] \\
& =4 \pi G a^{2}\left[\delta \rho+3 \frac{\dot{a}}{a}(\rho+p)(v-B) / k\right], \text { Poisson } \\
& k^{2}\left(A+H_{L}+\frac{1}{3} H_{T}\right)+\left(\frac{d}{d \eta}+2 \frac{\dot{a}}{a}\right)\left(k B-\dot{H}_{T}\right) \\
& =8 \pi G a^{2} p \Pi, \\
& \frac{\dot{a}}{a} A-\dot{H}_{L}-\frac{1}{3} \dot{H}_{T}-\frac{K}{k^{2}}\left(k B-\dot{H}_{T}\right) \\
& \quad=4 \pi G a^{2}(\rho+p)(v-B) / k, \\
& {\left[2 \frac{\ddot{a}}{a}-2\left(\frac{\dot{a}}{a}\right)^{2}+\frac{\dot{a}}{a} \frac{d}{d \eta}-\frac{k^{2}}{3}\right] A-\left[\frac{d}{d \eta}+\frac{\dot{a}}{a}\right]\left(\dot{H}_{L}+\frac{1}{3} k B\right)} \\
& \quad=4 \pi G a^{2}\left(\delta p+\frac{1}{3} \delta \rho\right) .
\end{aligned}
$$

Covariant Scalar Equations

- Conservation equations: continuity and Navier Stokes

$$
\begin{aligned}
{\left[\frac{d}{d \eta}+3 \frac{\dot{a}}{a}\right] \delta \rho+3 \frac{\dot{a}}{a} \delta p } & =-(\rho+p)\left(k v+3 \dot{H}_{L}\right), \\
{\left[\frac{d}{d \eta}+4 \frac{\dot{a}}{a}\right]\left[(\rho+p) \frac{(v-B)}{k}\right] } & =\delta p-\frac{2}{3}\left(1-3 \frac{K}{k^{2}}\right) p \Pi+(\rho+p) A,
\end{aligned}
$$

- Equations are not independent since $\nabla_{\mu} G^{\mu \nu}=0$ via the Bianchi identities.
- Related to the ability to choose a coordinate system or "gauge" to represent the perturbations.

Covariant Scalar Equations

DOF counting exercise

8 Variables (4 metric; 4 matter)
-4 Einstein equations
-2 Conservation equations
+2 Bianchi identities
-2 Gauge (coordinate choice 1 time, 1 space)

2 Degrees of freedom
owithout loss of generality choose scalar components of the tensor $\delta p, \Pi$.

Covariant Vector Equations

Einstein equations

$$
\begin{gathered}
\left(1-2 K / k^{2}\right)\left(k B^{(\pm 1)}-\dot{H}_{T}^{(\pm 1)}\right) \\
=16 \pi G a^{2}(\rho+p)\left(v^{(\pm 1)}-B^{(\pm 1)}\right) / k \\
{\left[\frac{d}{d \eta}+2 \frac{\dot{a}}{a}\right]\left(k B^{(\pm 1)}-\dot{H}_{T}^{(\pm 1)}\right)} \\
=-8 \pi G a^{2} p \Pi^{(\pm 1)}
\end{gathered}
$$

- Conservation Equations

$$
\begin{gathered}
{\left[\frac{d}{d \eta}+4 \frac{\dot{a}}{a}\right]\left[(\rho+p)\left(v^{(\pm 1)}-B^{(\pm 1)}\right) / k\right]} \\
=-\frac{1}{2}\left(1-2 K / k^{2}\right) p \Pi^{(\pm 1)},
\end{gathered}
$$

- Gravity provides no source to vorticity \rightarrow decay

Covariant Vector Equations

DOF counting exercise

8 Variables (4 metric; 4 matter)
-4 Einstein equations
-2 Conservation equations
+2 Bianchi identities
-2 Gauge (coordinate choice 1 time, 1 space)

2 Degrees of freedom

- without loss of generality choose vector components of the tensor $\Pi^{(\pm 1)}$.

Covariant Tensor Equation

- Einstein equation

$$
\left[\frac{d^{2}}{d \eta^{2}}+2 \frac{\dot{a}}{a} \frac{d}{d \eta}+\left(k^{2}+2 K\right)\right] H_{T}^{(\pm 2)}=8 \pi G a^{2} p \Pi^{(\pm 2)} .
$$

- DOF counting exercise

4 Variables (2 metric; 2 matter)
-2 Einstein equations
-0 Conservation equations
$+0 \quad$ Bianchi identities
-0 Gauge (coordinate choice 1 time, 1 space)

2 Degrees of freedom
owlog choose tensor components of the stress tensor $\Pi^{(\pm 2)}$.

Arbitrary Dark Components

- Total stress energy tensor can be broken up into individual pieces
- Dark components interact only through gravity and so satisfy separate conservation equations
- Einstein equation source remains the sum of components.
- To specify an arbitrary dark component, give the behavior of the stress tensor: 6 components: $\delta p, \Pi^{(i)}$, where $i=-2, \ldots, 2$.
- Many types of dark components (dark matter, scalar fields, massive neutrinos,..) have simple forms for their stress tensor in terms of the energy density, i.e. described by equations of state.
- An equation of state for the background $w=p / \rho$ is not sufficient to determine the behavior of the perturbations.

Gauge

- Metric and matter fluctuations take on different values in different coordinate system
- No such thing as a "gauge invariant" density perturbation!
- General coordinate transformation:

$$
\begin{aligned}
\tilde{\eta} & =\eta+T \\
\tilde{x}^{i} & =x^{i}+L^{i}
\end{aligned}
$$

free to choose (T, L^{i}) to simplify equations or physics. Decompose these into scalar and vector harmonics.

- $G_{\mu \nu}$ and $T_{\mu \nu}$ transform as tensors, so components in different frames can be related

Gauge Transformation

- Scalar Metric:

$$
\begin{aligned}
\tilde{A} & =A-\dot{T}-\frac{\dot{a}}{a} T, \\
\tilde{B} & =B+\dot{L}+k T, \\
\tilde{H}_{L} & =H_{L}-\frac{k}{3} L-\frac{\dot{a}}{a} T, \\
\tilde{H}_{T} & =H_{T}+k L,
\end{aligned}
$$

- Scalar Matter (Jth component):

$$
\begin{aligned}
\delta \tilde{\rho}_{J} & =\delta \rho_{J}-\dot{\rho}_{J} T, \\
\delta \tilde{p}_{J} & =\delta p_{J}-\dot{p}_{J} T, \\
\tilde{v}_{J} & =v_{J}+\dot{L},
\end{aligned}
$$

- Vector:

$$
\tilde{B}^{(\pm 1)}=B^{(\pm 1)}+\dot{L}^{(\pm 1)}, \tilde{H}_{T}^{(\pm 1)}=H_{T}^{(\pm 1)}+k L^{(\pm 1)}, \tilde{v}_{J}^{(\pm 1)}=v_{J}^{(\pm 1)}+\dot{L}^{(\pm 1)}
$$

Common Scalar Gauge Choices

- A coordinate system is fully specified if there is an explicit prescription for $\left(T, L^{i}\right)$ or for scalars (T, L)
- Newtonian:

$$
\begin{aligned}
\tilde{B} & =\tilde{H}_{T}=0 \\
\Psi & \equiv \tilde{A} \text { (Newtonian } \\
\Phi & \equiv \tilde{H}_{L} \quad \text { (Newtonian } \\
L & =-H_{T} / k \\
T & =-B / k+\dot{H}_{T} / k^{2}
\end{aligned}
$$

Good: intuitive Newtonian like gravity; matter and metric algebraically related; commonly chosen for analytic CMB and lensing work

Bad: numerically unstable

Example: Newtonian Reduction

- In the general equations, set $B=H_{T}=0$:

$$
\begin{aligned}
\left(k^{2}-3 K\right) \Phi & =4 \pi G a^{2}\left[\delta \rho+3 \frac{\dot{a}}{a}(\rho+p) v / k\right] \\
k^{2}(\Psi+\Phi) & =8 \pi G a^{2} p \Pi
\end{aligned}
$$

so $\Psi=-\Phi$ if anisotropic stress $\Pi=0$ and

$$
\begin{aligned}
{\left[\frac{d}{d \eta}+3 \frac{\dot{a}}{a}\right] \delta \rho+3 \frac{\dot{a}}{a} \delta p } & =-(\rho+p)(k v+3 \dot{\Phi}), \\
{\left[\frac{d}{d \eta}+4 \frac{\dot{a}}{a}\right](\rho+p) v } & =k \delta p-\frac{2}{3}\left(1-3 \frac{K}{k^{2}}\right) p k \Pi+(\rho+p) k \Psi,
\end{aligned}
$$

- Competition between stress (pressure and viscosity) and potential gradients

Common Scalar Gauge Choices

- Comoving:

$$
\begin{aligned}
\tilde{B} & =\tilde{v} \quad\left(T_{i}^{0}=0\right) \\
H_{T} & =0 \\
\xi & =\tilde{A} \\
\zeta & =\tilde{H}_{L} \quad \text { (Bardeen curvature) } \\
\Delta & =\tilde{\delta} \quad \text { (comoving density per } \\
T & =(v-B) / k \\
L & =-H_{T} / k
\end{aligned}
$$

Good: Algebraic relations between matter and metric
Euler equation becomes an algebraic relation between stress and potential

$$
(\rho+p) \xi=-\delta p+\frac{2}{3}\left(1-\frac{3 K}{k}\right) p \Pi
$$

Common Scalar Gauge Choices

- Einstein equation lacks momentum density source

$$
\frac{\dot{a}}{a} \xi-\dot{\zeta}-\frac{K}{k^{2}} k v=0
$$

- Combine: ζ is conserved if stress fluctuations negligible, e.g. above the horizon if $|K| \ll H^{2}$
$\dot{\zeta}+K v / k=\frac{\dot{a}}{a}\left[-\frac{\delta p}{\rho+p}+\frac{2}{3}\left(1-\frac{3 K}{k^{2}}\right) \frac{p}{\rho+p} \Pi\right] \rightarrow 0$
Bad: explicitly relativistic choice

Common Scalar Gauge Choices

- Synchronous:

$$
\begin{aligned}
\tilde{A} & =\tilde{B}=0 \\
\eta_{L} & \equiv-\tilde{H}_{L}-\frac{1}{3} \tilde{H}_{T} \\
h_{T} & =\tilde{H}_{T} \quad \text { or } \quad h=6 H_{L} \\
T & =a^{-1} \int d \eta a A+c_{1} a^{-1} \\
L & =-\int d \eta(B+k T)+c_{2}
\end{aligned}
$$

Good: stable, the choice of numerical codes
Bad: residual gauge freedom in constants c_{1}, c_{2} must be specified as an initial condition, intrinsically relativistic.

Common Scalar Gauge Choices

- Spatially Unperturbed:

$$
\begin{aligned}
\tilde{H}_{L} & =\tilde{H}_{T}=0 \\
L & =-H_{T} / k \\
\tilde{A}, \tilde{B} & =\text { metric perturbations } \\
T & =\left(\frac{\dot{a}}{a}\right)^{-1}\left(H_{L}+\frac{1}{3} H_{T}\right)
\end{aligned}
$$

Good: eliminates spatial metric in evolution equations; useful in inflationary calculations (Mukhanov et al)
Bad: intrinsically relativistic.

- Caution: perturbation evolution is governed by the behavior of stress fluctuations and an isotropic stress fluctuation δp is gauge dependent.

Hybrid "Gauge Invariant" Approach

- With the gauge transformation relations, express variables of one gauge in terms of those in another - allows a mixture in the equations of motion
- Example: Newtonian curvature and comoving density

$$
\left(k^{2}-3 K\right) \Phi=4 \pi G a^{2} \rho \Delta
$$

ordinary Poisson equation then implies Φ approximately constant if stresses negligible.

- Example: Exact Newtonian curvature above the horizon derived through Bardeen curvature conservation

Gauge transformation

$$
\Phi=\zeta+\frac{\dot{a}}{a} \frac{v}{k}
$$

Hybrid "Gauge Invariant" Approach

Einstein equation to eliminate velocity

$$
\frac{\dot{a}}{a} \Psi-\dot{\Phi}=4 \pi G a^{2}(\rho+p) v / k
$$

Friedman equation with no spatial curvature

$$
\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} a^{2} \rho
$$

With $\dot{\Phi}=0$ and $\Psi \approx-\Phi$

$$
\frac{\dot{a} v}{a} \frac{v}{k}=-\frac{2}{3(1+w)} \Phi
$$

Hybrid "Gauge Invariant" Approach

Combining gauge transformation with velocity relation

$$
\Phi=\frac{3+3}{5+3} \zeta
$$

Usage: calculate ζ from inflation determines Φ for any choice of matter content or causal evolution.

- Example: Scalar field ("quintessence" dark energy) equations in comoving gauge imply a sound speed $\delta p / \delta \rho=1$ independent of potential $V(\phi)$. Solve in synchronous gauge (Hu 1998).

Astro 448

Inflationary Perturbations

Scalar Fields

- Stress-energy tensor of a scalar field

$$
T^{\mu}{ }_{\nu}=\nabla^{\mu} \varphi \nabla_{\nu} \varphi-\frac{1}{2}\left(\nabla^{\alpha} \varphi \nabla_{\alpha} \varphi+2 V\right) \delta^{\mu}{ }_{\nu} .
$$

- For the background $\langle\phi\rangle \equiv \phi_{0}$

$$
\rho_{\phi}=\frac{1}{2} a^{-2} \dot{\phi}_{0}^{2}+V \quad p_{\phi}=\frac{1}{2} a^{-2} \dot{\phi}_{0}^{2}+-V
$$

- So for kinetic dominated $w_{\phi}=p_{\phi} / \rho_{\phi} \rightarrow 1$
- And potential dominated $w_{\phi}=p_{\phi} / \rho_{\phi} \rightarrow-1$
- A slowly rolling (potential dominated) scalar field can accelerate the expansion and so solve the horizon problem or act as a dark energy candidate

Equation of Motion

- Can use general equations of motion of dictated by stress energy conservation

$$
\dot{\rho}_{\phi}=-3\left(\rho_{\phi}+p_{\phi}\right) \frac{\dot{a}}{a}
$$

to obtain the equation of motion of the background field ϕ

$$
\ddot{\phi}_{0}+2 \frac{\dot{a}}{a} \dot{\phi}_{0}+a^{2} V^{\prime}=0
$$

- Likewise for the perturbations $\phi=\phi_{0}+\phi_{1}$

$$
\begin{aligned}
\delta \rho_{\phi} & =a^{-2}\left(\dot{\phi}_{0} \dot{\phi}_{1}-\dot{\phi}_{0}^{2} A\right)+V^{\prime} \phi_{1}, \\
\delta p_{\phi} & =a^{-2}\left(\dot{\phi}_{0} \dot{\phi}_{1}-\dot{\phi}_{0}^{2} A\right)-V^{\prime} \phi_{1}, \\
\left(\rho_{\phi}+p_{\phi}\right)\left(v_{\phi}-B\right) & =a^{-2} k \dot{\phi}_{0} \phi_{1}, \\
p_{\phi} \pi_{\phi} & =0,
\end{aligned}
$$

Equation of Motion

- The stress of the perturbations is defined through

$$
\delta p_{\phi}=\delta \rho_{\phi}+3\left(\rho_{\phi}+p_{\phi}\right) \frac{v_{\phi}-B}{k} \frac{\dot{a}}{a}\left(1-c_{\phi}^{2}\right)
$$

where $c_{\phi}^{2} \equiv \dot{p}_{\phi} / \dot{\rho}_{\phi}$ is the "adiabatic" sound speed

- So for the comoving gauge where $v_{\phi}=B, \delta p_{\phi}=\delta \rho_{\phi}$ so the sound speed relevant for stability is $\delta p_{\phi} / \delta \rho_{\phi}=1$. Very useful for solving system since in this gauge everything is specified by $w(a)$
- Scalar field fluctuations are stable inside the horizon and are a good candidate for the smooth dark energy
- More generally, continuity and Euler equations imply
$\ddot{\phi}_{1}=-2 \frac{\dot{a}}{a} \dot{\phi}_{1}-\left(k^{2}+a^{2} V^{\prime \prime}\right) \phi_{1}+\left(\dot{A}-3 \dot{H}_{L}-k B\right) \dot{\phi}_{0}-2 A a^{2} V^{\prime}$.

Inflationary Perturbations

- Classical equations of motion for scalar field inflaton determine the evolution of scalar field fluctuations generated by quantum fluctuations
- Since the Bardeen or comoving curvature ζ is conserved in the absence of stress fluctuations (i.e. outside the apparent horizon, calculate this and we're done no matter what happens in between inflation and the late universe (reheating etc.)
- But in the comoving gauge $\phi_{1}=0$! no scalar-field perturbation
- Solution: solve the scalar field equation in the dual gauge where the curvature $H_{L}=0$ (and $H_{T}=0$ to fix the gauge completely, as the "spatially unperturbed" or "spatially flat" gauge) and transform the result to the comoving gauge

Transformation to Comoving Gauge

- Scalar field transforms as scalar field

$$
\tilde{\phi}_{1}=\phi_{1}-\dot{\phi}_{0} T
$$

To get to comoving frame $\tilde{\phi}_{1}=0, T=\phi_{1} / \dot{\phi}_{0}$, and $\tilde{H}_{T}=H_{T}+k L$ so

$$
\begin{aligned}
\zeta & =H_{L}-\frac{k}{3} L-\frac{\dot{a}}{a} T \\
& =H_{L}+\frac{H_{T}}{3}-\frac{\dot{a}}{a} \frac{\phi_{1}}{\dot{\phi}_{0}}
\end{aligned}
$$

- Transformation particularly simple from a gauge with $H_{T}=H_{L}=0$, i.e. spatially unperturbed metric

$$
\zeta=-\frac{\dot{a}}{a} \frac{\phi_{1}}{\dot{\phi}_{0}}
$$

Scalar Field Eqn of Motion

- Scalar field perturbation in spatially unperturbed gauge is simply proportional to resulting Bardeen curvature with the proportionality constant as the expansion rate over roll rate enhanced
- Scalar field fluctuation satisfies classical equation of motion

$$
\ddot{\phi}_{1}=-2 \frac{\dot{a}}{a} \dot{\phi}_{1}-\left(k^{2}+a^{2} V^{\prime \prime}\right) \phi_{1}+(\dot{A}-k B) \dot{\phi}_{0}-2 A a^{2} V^{\prime}
$$

- Metric terms may be eliminated through Einstein equations

$$
\begin{aligned}
A & =4 \pi G a^{2}\left(\frac{\dot{a}}{a}\right)^{-1}\left(\rho_{\phi}+p_{\phi}\right)\left(v_{\phi}-B\right) / k \\
& =4 \pi G\left(\frac{\dot{a}}{a}\right)^{-1} \dot{\phi}_{0} \phi_{1}
\end{aligned}
$$

Scalar Field Eqn of Motion

- And

$$
\begin{aligned}
k B & =4 \pi G a^{2}\left[\left(\frac{\dot{a}}{a}\right)^{-1} \delta \rho_{\phi}+3 \frac{\dot{a}}{a}\left(\rho_{\phi}+p_{\phi}\right)\left(v_{\phi}-B\right) / k\right] \\
& =4 \pi G\left[\left(\frac{\dot{a}}{a}\right)^{-1}\left(\dot{\phi}_{0} \dot{\phi}_{1}+a^{2} V^{\prime} \phi_{1}\right)-\left(\frac{\dot{a}}{a}\right)^{-2}\left(4 \pi G \dot{\phi}_{0}\right)^{2} \dot{\phi}_{0} \phi_{1}+3 \dot{\phi}_{0} \phi_{1}\right]
\end{aligned}
$$

- So $\dot{A}-k B \propto \phi_{1}$ with proportionality that depends only on the background evolution - Einstein \& scalar field equations reduce to a single second order diff eq!
- Equation resembles a damped oscillator equation with a particular dispersion relation

$$
\ddot{\phi}_{1}+2 \frac{\dot{a}}{a} \dot{\phi}_{1}+\left[k^{2}+f(\eta)\right] \phi_{1}
$$

Exact Equation

- Rewrite equations of motion in terms of slow roll parameters but do not require them to be small or constant.
- Deviation from de Sitter expansion

$$
\begin{aligned}
\epsilon & \equiv \frac{3}{2}\left(1+w_{\phi}\right) \\
& =\frac{\frac{3}{2} \dot{\phi}_{0}^{2} / a^{2} V}{1+\frac{1}{2} \dot{\phi}_{0}^{2} / a^{2} V}
\end{aligned}
$$

- Deviation from overdamped limit of $d^{2} \phi_{0} / d t^{2}=0$

$$
\delta \equiv \frac{\ddot{\phi}_{0}}{\dot{\phi}}\left(\frac{\dot{a}}{a}\right)^{-1}-1
$$

Exact Equation

Friedman equations:

$$
\begin{aligned}
\left(\frac{\dot{a}}{a}\right)^{2} & =4 \pi G \dot{\phi}_{0}^{2} \epsilon^{-1} \\
\frac{d}{d \eta}\left(\frac{\dot{a}}{a}\right) & =\left(\frac{\dot{a}}{a}\right)^{2}(1-\epsilon)
\end{aligned}
$$

- Homogenous scalar field equation

$$
\dot{\phi}_{0} \frac{\dot{a}}{a}(3+\delta)=-a^{2} V^{\prime}
$$

- Combination

$$
\dot{\epsilon}=2 \epsilon(\delta+\epsilon) \frac{\dot{a}}{a}
$$

Exact equation

Rewrite in $u \equiv a \phi$ to remove expansion damping

$$
\ddot{u}+\left[k^{2}+g(\eta)\right] u=0
$$

where Mukhanov

$$
\begin{aligned}
g(\eta) & \equiv f(\eta)+\epsilon-2 \\
& =-\left(\frac{\dot{a}}{a}\right)^{2}[2+3 \delta+2 \epsilon+(\delta+\epsilon)(\delta+2 \epsilon)]-\frac{\dot{a}}{a} \dot{\delta} \\
& =-\frac{\ddot{z}}{z}
\end{aligned}
$$

and

$$
z \equiv a\left(\frac{\dot{a}}{a}\right)^{-1} \dot{\phi}_{0}
$$

Slow Roll Limit

Slow roll $\epsilon \ll 1, \delta \ll 1, \dot{\delta} \ll \frac{\dot{a}}{a}$

$$
\ddot{u}+\left[k^{2}-2\left(\frac{\dot{a}}{a}\right)^{2}\right] u=0
$$

or for conformal time measured from the end of inflation

$$
\begin{aligned}
\tilde{\eta} & =\eta-\eta_{\text {end }} \\
\tilde{\eta} & =\int_{a_{\text {end }}}^{a} \frac{d a}{H a^{2}} \approx-\frac{1}{a H}
\end{aligned}
$$

Compact, slow-roll equation:

$$
\ddot{u}+\left[k^{2}-\frac{2}{\tilde{\eta}^{2}}\right] u=0
$$

Slow Roll Limit

- Slow roll equation has the exact solution:

$$
u=A\left(k \pm \frac{i}{\tilde{\eta}}\right) e^{\mp i k \tilde{\eta}}
$$

- For $|k \tilde{\eta}| \gg 1$ (early times, inside Hubble length) behaves as free oscillator

$$
\lim _{|k \tilde{\eta}| \rightarrow \infty} u=A k e^{\mp i k \tilde{\eta}}
$$

- Normalization A will be set by origin in quantum fluctuations of free field

Slow Roll Limit

- For $|k \tilde{\eta}| \ll 1$ (late times, > Hubble length) fluctuation freezes in

$$
\begin{aligned}
\lim _{|k \tilde{\eta}| \rightarrow 0} u & = \pm \frac{i}{\tilde{\eta}} A= \pm i H a A \\
\phi_{1} & = \pm i H A \\
\zeta & =\mp i H A\left(\frac{\dot{a}}{a}\right) \frac{1}{\dot{\phi}_{0}}
\end{aligned}
$$

- Slow roll replacement

$$
\left(\frac{\dot{a}}{a}\right)^{2} \frac{1}{\dot{\phi}_{0}^{2}}=\frac{8 \pi G a^{2} V}{3} \frac{3}{2 a^{2} V \epsilon}=4 \pi G=\frac{4 \pi}{m_{\mathrm{pl}}^{2}}
$$

- Bardeen curvature power spectrum

$$
\Delta_{\zeta}^{2} \equiv \frac{k^{3}|\zeta|^{2}}{2 \pi^{2}}=\frac{2 k^{3}}{\pi} \frac{H^{2}}{\epsilon m_{\mathrm{pl}}^{2}} A^{2}
$$

Quantum Fluctuations

- Simple harmonic oscillator $<$ Hubble length

$$
\ddot{u}+k^{2} u=0
$$

- Quantize the simple harmonic oscillator

$$
\hat{u}=u(k, \eta) \hat{a}+u^{*}(k, \eta) \hat{a}^{\dagger}
$$

where $u(k, \eta)$ satisfies classical equation of motion and the creation and annihilation operators satisfy

$$
\left[a, a^{\dagger}\right]=1, \quad a|0\rangle=0
$$

- Normalize wavefunction $[\hat{u}, d \hat{u} / d \eta]=i$

$$
u(k, \eta)=\frac{1}{\sqrt{2 k}} e^{-i k \tilde{\eta}}
$$

Quantum Fluctuations

Zero point fluctuations of ground state

$$
\begin{aligned}
\left\langle u^{2}\right\rangle & =\langle 0| u^{\dagger} u|0\rangle \\
& =\langle 0|\left(u^{*} \hat{a}^{\dagger}+u \hat{a}\right)\left(u \hat{a}+u^{*} \hat{a}^{\dagger}\right)|0\rangle \\
& =\langle 0| \hat{a} \hat{a}^{\dagger}|0\rangle|u(k, \tilde{\eta})|^{2} \\
& =\langle 0|\left[\hat{a}, \hat{a}^{\dagger}\right]+\hat{a}^{\dagger} \hat{a}|0\rangle|u(k, \tilde{\eta})|^{2} \\
& =|u(k, \tilde{\eta})|^{2}=\frac{1}{2 k}
\end{aligned}
$$

- Classical equation of motion take this quantum fluctuation outside horizon where it freezes in. Slow roll equation
- So $A=\left(2 k^{3}\right)^{1 / 2}$ and curvature power spectrum

$$
\Delta_{\zeta}^{2} \equiv \frac{1}{\pi} \frac{H^{2}}{\epsilon m_{\mathrm{pl}}^{2}}
$$

Tilt

- Curvature power spectrum is scale invariant to the extent that H is constant
- Scalar spectral index

$$
\begin{aligned}
\frac{d \ln \Delta_{\zeta}^{2}}{d \ln k} & \equiv n_{S}-1 \\
& =2 \frac{d \ln H}{d \ln k}-\frac{d \ln \epsilon}{d \ln k}
\end{aligned}
$$

- Evaluate at horizon crossing where fluctuation freezes

$$
\begin{aligned}
\left.\frac{d \ln H}{d \ln k}\right|_{-k \tilde{\eta}=1} & =\left.\left.\frac{k}{H} \frac{d H}{d \tilde{\eta}}\right|_{-k \tilde{\eta}=1} \frac{d \tilde{\eta}}{d k}\right|_{-k \tilde{\eta}=1} \\
& =\left.\frac{k}{H}\left(-a H^{2} \epsilon\right)\right|_{-k \tilde{\eta}=1} \frac{1}{k^{2}}=-\epsilon
\end{aligned}
$$

where $a H=-1 / \tilde{\eta}=k$

Tilt

Evolution of ϵ

$$
\frac{d \ln \epsilon}{d \ln k}=-\frac{d \ln \epsilon}{d \ln \tilde{\eta}}=-2(\delta+\epsilon) \frac{\dot{a}}{a} \tilde{\eta}=2(\delta+\epsilon)
$$

Tilt in the slow-roll approximation

$$
n_{S}=1-4 \epsilon-2 \delta
$$

Relationship to Potential

To leading order in slow roll parameters

$$
\begin{aligned}
\epsilon & =\frac{\frac{3}{2} \dot{\phi}_{0}^{2} / a^{2} V}{1+\frac{1}{2} \dot{\phi}_{0}^{2} / a^{2} V} \\
& \approx \frac{3}{2} \dot{\phi}_{0}^{2} / a^{2} V \\
& \approx \frac{3}{a^{2} V} \frac{a^{4} V^{\prime 2}}{9(\dot{a} / a)^{2}}, \quad\left(3 \dot{\phi}_{0} \frac{\dot{a}}{a}=-a^{2} V^{\prime}\right) \\
& \approx \frac{1}{6} \frac{3}{8 \pi G}\left(\frac{V^{\prime}}{V}\right)^{2}, \quad\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} a^{2} V \\
& \approx \frac{1}{16 \pi G}\left(\frac{V^{\prime}}{V}\right)^{2}
\end{aligned}
$$

so $\epsilon \ll 1$ is related to the first derivative of potential being small

Relationship to Potential

- And

$$
\begin{aligned}
\delta= & \frac{\ddot{\phi}_{0}}{\dot{\phi}_{0}}\left(\frac{\dot{a}}{a}\right)^{-1}-1 \\
& \left(\dot{\phi}_{0} \approx-a^{2}\left(\frac{\dot{a}}{a}\right)^{-1} \frac{V^{\prime}}{3}\right) \\
& \left(\ddot{\phi}_{0} \approx-\frac{a^{2} V^{\prime}}{3}(1+\epsilon)+a^{4}\left(\frac{\dot{a}}{a}\right)^{-2} \frac{V^{\prime} V^{\prime \prime}}{9}\right) \\
\approx & -\frac{1}{a^{2} V^{\prime} / 3}\left(-\frac{a^{2} V^{\prime}}{3}(1+\epsilon)+\frac{a^{2}}{9} \frac{3}{8 \pi G} \frac{V^{\prime} V^{\prime \prime}}{V}\right)-1 \approx \epsilon-\frac{1}{8 \pi G} \frac{V^{\prime \prime}}{V}
\end{aligned}
$$

so δ is related to second derivative of potential being small. Very flat potential.

Gravitational Waves

- Gravitational wave amplitude satisfies Klein-Gordon equation ($K=0$), same as scalar field

$$
\ddot{H}_{T}^{(\pm 2)}+2 \frac{\dot{a}}{a} \dot{H}_{T}^{(\pm 2)}+k^{2} H_{T}^{(\pm 2)}=0 .
$$

- Acquires quantum fluctuations in same manner as ϕ. Lagrangian sets the normalization

$$
\phi_{1} \rightarrow H_{T}^{(\pm 2)} \sqrt{\frac{3}{16 \pi G}}
$$

- Scale-invariant gravitational wave amplitude (each component: NB more traditional notation $\left.H_{T}^{(\pm 2)}=\left(h_{+} \pm i h_{\times}\right) / \sqrt{6}\right)$

$$
\Delta_{H}^{2}=\frac{16 \pi G}{3 \cdot 2 \pi^{2}} \frac{H^{2}}{2}=\frac{4}{3 \pi} \frac{H^{2}}{m_{\mathrm{pl}}^{2}}
$$

Gravitational Waves

- Gravitational wave power $\propto H^{2} \propto V \propto E_{i}^{4}$ where E_{i} is the energy scale of inflation
- Tensor tilt:

$$
\frac{d \ln \Delta_{H}^{2}}{d \ln k} \equiv n_{T}=2 \frac{d \ln H}{d \ln k}=-2 \epsilon
$$

- Consistency relation between tensor-scalar ratio and tensor tilt

$$
\frac{\Delta_{H}^{2}}{\Delta_{\zeta}^{2}}=\frac{4}{3} \epsilon=-\frac{2}{3} \epsilon
$$

- Measurement of scalar tilt and gravitational wave amplitude constrains inflationary model in the slow roll context
- Comparision of tensor-scalar ratio and tensor tilt tests the idea of slow roll itself

Gravitational Wave Phenomenology

- Equation of motion

$$
\ddot{H}_{T}^{(\pm 2)}+2 \frac{\dot{a}}{a} \dot{H}_{T}^{(\pm 2)}+k^{2} H_{T}^{(\pm 2)}=0 .
$$

- has solutions

$$
\begin{aligned}
H_{T}^{(\pm 2)} & =C_{1} H_{1}(k \eta)+C_{2} H_{2}(k \eta) \\
H_{1} & \propto x^{-m} j_{m}(x) \\
H_{2} & \propto x^{-m} n_{m}(x)
\end{aligned}
$$

where $m=(1-3 w) /(1+3 w)$

- If $w>-1 / 3$ then gravity wave is constant above horizon $x \ll 1$ and then oscillates and damps
- If $w<-1 / 3$ then gravity wave oscillates and freezes into some value, just like scalar field

Gravitational Wave Phenomenology

- A gravitational wave makes a quadrupolar (transverse-traceless) distortion to metric
- Just like the scale factor or spatial curvature, a temporal variation in its amplitude leaves a residual temperature variation in CMB photons - here anisotropic
- Before recombination, anisotropic variation is eliminated by scattering
- Gravitational wave temperature effect drops sharply at the horizon scale at recombination
- Source to polarization goes as $\dot{\tau} / \dot{H}_{T}$ and peaks at the horizon not damping scale
- B modes formed as photons propagate - the spatial variation in the plane waves modulate the signal: described by Boltzmann eqn.

Astro 448

Boltzmann Formalism

Boltzmann Equation

- CMB radiation is generally described by the phase space distribution function for each polarization state $f_{a}(\mathbf{x}, \mathbf{q}, \eta)$, where x is the comoving position and q is the photon momentum
- Boltzmann equation describes the evolution of the distribution function under gravity and collisions
- Low order moments of the Boltzmann equation are simply the covariant conservation equations
- Higher moments provide the closure condition to the conservation law (specification of stress tensor) and the CMB observable - fine scale anisotropy
- Higher moments mainly describe the simple geometry of source projection

Liouville Equation

- In absence of scattering, the phase space distribution of photons is conserved along the propagation path
- Rewrite variables in terms of the photon propagation direction $\mathbf{q}=q \hat{\mathbf{n}}$, so $f_{a}(\mathbf{x}, \hat{\mathbf{n}}, q, \eta)$ and
$\frac{d}{d \eta} f_{a}(\mathbf{x}, \hat{\mathbf{n}}, q, \eta)=0$

$$
=\left(\frac{\partial}{\partial \eta}+\frac{d \mathbf{x}}{d \eta} \cdot \frac{\partial}{\partial \mathbf{x}}+\frac{d \hat{\mathbf{n}}}{d \eta} \cdot \frac{\partial}{\partial \hat{\mathbf{n}}}+\frac{d q}{d \eta} \cdot \frac{\partial}{\partial q}\right) f_{a}
$$

- For simplicity, assume spatially flat universe $K=0$ then $d \hat{\mathbf{n}} / d \eta=0$ and $d \mathbf{x}=\hat{\mathbf{n}} d \eta$

$$
\dot{f}_{a}+\hat{\mathbf{n}} \cdot \nabla f_{a}+\dot{q} \frac{\partial}{\partial q} f_{a}=0
$$

Correspondence to Einstein Eqn.

- Geodesic equation gives the redshifting term

$$
\frac{\dot{q}}{q}=-\frac{\dot{a}}{a}-\frac{1}{2} n^{i} n^{j} \dot{H}_{T i j}-\dot{H}_{L}+n^{i} \dot{B}_{i}-\hat{\mathbf{n}} \cdot \nabla A
$$

- which is incorporated in the conservation and gauge transformation equations
- Stress energy tensor involves integrals over the distribution function the two polarization states

$$
T^{\mu \nu}=\int \frac{d^{3} q}{(2 \pi)^{3}} \frac{q^{\mu} q^{\nu}}{E}\left(f_{a}+f_{b}\right)
$$

- Components are simply the low order angular moments of the distribution function

Angular Moments

- Define the angularly dependent temperature perturbation

$$
\Theta(\mathbf{x}, \hat{\mathbf{n}}, \eta)=\frac{1}{4 \rho_{\gamma}} \int \frac{q^{3} d q}{2 \pi^{2}}\left(f_{a}+f_{b}\right)-1
$$

and likewise for the linear polarization states Q and U

- Decompose into normal modes: plane waves for spatial part and spherical harmonics for angular part

$$
\begin{aligned}
G_{\ell}^{m}(\mathbf{k}, \mathbf{x}, \hat{\mathbf{n}}) & \equiv(-i)^{\ell} \sqrt{\frac{4 \pi}{2 \ell+1}} Y_{\ell}^{m}(\hat{\mathbf{n}}) \exp (i \mathbf{k} \cdot \mathbf{x}) \\
{ }_{ \pm 2} G_{\ell}^{m}(\mathbf{k}, \mathbf{x}, \hat{\mathbf{n}}) & \equiv(-i)^{\ell} \sqrt{\frac{4 \pi}{2 \ell+1}} \pm 2 Y_{\ell}^{m}(\hat{\mathbf{n}}) \exp (i \mathbf{k} \cdot \mathbf{x})
\end{aligned}
$$

- In a spatially curved universe generalize the plane wave part

Normal Modes

- Temperature and polarization fields

$$
\begin{aligned}
\Theta(\mathbf{x}, \hat{\mathbf{n}}, \eta) & =\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{\ell m} \Theta_{\ell}^{(m)} G_{\ell}^{m} \\
{[Q \pm i U](\mathbf{x}, \hat{\mathbf{n}}, \eta) } & =\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{\ell m}\left[E_{\ell}^{(m)} \pm i B_{\ell}^{(m)}\right]_{ \pm 2} G_{\ell}^{m}
\end{aligned}
$$

- For each \mathbf{k} mode, work in coordinates where $\mathbf{k} \| \mathbf{z}$ and so $m=0$ represents scalar modes, $m= \pm 1$ vector modes, $m= \pm 2$ tensor modes, $|m|>2$ vanishes. Since modes add incoherently and $Q \pm i U$ is invariant up to a phase, rotation back to a fixed coordinate system is trivial.

Scalar, Vector, Tensor

- Normalization of modes is chosen so that the lowest angular mode for scalars, vectors and tensors are normalized in the same way as the mode function

$$
\begin{aligned}
G_{0}^{0} & =Q^{(0)} \quad G_{1}^{0}=n^{i} Q_{i}^{(0)} \quad G_{2}^{0} \propto n^{i} n^{j} Q_{i j}^{(0)} \\
G_{1}^{ \pm 1} & =n^{i} Q_{i}^{(\pm 1)} \quad G_{2}^{ \pm 1} \propto n^{i} n^{j} Q_{i j}^{(\pm 1)} \\
G_{2}^{ \pm 2} & =n^{i} n^{j} Q_{i j}^{(\pm 2)}
\end{aligned}
$$

where recall

$$
\begin{aligned}
Q^{(0)} & =\exp (i \mathbf{k} \cdot \mathbf{x}) \\
Q_{i}^{(\pm 1)} & =\frac{-i}{\sqrt{2}}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{i} \exp (i \mathbf{k} \cdot \mathbf{x}) \\
Q_{i j}^{(\pm 2)} & =-\sqrt{\frac{3}{8}}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{i}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{j} \exp (i \mathbf{k} \cdot \mathbf{x})
\end{aligned}
$$

Geometrical Projection

- Main content of Liouville equation is purely geometrical and describes the projection of inhomogeneities into anisotropies
- Spatial gradient term hits plane wave:

$$
\hat{\mathbf{n}} \cdot \nabla e^{i \mathbf{k} \cdot \mathbf{x}}=i \hat{\mathbf{n}} \cdot \mathbf{k} e^{i \mathbf{k} \cdot \mathbf{x}}=i \sqrt{\frac{4 \pi}{3}} k Y_{1}^{0}(\hat{\mathbf{n}}) e^{i \mathbf{k} \cdot \mathbf{x}}
$$

- Dipole term adds to angular dependence through the addition of angular momentum
$\sqrt{\frac{4 \pi}{3}} Y_{1}^{0} Y_{\ell}^{m}=\frac{\kappa_{\ell}^{m}}{\sqrt{(2 \ell+1)(2 \ell-1)}} Y_{\ell-1}^{m}+\frac{\kappa_{\ell+1}^{m}}{\sqrt{(2 \ell+1)(2 \ell+3)}} Y_{\ell+1}^{m}$
where $\kappa_{\ell}^{m}=\sqrt{\ell^{2}-m^{2}}$ is given by Clebsch-Gordon coefficients.

Temperature Hierarchy

- Absorb recoupling of angular momentum into evolution equation for normal modes

$$
\dot{\Theta}_{\ell}^{(m)}=k\left[\frac{\kappa_{\ell}^{m}}{2 \ell+1} \Theta_{\ell-1}^{(m)}-\frac{\kappa_{\ell+1}^{m}}{2 \ell+3} \Theta_{\ell+1}^{(m)}\right]-\dot{\tau} \Theta_{\ell}^{(m)}+S_{\ell}^{(m)}
$$

where $S_{\ell}^{(m)}$ are the gravitational (and later scattering sources; added scattering suppression of anisotropy)

- An originally isotropic $\ell=0$ temperature perturbation will eventually become a high order anisotropy by "free streaming" or simple projection
- Original CMB codes solved the full hierarchy equations out to the ℓ of interest.

Integral Solution

- Hierarchy equation simply represents geometric projection, exactly as we have seen before in the projection of temperature perturbations on the last scattering surface
- In general, the solution describes the decomposition of the source $S_{\ell}^{(m)}$ with its local angular dependence as seen at a distance $\mathrm{x}=D \hat{\mathbf{n}}$.
- Proceed by decomposing the angular dependence of the plane wave

$$
e^{i \mathbf{k} \cdot \mathbf{x}}=\sum_{\ell}(-i)^{\ell} \sqrt{4 \pi(2 \ell+1)} j_{\ell}(k D) Y_{\ell}^{0}(\hat{\mathbf{n}})
$$

- Recouple to the local angular dependence of G_{ℓ}^{m}

$$
G_{\ell_{s}}^{m}=\sum_{\ell}(-i)^{\ell} \sqrt{4 \pi(2 \ell+1)} \alpha_{\ell_{s} \ell}^{(m)}(k D) Y_{\ell}^{m}(\hat{\mathbf{n}})
$$

Integral Solution

- Projection kernels:

$$
\begin{array}{lll}
\ell_{s}=0, & m=0 & \alpha_{0 \ell}^{(0)} \equiv j_{\ell} \\
\ell_{s}=1, & m=0 & \alpha_{1 \ell}^{(0)} \equiv j_{\ell}^{\prime}
\end{array}
$$

- Integral solution:

$$
\frac{\Theta_{\ell}^{(m)}\left(k, \eta_{0}\right)}{2 \ell+1}=\int_{0}^{\eta_{0}} d \eta e^{-\tau} \sum_{\ell_{s}} S_{\ell_{s}}^{(m)} \alpha_{\ell_{s} \ell}^{(m)}\left(k\left(\eta_{0}-\eta\right)\right)
$$

- Power spectrum:

$$
C_{\ell}=\frac{2}{\pi} \int \frac{d k}{k} \sum_{m} \frac{k^{3}\left\langle\Theta_{\ell}^{(m) *} \Theta_{\ell}^{(m)}\right\rangle}{(2 \ell+1)^{2}}
$$

- Solving for C_{ℓ} reduces to solving for the behavior of a handful of sources

Polarization Hiearchy

- In the same way, the coupling of a gradient or dipole angular momentum to the spin harmonics leads to the polarization hiearchy:
$\dot{E}_{\ell}^{(m)}=k\left[\frac{{ }_{2} \kappa_{\ell}^{m}}{2 \ell-1} E_{\ell-1}^{(m)}-\frac{2 m}{\ell(\ell+1)} B_{\ell}^{(m)}-\frac{{ }_{2} \kappa_{\ell+1}^{m}}{2 \ell+3}\right]-\dot{\tau} E_{\ell}^{(m)}+\mathcal{E}_{\ell}^{(m)}$
$\dot{B}_{\ell}^{(m)}=k\left[\frac{2 \kappa_{\ell}^{m}}{2 \ell-1} B_{\ell-1}^{(m)}+\frac{2 m}{\ell(\ell+1)} B_{\ell}^{(m)}-\frac{2 \kappa_{\ell+1}^{m}}{2 \ell+3}\right]-\dot{\tau} E_{\ell}^{(m)}+\mathcal{B}_{\ell}^{(m)}$
where ${ }_{2} \kappa_{\ell}^{m}=\sqrt{\left(\ell^{2}-m^{2}\right)\left(\ell^{2}-4\right) / \ell^{2}}$ is given by the
Clebsch-Gordon coefficients and \mathcal{E}, \mathcal{B} are the sources (scattering only).
- Note that for vectors and tensors $|m|>0$ and B modes may be generated from E modes by projection. Cosmologically $\mathcal{B}_{\ell}^{(m)}=0$

Polarization Integral Solution

- Again, we can recouple the plane wave angular momentum of the source inhomogeneity to its local angular dependence directly

$$
\begin{aligned}
\frac{E_{\ell}^{(m)}\left(k, \eta_{0}\right)}{2 \ell+1} & =\int_{0}^{\eta_{0}} d \eta e^{-\tau} \mathcal{E}_{\ell_{s}}^{(m)} \epsilon_{\ell_{s} \ell}^{(m)}\left(k\left(\eta_{0}-\eta\right)\right) \\
\frac{B_{\ell}^{(m)}\left(k, \eta_{0}\right)}{2 \ell+1} & =\int_{0}^{\eta_{0}} d \eta e^{-\tau} \mathcal{E}_{\ell_{s}}^{(m)} \beta_{\ell_{s} \ell}^{(m)}\left(k\left(\eta_{0}-\eta\right)\right)
\end{aligned}
$$

The only source to the polarization is from the quadrupole anisotropy so we only need $\ell_{s}=2$, e.g. for scalars

$$
\epsilon_{2 \ell}^{(0)}(x)=\sqrt{\frac{3}{8} \frac{(\ell+2)!}{(\ell-2)!} j_{\ell}(x)} x^{2} \quad \beta_{2 \ell}^{(0)}=0
$$

Truncated Hierarchy

- CMBFast uses the integral solution and relies on a fast j_{ℓ} generator
- However sources are not external to system and are defined through the Boltzmann hierarchy itself
- Solution: recall that we used this technique in the tight coupling regime by applying a closure condition from tight coupling
- CMBFast extends this idea by solving a truncated hierarchy of equations, e.g. out to $\ell=25$ with non-reflecting boundary conditions

Thomson Collision Term

- Full Boltzmann equation

$$
\frac{d}{d \eta} f_{a, b}=C\left[f_{a}, f_{b}\right]
$$

- Collision term describes the scattering out of and into a phase space element
- Thomson collision based on differential cross section

$$
\frac{d \sigma}{d \Omega}=\frac{3}{8 \pi}\left|\hat{\mathbf{E}}^{\prime} \cdot \hat{\mathbf{E}}\right|^{2} \sigma_{T},
$$

where $\hat{\mathbf{E}}^{\prime}$ and $\hat{\mathbf{E}}$ denote the incoming and outgoing directions of the electric field or polarization vector.

Scattering Calculation

- Start in the electron rest frame and in a coordinate system fixed by the scattering plane, spanned by incoming and outgoing directional vectors $-\hat{\mathbf{n}}^{\prime} \cdot \hat{\mathbf{n}}=\cos \beta$, where β is the scattering angle
- $\Theta_{\|}$: in-plane polarization state; $\Theta_{\perp}: \perp$-plane polarization state
- Transfer probability (constant set by $\dot{\tau}$)

$$
\Theta_{\|} \propto \cos ^{2} \beta \Theta_{\|}^{\prime}, \quad \Theta_{\perp} \propto \Theta_{\perp}^{\prime}
$$

- and with the 45° axes as

$$
\hat{\mathbf{E}}_{1}=\frac{1}{\sqrt{2}}\left(\hat{\mathbf{E}}_{\|}+\hat{\mathbf{E}}_{\perp}\right), \quad \hat{\mathbf{E}}_{2}=\frac{1}{\sqrt{2}}\left(\hat{\mathbf{E}}_{\|}-\hat{\mathbf{E}}_{\perp}\right)
$$

Stokes Parameters

- Define the temperature in this basis

$$
\begin{aligned}
\Theta_{1} & \propto\left|\hat{\mathbf{E}}_{1} \cdot \hat{\mathbf{E}}_{1}\right|^{2} \Theta_{1}^{\prime}+\left|\hat{\mathbf{E}}_{1} \cdot \hat{\mathbf{E}}_{2}\right|^{2} \Theta_{2}^{\prime} \\
& \propto \frac{1}{4}(\cos \beta+1)^{2} \Theta_{1}^{\prime}+\frac{1}{4}(\cos \beta-1)^{2} \Theta_{2}^{\prime} \\
\Theta_{2} & \propto\left|\hat{\mathbf{E}}_{2} \cdot \hat{\mathbf{E}}_{2}\right|^{2} \Theta_{2}^{\prime}+\left|\hat{\mathbf{E}}_{2} \cdot \hat{\mathbf{E}}_{1}\right|^{2} \Theta_{1}^{\prime} \\
& \propto \frac{1}{4}(\cos \beta+1)^{2} \Theta_{2}^{\prime}+\frac{1}{4}(\cos \beta-1)^{2} \Theta_{1}^{\prime}
\end{aligned}
$$

or $\Theta_{1}-\Theta_{2} \propto \cos \beta\left(\Theta_{1}^{\prime}-\Theta_{2}^{\prime}\right)$
Define Θ, Q, U in the scattering coordinates

$$
\Theta \equiv \frac{1}{2}\left(\Theta_{\|}+\Theta_{\perp}\right), \quad Q \equiv \frac{1}{2}\left(\Theta_{\|}-\Theta_{\perp}\right), \quad U \equiv \frac{1}{2}\left(\Theta_{1}-\Theta_{2}\right)
$$

Scattering Matrix

Transfer of Stokes states, e.g.

$$
\Theta=\frac{1}{2}\left(\Theta_{\|}+\Theta_{\perp}\right) \propto \frac{1}{4}\left(\cos ^{2} \beta+1\right) \Theta^{\prime}+\frac{1}{4}\left(\cos ^{2} \beta-1\right) Q^{\prime}
$$

- Transfer matrix of Stokes state $\mathbf{T} \equiv(\Theta, Q+i U, Q-i U)$

$$
\begin{gathered}
\mathbf{T} \propto \mathbf{S}(\beta) \mathbf{T}^{\prime} \\
\mathbf{S}(\beta)=\frac{3}{4}\left(\begin{array}{ccc}
\cos ^{2} \beta+1 & -\frac{1}{2} \sin ^{2} \beta & -\frac{1}{2} \sin ^{2} \beta \\
-\frac{1}{2} \sin ^{2} \beta & \frac{1}{2}(\cos \beta+1)^{2} & \frac{1}{2}(\cos \beta-1)^{2} \\
-\frac{1}{2} \sin ^{2} \beta & \frac{1}{2}(\cos \beta-1)^{2} & \frac{1}{2}(\cos \beta+1)^{2}
\end{array}\right)
\end{gathered}
$$

normalization factor of 3 is set by photon conservation in scattering

Scattering Matrix

- Transform to a fixed basis, by a rotation of the incoming and outgoing states $\mathbf{T}=\mathbf{R}(\psi) \mathbf{T}$ where

$$
\mathbf{R}(\psi)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{-2 i \psi} & 0 \\
0 & 0 & e^{2 i \psi}
\end{array}\right)
$$

giving the scattering matrix

$$
\mathbf{R}(-\gamma) \mathbf{S}(\beta) \mathbf{R}(\alpha)=
$$

$$
\frac{1}{2} \sqrt{\frac{4 \pi}{5}}\left(\begin{array}{ccc}
Y_{2}^{0}(\beta, \alpha)+2 \sqrt{5} Y_{0}^{0}(\beta, \alpha) & -\sqrt{\frac{3}{2}} Y_{2}^{-2}(\beta, \alpha) & -\sqrt{\frac{3}{2}} Y_{2}^{2}(\beta, \alpha) \\
-\sqrt{6}{ }_{2} Y_{2}^{0}(\beta, \alpha) e^{2 i \gamma} & 3_{2} Y_{2}^{-2}(\beta, \alpha) e^{2 i \gamma} & 3_{2} Y_{2}^{2}(\beta, \alpha) e^{2 i \gamma} \\
-\sqrt{6}-2 Y_{2}^{0}(\beta, \alpha) e^{-2 i \gamma} & 3_{-2} Y_{2}^{-2}(\beta, \alpha) e^{-2 i \gamma} & 3_{-2} Y_{2}^{2}(\beta, \alpha) e^{-2 i \gamma}
\end{array}\right)
$$

Addition Theorem for Spin Harmonics

- Spin harmonics are related to rotation matrices as

$$
{ }_{s} Y_{\ell}^{m}(\theta, \phi)=\sqrt{\frac{2 \ell+1}{4 \pi}} \mathcal{D}_{-m s}^{\ell}(\phi, \theta, 0)
$$

Note: for explicit evaluation sign convention differs from usual (e.g. Jackson) by $(-1)^{m}$

- Multiplication of rotations

$$
\sum_{m^{\prime \prime}} \mathcal{D}_{m m^{\prime \prime}}^{\ell}\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right) \mathcal{D}_{m^{\prime \prime} m}^{\ell}\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)=\mathcal{D}_{m m^{\prime}}^{\ell}(\alpha, \beta, \gamma)
$$

- Implies

$$
\sum_{m}{ }_{s_{1}} Y_{\ell}^{m *}\left(\theta^{\prime}, \phi^{\prime}\right){ }_{s_{2}} Y_{\ell}^{m}(\theta, \phi)=(-1)^{s_{1}-s_{2}} \sqrt{\frac{2 \ell+1}{4 \pi}}{ }_{s_{2}} Y_{\ell}^{-s_{1}}(\beta, \alpha) e^{i s_{2} \gamma}
$$

Sky Basis

- Scattering into the state (rest frame)

$$
\begin{aligned}
C_{\mathrm{in}}[\mathbf{T}] & =\dot{\tau} \int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi} \mathbf{R}(-\gamma) \mathbf{S}(\beta) \mathbf{R}(\alpha) \mathbf{T}\left(\hat{\mathbf{n}}^{\prime}\right), \\
& =\dot{\tau} \int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi}\left(\Theta^{\prime}, 0,0\right)+\frac{1}{10} \dot{\tau} \int d \hat{\mathbf{n}}^{\prime} \sum_{m=-2}^{2} \mathbf{P}^{(m)}\left(\hat{\mathbf{n}}, \hat{\mathbf{n}}^{\prime}\right) \mathbf{T}\left(\hat{\mathbf{n}}^{\prime}\right) .
\end{aligned}
$$

where the quadrupole coupling term is $\mathbf{P}^{(m)}\left(\hat{\mathbf{n}}, \hat{\mathbf{n}}^{\prime}\right)=$

$$
\left(\begin{array}{ccc}
Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right) Y_{2}^{m}(\hat{\mathbf{n}}) & -\sqrt{\frac{3}{2}}{ }_{2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right) Y_{2}^{m}(\hat{\mathbf{n}}) & -\sqrt{\frac{3}{2}}{ }_{-2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right) Y_{2}^{m}(\hat{\mathbf{n}}) \\
-\sqrt{6} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{-2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{2} Y_{2}^{m}(\hat{\mathbf{n}}) \\
-\sqrt{6} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{-2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{-2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{-2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{-2} Y_{2}^{m}(\hat{\mathbf{n}})
\end{array}\right)
$$

expression uses angle addition relation above. We call this term C_{Q}.

Scattering Matrix

- Full scattering matrix involves difference of scattering into and out of state

$$
C[\mathbf{T}]=C_{\mathrm{in}}[\mathbf{T}]-C_{\mathrm{out}}[\mathbf{T}]
$$

- In the electron rest frame

$$
C[\mathbf{T}]=\dot{\tau} \int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi}\left(\Theta^{\prime}, 0,0\right)-\dot{\tau} \mathbf{T}+C_{Q}[\mathbf{T}]
$$

which describes isotropization in the rest frame. All moments have $e^{-\tau}$ suppression except for isotropic temperature Θ_{0}.
Transformation into the background frame simply induces a dipole term

$$
C[\mathbf{T}]=\dot{\tau}\left(\hat{\mathbf{n}} \cdot \mathbf{v}_{b}+\int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi} \Theta^{\prime}, 0,0\right)-\dot{\tau} \mathbf{T}+C_{Q}[\mathbf{T}]
$$

Source Terms

Temperature source terms $S_{l}^{(m)}$ (rows $\pm|m|$; flat assumption

$$
\left(\begin{array}{lll}
\dot{\tau} \Theta_{0}^{(0)}-\dot{H}_{L}^{(0)} & \dot{\tau} v_{b}^{(0)}+\dot{B}^{(0)} & \dot{\tau} P^{(0)}-\frac{2}{3} \dot{H}_{T}^{(0)} \\
0 & \dot{\tau} v_{b}^{(\pm 1)}+\dot{B}^{(\pm 1)} & \dot{\tau} P^{(\pm 1)}-\frac{\sqrt{3}}{3} \dot{H}_{T}^{(\pm 1)} \\
0 & 0 & \dot{\tau} P^{(\pm 2)}-\dot{H}_{T}^{(\pm 2)}
\end{array}\right)
$$

where

$$
P^{(m)} \equiv \frac{1}{10}\left(\Theta_{2}^{(m)}-\sqrt{6} E_{2}^{(m)}\right)
$$

Polarization source term

$$
\begin{aligned}
& \mathcal{E}_{\ell}^{(m)}=-\dot{\tau} \sqrt{6} P^{(m)} \delta_{\ell, 2} \\
& \mathcal{B}_{\ell}^{(m)}=0
\end{aligned}
$$

Astro 448

Secondary Anisotropy

Secondary Anisotropy

- CMB photons traverse the large-scale structure of the universe from $z=1000$ to the present.
- With the nearly scale-invariant adiabatic fluctuations observed in the CMB, structures form from the bottom up, i.e. small scales first, a.k.a. hierarchical structure formation.
- First objects reionize the universe between $z \sim 7-30$
- Main sources of secondary anisotropy
- Gravitational: Integrated Sachs-Wolfe effect (gravitational redshift) and gravitational lensing
- Scattering: peak suppression, large-angle polarization, Doppler effect(s), inverse Compton scattering

Transfer Function

- Transfer function transfers the initial Newtonian curvature to its value today (linear response theory)

$$
\left.T(k)=\frac{\Phi(k, a=1)}{\Phi\left(k, a_{\text {init }}\right)} \frac{\Phi\left(k_{\text {norm }}, a_{\text {init }}\right)}{\Phi\left(k_{\text {norm }}, a=1\right.}\right)
$$

- Conservation of Bardeen curvature: Newtonian curvature is a constant when stress perturbations are negligible: above the horizon during radiation and dark energy domination, on all scales during matter domination
- When stress fluctuations dominate, perturbations are stabilized by the Jeans mechanism
- Hybrid Poisson equation: Newtonian curvature, comoving density perturbation $\Delta \equiv(\delta \rho / \rho)_{\text {com }}$ implies Φ decays

$$
\left(k^{2}-3 K\right) \Phi=4 \pi G \rho \Delta \sim \eta^{-2} \Delta
$$

Transfer Function

- Matter-radiation example: Jeans scale is horizon scale and Δ freezes into its value at horizon crossing $\Delta_{H} \approx \Phi_{\text {init }}$
- Freezing of Δ stops at $\eta_{\text {eq }}$

$$
\Phi \sim\left(k \eta_{\mathrm{eq}}\right)^{-2} \Delta_{H} \sim\left(k \eta_{\mathrm{eq}}\right)^{-2} \Phi_{\mathrm{init}}
$$

- Conventionally $k_{\text {norm }}$ is chosen as a scale between the horizon at matter radiation equality and dark energy domination.
- Small correction since growth with a smooth radiation component is logarithmic not frozen
- Run CMBfast to get transfer function or use fits

Transfer Function

- Transfer function has a k^{-2} fall-off beyond $k_{\text {eq }} \sim \eta_{\text {eq }}^{-1}$

- Additional baryon wiggles are due to acoustic oscillations at recombination - an interesting means of measuring distances

Growth Function

- Same physics applies to the dark energy dominated universe
- Under the dark energy sound horizon, dark energy density frozen. Potential decays at the same rate for all scales

$$
g(a)=\frac{\Phi\left(k_{\text {norm }}, a\right)}{\Phi\left(k_{\text {norm }}, a_{\text {init }}\right)}
$$

- Pressure growth suppression: $\delta \equiv \delta \rho_{m} / \rho_{m} \propto a \phi$

$$
\frac{d^{2} g}{d \ln a^{2}}+\left[\frac{5}{2}-\frac{3}{2} w(z) \Omega_{D E}(z)\right] \frac{d g}{d \ln a}+\frac{3}{2}[1-w(z)] \Omega_{D E}(z) g=0,
$$

where $w \equiv p_{D E} / \rho_{D E}$ and $\Omega_{D E} \equiv \rho_{D E} /\left(\rho_{m}+\rho_{D E}\right)$ with initial conditions $g=1, d g / d \ln a=0$

- As $\Omega_{D E} \rightarrow 0 g=$ const. is a solution. The other solution is the decaying mode, elimated by initial conditions

ISW effect

- Potential decay leads to gravitational redshifts through the integrated Sachs-Wolfe effect
- Intrinsically a large effect since $2 \Delta \Phi=6 \Psi_{\text {init }} / 3$
- But net redshift is integral along along line of sight

$$
\begin{aligned}
\frac{\Theta_{\ell}\left(k, \eta_{0}\right)}{2 \ell+1} & =\int_{0}^{\eta_{0}} d \eta e^{-\tau}[2 \dot{\Phi}(k, \eta)] j_{\ell}\left(k\left(\eta_{0}-\eta\right)\right) \\
& =2 \Phi\left(k, \eta_{M D}\right) \int_{0}^{\eta_{0}} d \eta e^{-\tau} \dot{g}(D) j_{\ell}(k D)
\end{aligned}
$$

- On small scales where $k \gg \dot{g} / g$, can pull source out of the integral

$$
\int_{0}^{\eta_{0}} d \eta \dot{g}(D) j_{\ell}(k D) \approx \dot{g}(D=\ell / k) \frac{1}{k} \sqrt{\frac{\pi}{2 \ell}}
$$

evaluated at peak, where we have used $\int d x j_{\ell}(x)=\sqrt{\pi / 2 \ell}$

ISW effect

- Power spectrum

$$
\begin{aligned}
C_{\ell} & =\frac{2}{\pi} \int \frac{d k}{k} \frac{k^{3}\left\langle\Theta_{\ell}^{*}\left(k, \eta_{0}\right) \Theta_{\ell}\left(k, \eta_{0}\right)\right\rangle}{(2 \ell+1)^{2}} \\
& =\frac{2 \pi^{2}}{l^{3}} \int d \eta D \dot{g}^{2}(\eta) \Delta_{\Phi}^{2}\left(\ell / D, \eta_{M D}\right)
\end{aligned}
$$

- Or $l^{2} C_{l} / 2 \pi \propto 1 / \ell$ for scale invariant potential. This is the Limber equation in spherical coordinates. Projection of $3 D$ power retains only the transverse piece. For a general dark energy model, add in the scale dependence of growth rate on large scales.
- Cancellation of redshifts and blueshifts as the photon traverses many crests and troughs of a small scale fluctuation during decay. Enhancement of the $\ell<10$ multipoles. Difficult to extract from cosmic variance and galaxy. Current ideas: cross correlation with other tracers of structure

Gravitational Lensing

- Lensing is a surface brightness conserving remapping of source to image planes by the gradient of the projected potential

$$
\phi(\hat{\mathbf{n}})=2 \int_{\eta_{*}}^{\eta_{0}} d \eta \frac{\left(D_{*}-D\right)}{D D_{*}} \Phi(D \hat{\mathbf{n}}, \eta) .
$$

such that the fields are remapped as

$$
x(\hat{\mathbf{n}}) \rightarrow x(\hat{\mathbf{n}}+\nabla \phi),
$$

where $x \in\{\Theta, Q, U\}$ temperature and polarization.

- Taylor expansion leads to product of fields and Fourier mode-coupling

Flat-sky Treatment

Talyor expand

$$
\begin{aligned}
\Theta(\hat{\mathbf{n}}) & =\tilde{\Theta}(\hat{\mathbf{n}}+\nabla \phi) \\
& =\tilde{\Theta}(\hat{\mathbf{n}})+\nabla_{i} \phi(\hat{\mathbf{n}}) \nabla^{i} \tilde{\Theta}(\hat{\mathbf{n}})+\frac{1}{2} \nabla_{i} \phi(\hat{\mathbf{n}}) \nabla_{j} \phi(\hat{\mathbf{n}}) \nabla^{i} \nabla^{j} \tilde{\Theta}(\hat{\mathbf{n}})+\ldots
\end{aligned}
$$

Fourier decomposition

$$
\begin{aligned}
& \phi(\hat{\mathbf{n}})=\int \frac{d^{2} l}{(2 \pi)^{2}} \phi(\mathbf{l}) e^{i l \cdot \hat{\mathbf{n}}} \\
& \tilde{\Theta}(\hat{\mathbf{n}})=\int \frac{d^{2} l}{(2 \pi)^{2}} \tilde{\Theta}(\mathbf{l}) e^{i l \cdot \hat{n}}
\end{aligned}
$$

Flat-sky Treatment

- Mode coupling of harmonics

$$
\begin{aligned}
\Theta(\mathbf{l}) & =\int d \hat{\mathbf{n}} \Theta(\hat{\mathbf{n}}) e^{-i l \cdot \hat{\mathbf{n}}} \\
& =\tilde{\Theta}(\mathbf{l})-\int \frac{d^{2} \mathbf{l}_{1}}{(2 \pi)^{2}} \tilde{\Theta}\left(\mathbf{l}_{1}\right) L\left(\mathbf{l}, \mathbf{l}_{1}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
L\left(1, l_{1}\right) & =\phi\left(1-l_{1}\right)\left(1-l_{1}\right) \cdot l_{1} \\
& +\frac{1}{2} \int \frac{d^{2} l_{2}}{(2 \pi)^{2}} \phi\left(l_{2}\right) \phi^{*}\left(l_{2}+l_{1}-1\right)\left(l_{2} \cdot l_{1}\right)\left(l_{2}+l_{1}-1\right) \cdot l_{1} .
\end{aligned}
$$

Represents a coupling of harmonics separated by $L \approx 60$ peak of deflection power

Power Spectrum

- Power spectra

$$
\begin{aligned}
\left\langle\Theta^{*}(\mathrm{l}) \Theta\left(\mathrm{l}^{\prime}\right)\right\rangle & =(2 \pi)^{2} \delta\left(\mathrm{l}-\mathrm{l}^{\prime}\right) C_{l}^{\Theta \Theta}, \\
\left\langle\phi^{*}(\mathrm{l}) \phi\left(\mathrm{l}^{\prime}\right)\right\rangle & =(2 \pi)^{2} \delta\left(\mathrm{l}-\mathrm{l}^{\prime}\right) C_{l}^{\phi \phi},
\end{aligned}
$$

becomes

$$
C_{l}^{\Theta \Theta}=\left(1-l^{2} R\right) \tilde{C}_{l}^{\Theta \Theta}+\int \frac{d^{2} l_{1}}{(2 \pi)^{2}} \tilde{C}_{\left|1-l_{1}\right|}^{\Theta \Theta} C_{l_{1}}^{\phi \phi}\left[\left(1-l_{1}\right) \cdot l_{1}\right]^{2}
$$

where

$$
\begin{equation*}
R=\frac{1}{4 \pi} \int \frac{d l}{l} l^{4} C_{l}^{\phi \phi} \tag{3}
\end{equation*}
$$

Smoothing Power Spectrum

- If $\tilde{C}_{l}^{\Theta \Theta}$ slowly varying then two term cancel

$$
\tilde{C}_{l}^{\Theta \Theta} \int \frac{d^{2} l_{1}}{(2 \pi)^{2}} C_{l}^{\phi \phi}\left(1 \cdot l_{1}\right)^{2} \approx l^{2} R \tilde{C}_{l}^{\Theta \Theta} .
$$

- So lensing acts to smooth features in the power spectrum. Smoothing kernel is $L \sim 60$ the peak of deflection power spectrum
- Because acoustic feature appear on a scale $l_{A} \sim 300$, smoothing is a subtle effect in the power spectrum.
- Lensing generates power below the damping scale which directly reflect power in deflections on the same scale

Polarization Lensing

- Polarization field harmonics lensed similarly

$$
[Q \pm i U](\hat{\mathbf{n}})=-\int \frac{d^{2} l}{(2 \pi)^{2}}[E \pm i B](\mathbf{1}) e^{ \pm 2 i \phi_{1}} e^{1 \cdot \hat{\mathbf{n}}}
$$

so that

$$
\begin{aligned}
{[Q \pm i U](\hat{\mathbf{n}})=} & {[\tilde{Q} \pm i \tilde{U}](\hat{\mathbf{n}}+\nabla \phi) } \\
\approx & {[\tilde{Q} \pm i \tilde{U}](\hat{\mathbf{n}})+\nabla_{i} \phi(\hat{\mathbf{n}}) \nabla^{i}[\tilde{Q} \pm i \tilde{U}](\hat{\mathbf{n}}) } \\
& +\frac{1}{2} \nabla_{i} \phi(\hat{\mathbf{n}}) \nabla_{j} \phi(\hat{\mathbf{n}}) \nabla^{i} \nabla^{j}[\tilde{Q} \pm i \tilde{U}](\hat{\mathbf{n}})
\end{aligned}
$$

Polarization Power Spectra

- Carrying through the algebra

$$
\begin{aligned}
C_{l}^{E E}= & \left(1-l^{2} R\right) \tilde{C}_{l}^{E E}+\frac{1}{2} \int \frac{d^{2} l_{1}}{(2 \pi)^{2}}\left[\left(1-l_{1}\right) \cdot \mathbf{l}_{1}\right]^{2} C_{\left|1-l_{1}\right|}^{\phi \phi} \\
& \times\left[\left(\tilde{C}_{l_{1}}^{E E}+\tilde{C}_{l_{1}}^{B B}\right)+\cos \left(4 \varphi_{l_{1}}\right)\left(\tilde{C}_{l_{1}}^{E E}-\tilde{C}_{l_{1}}^{B B}\right)\right], \\
C_{l}^{B B}= & \left(1-l^{2} R\right) \tilde{C}_{l}^{B B}+\frac{1}{2} \int \frac{d^{2} l_{1}}{(2 \pi)^{2}}\left[\left(1-\mathrm{l}_{1}\right) \cdot \mathbf{l}_{1}\right]^{2} C_{\left|1-l_{1}\right|}^{\phi \phi} \\
& \times\left[\left(\tilde{C}_{l_{1}}^{E E}+\tilde{C}_{l_{1}}^{B B}\right)-\cos \left(4 \varphi_{l_{1}}\right)\left(\tilde{C}_{l_{1}}^{E E}-\tilde{C}_{l_{1}}^{B B}\right)\right], \\
C_{l}^{\Theta E}= & \left(1-l^{2} R\right) \tilde{C}_{l}^{\Theta E}+\int \frac{d^{2} l_{1}}{(2 \pi)^{2}}\left[\left(1-{l_{1}}\right) \cdot \mathrm{l}_{1}\right]^{2} C_{\left|1-l_{1}\right|}^{\phi \phi} \\
& \times \tilde{C}_{l_{1}}^{\Theta E} \cos \left(2 \varphi_{l_{1}}\right),
\end{aligned}
$$

- Lensing generates B-modes out of the acoustic polaraization E-modes contaminates gravitational wave signature if $E_{i}<10^{16} \mathrm{GeV}$.

Reconstruction from the CMB

- Correlation between Fourier moments reflect lensing potential

$$
\left\langle x(\mathbf{l}) x^{\prime}\left(\mathbf{l}^{\prime}\right)\right\rangle_{\mathrm{CMB}}=f_{\alpha}\left(\mathbf{l}, \mathbf{l}^{\prime}\right) \phi\left(\mathbf{l}+\mathbf{l}^{\prime}\right),
$$

where $x \in$ temperature, polarization fields and f_{α} is a fixed weight that reflects geometry

- Each pair forms a noisy estimate of the potential or projected mass
- just like a pair of galaxy shears
- Minimum variance weight all pairs to form an estimator of the lensing mass

Scattering Secondaries

- Optical depth during reionization

$$
\tau \approx 0.066\left(\frac{\Omega_{b} h^{2}}{0.02}\right)\left(\frac{\Omega_{m} h^{2}}{0.15}\right)^{-1 / 2}\left(\frac{1+z}{10}\right)^{3 / 2}
$$

- Anisotropy suppressed as $e^{-\tau}$. Integral solution

$$
\frac{\Theta_{\ell}\left(k, \eta_{0}\right)}{2 \ell+1}=\int_{0}^{\eta_{0}} d \eta e^{-\tau} S_{0}^{(0)} j_{\ell}\left(k\left(\eta_{0}-\eta\right)\right)+\ldots
$$

- Isotropic (lare scale) fluctuations not supressed since suppression represents isotropization by scattering
- Quadrupole from the Sachs-Wolfe effect scatters into a large angle polarization bump

Doppler Effects

Velocity fields of 10^{-3} and optical depths of 10^{-2} would imply large Doppler effect due to reionization

- Limber approximation says only fluctuations transverse to line of sight survive
- In linear theory, transverse fluctuations have no line of sight velocity and so Doppler effect is highly suppressed.
- Beyond linear theory: modulate the optical depth in the transverse direction using density fluctuations or ionization fraction fluctuations. Generate a modulated Doppler effect
- Linear fluctuations: Vishniac effect; Clusters: kinetic SZ effect; ionization patches: inhomogeneous reionization effect

Thermal SZ Effect

- Thermal velocities also lead to Doppler effect but first order contribution cancels because of random directions
- Residual effect is of order $v^{2} \tau \approx T_{e} / m_{e} \tau$ and can reach a sizeable level for clusters with $T_{e} \approx 10 \mathrm{keV}$.
- Raleigh-Jeans decrement and Wien enhancement described by second order collision term in Boltzmann equation: Kompaneets equation
- Clusters are rare objects so contribution to power spectrum suppressed, but may have been detected by CBI/BIMA: extremely sensitive to power spectrum normalization σ_{8}
- White noise on large-scales $(l<2000)$, turnover as cluster profile is resolved

Astro 448

Data Pipeline

Gaussian Statistics

- Statistical isotropy says two-point correlation depends only on the power spectrum

$$
\begin{aligned}
\Theta(\hat{\mathbf{n}}) & =\sum_{\ell m} \Theta_{\ell m} Y_{\ell m}(\hat{\mathbf{n}}) \\
\left\langle\Theta_{\ell m}^{*} \Theta_{\ell^{\prime} m^{\prime}}\right\rangle & =\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{\Theta \Theta}
\end{aligned}
$$

- Reality of field says $\Theta_{\ell m}=(-1)^{m} \Theta_{\ell(-m)}$
- For a Gaussian random field, power spectrum defines all higher order statistics, e.g.

$$
\begin{aligned}
& \left\langle\Theta_{\ell_{1} m_{1}} \Theta_{\ell_{2} m_{2}} \Theta_{\ell_{3} m_{3}} \Theta_{\ell_{4} m_{4}}\right\rangle \\
& \quad=(-1)^{m_{1}+m_{2}} \delta_{\ell_{1} \ell_{3}} \delta_{m_{1}\left(-m_{3}\right)} \delta_{\ell_{2} \ell_{4}} \delta_{m_{2}\left(-m_{4}\right)} C_{\ell_{1}}^{\Theta \Theta} C_{\ell_{2}}^{\Theta \Theta}+\text { all pairs }
\end{aligned}
$$

Idealized Statistical Errors

Take a noisy estimator of the multipoles in the map

$$
\hat{\Theta}_{\ell m}=\Theta_{\ell m}+N_{\ell m}
$$

and take the noise to be statistically isotropic

$$
\left\langle N_{\ell m}^{*} N_{\ell^{\prime} m^{\prime}}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{N N}
$$

- Construct an unbiased estimator of the power spectrum $\left\langle\hat{C}_{l}^{\Theta \Theta}\right\rangle=C_{l}^{\Theta \Theta}$

$$
\hat{C}_{\ell}^{\Theta \Theta}=\frac{1}{2 \ell+1} \sum_{m=-l}^{l} \hat{\Theta}_{\ell m}^{*} \hat{\Theta}_{\ell m}-C_{\ell}^{N N}
$$

- Variance in estimator

$$
\left\langle\hat{C}_{\ell}^{\Theta \Theta} \hat{C}_{\ell}^{\Theta \Theta}\right\rangle-\left\langle\hat{C}_{\ell}^{\Theta \Theta}\right\rangle^{2}=\frac{2}{2 \ell+1}\left(C_{\ell}^{\Theta \Theta}+C_{\ell}^{N N}\right)^{2}
$$

Cosmic and Noise Variance

- RMS in estimator is simply the total power spectrum reduced by
$\sqrt{2 / N_{\text {modes }}}$ where $N_{\text {modes }}$ is the number of m-mode measurements
- Even a perfect experiment where $C_{\ell}^{N N}=0$ has statistical variance due to the Gaussian random realizations of the field. This cosmic variance is the result of having only one realization to measure.
- Noise variance is often approximated as white detector noise. Removing the beam to place the measurement on the sky

$$
N_{\ell}^{\Theta \Theta}=\left(\frac{T}{d_{T}}\right)^{2} e^{\ell(\ell+1) \sigma^{2}}=\left(\frac{T}{d_{T}}\right)^{2} e^{\ell(\ell+1) \mathrm{FWHM}^{2} / 8 \ln 2}
$$

where d_{T} can be thought of as a noise level per steradian of the temperature measurement, σ is the Gaussian beam width, FWHM is the full width at half maximum of the beam

Idealized Parameter Forecasts

- A crude propagation of errors is often useful for estimation purposes.
- Suppose $C_{\alpha \beta}$ describes the covariance matrix of the estimators for a given parameter set π_{α}.
Define $\mathbf{F}=\mathbf{C}^{-1}$ [formalized as the Fisher matrix later]. Making an infinitesimal transformation to a new set of parameters p_{μ}

$$
F_{\mu \nu}=\sum_{\alpha \beta} \frac{\partial \pi_{\alpha}}{\partial p_{\mu}} F_{\alpha \beta} \frac{\partial \pi_{\beta}}{\partial p_{\nu}}
$$

- In our case π_{α} are the C_{ℓ} the covariance is diagonal and p_{μ} are cosmological parameters

$$
F_{\mu \nu}=\sum_{\ell} \frac{2 \ell+1}{2\left(C_{\ell}^{\Theta \Theta}+C_{\ell}^{N N}\right)^{2}} \frac{\partial C_{\ell}^{\Theta \Theta}}{\partial p_{\mu}} \frac{\partial C_{\ell}^{\Theta \Theta}}{\partial p_{\nu}}
$$

Idealized Parameter Forecasts

- Polarization handled in same way (requires covariance)
- Fisher matrix represents a local approximation to the transformation of the covariance and hence is only accurate for well constrained directions in parameter space
- Derivatives evaluated by finite difference
- Fisher matrix identifies parameter degeneracies but only the local direction - i.e. all errors are ellipses not bananas

Beyond Idealizations: Time Ordered Data

- For the data analyst the starting point is a string of "time ordered" data coming out of the instrument (post removal of systematic errors!)
- Begin with a model of the time ordered data as

$$
d_{t}=P_{t i} \Theta_{i}+n_{t}
$$

where i denotes pixelized positions indexed by i, d_{t} is the data in a time ordered stream indexed by t. Number of time ordered data will be of the order 10^{10} for a satellite! number of pixels $10^{6}-10^{7}$.

- The noise n_{t} is drawn from a distribution with a known power spectrum

$$
\left\langle n_{t} n_{t^{\prime}}\right\rangle=C_{d, t t^{\prime}}
$$

Pointing Matrix

- The pointing matrix P is the mapping between pixel space and the time ordered data
- Simplest incarnation: row with all zeros except one column which just says what point in the sky the telescope is pointing at that time

$$
\mathbf{P}=\left(\begin{array}{ccccc}
0 & 0 & 1 & \ldots & 0 \\
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 1 & \ldots & 0
\end{array}\right)
$$

- More generally encorporates differencing, beam, rotation (for polarization)

Maximum Likelihood Mapmaking

- What is the best estimator of the underlying map Θ_{i}
- Likelihood function: the probability of getting the data given the theory $\mathcal{L} \equiv P$ [data|theory]. In this case, the theory is the set of parameters Θ_{i}.

$$
\mathcal{L}_{\Theta}\left(d_{t}\right)=\frac{1}{(2 \pi)^{N_{t} / 2} \sqrt{\operatorname{det} \mathbf{C}_{d}}} \exp \left[-\frac{1}{2}\left(d_{t}-P_{t i} \Theta_{i}\right) C_{d, t t^{\prime}}^{-1}\left(d_{t^{\prime}}-P_{t^{\prime} j} \Theta_{j}\right)\right]
$$

- Bayes theorem says that $P\left[\Theta_{i} \mid d_{t}\right]$, the probability that the temperatures are equal to Θ_{i} given the data, is proportional to the likelihood function times a prior $P\left(\Theta_{i}\right)$, taken to be uniform

$$
P\left[\Theta_{i} \mid d_{t}\right] \propto P\left[d_{t} \mid \Theta_{i}\right] \equiv \mathcal{L}_{\Theta}\left(d_{t}\right)
$$

Maximum Likelihood Mapmaking

- Maximizing the likelihood of Θ_{i} is simple since the log-likelihood is quadratic.
- Differentiating the argument of the exponential with respect to Θ_{i} and setting to zero leads immediately to the estimator

$$
\hat{\Theta}_{i}=C_{N, i j} P_{j t} C_{d, t t^{\prime}}^{-1} d_{t^{\prime}},
$$

where $\mathbf{C}_{N} \equiv\left(\mathbf{P}^{\operatorname{tr}} \mathbf{C}_{d}^{-1} \mathbf{P}\right)^{-1}$ is the covariance of the estimator

- Given the large dimension of the time ordered data, direct matrix manipulation is unfeasible. A key simplifying assumption is the stationarity of the noise, that $C_{d, t t^{\prime}}$ depends only on $t-t^{\prime}$
(temporal statistical homogeneity)

Power Spectrum

- The next step in the chain of inference is the power spectrum extraction. Here the correlation between pixels is modelled through the power spectrum

$$
C_{S, i j} \equiv\left\langle\Theta_{i} \Theta_{j}\right\rangle=\sum_{\ell} \Delta_{T, \ell}^{2} W_{\ell, i j}
$$

- Here W_{ℓ}, the window function, is derived by writing down the expansion of $\Theta(\hat{\mathbf{n}})$ in harmonic space, including smoothing by the beam and pixelization
- For example in the simple case of a gaussian beam of width σ it is proportional to the Legendre polynomial $P_{\ell}\left(\hat{\mathbf{n}}_{i} \cdot \hat{\mathbf{n}}_{j}\right)$ for the pixel separation multiplied by $b_{\ell}^{2} \propto e^{-\ell(\ell+1) \sigma^{2}}$

Band Powers

- In principle the underlying theory to extract from maximum likelihood is the power spectrum at every ℓ
- However with a finite patch of sky, it is not possible to extract multipoles separated by $\Delta \ell<2 \pi / L$ where L is the dimension of the survey
- So consider instead a theory parameterization of $\Delta_{T, \ell}^{2}$ constant in bands of $\Delta \ell$ chosen to match the survey forming a set of band powers B_{a}
- The likelihood of the bandpowers given the pixelized data is

$$
\mathcal{L}_{B}\left(\Theta_{i}\right)=\frac{1}{(2 \pi)^{N_{p} / 2} \sqrt{\operatorname{det} \mathbf{C}_{\Theta}}} \exp \left(-\frac{1}{2} \Theta_{i} C_{\Theta, i j}^{-1} \Theta_{j}\right)
$$

where $\mathrm{C}_{\Theta}=\mathrm{C}_{S}+\mathrm{C}_{N}$ and N_{p} is the number of pixels in the map.

Band Power Esitmation

- As before, \mathcal{L}_{B} is Gaussian in the anisotropies Θ_{i}, but in this case Θ_{i} are not the parameters to be determined; the theoretical parameters are the B_{a}, upon which the covariance matrix depends.
- The likelihood function is not Gaussian in the parameters, and there is no simple, analytic way to find the maximum likelihood bandpowers
- Iterative approach to maximizing the likelihood: take a trial point $B_{a}^{(0)}$ and improve estimate based a Newton-Rhapson approach to finding zeros

$$
\begin{aligned}
\hat{B}_{a} & =\hat{B}_{a}^{(0)}+F_{B, a b} \frac{\partial \ln \mathcal{L}_{B}}{\partial B_{b}} \\
& =\hat{B}_{a}^{(0)}+\frac{1}{2} F_{B, a b}^{-1}\left(\Theta_{i} C_{\Theta, i j}^{-1} \frac{\partial C_{\Theta, j k}}{\partial B_{b}} C_{\Theta, k l}^{-1} \Theta_{l}-C_{\Theta, i j}^{-1} \frac{\partial C_{\Theta, j i}}{\partial B_{b}}\right),
\end{aligned}
$$

Fisher Matrix

- The expectation value of the local curvature is the Fisher matrix

$$
\begin{aligned}
F_{B, a b} & \equiv\left\langle-\frac{\partial^{2} \ln \mathcal{L}_{\Theta}}{\partial B_{a} \partial B_{b}}\right\rangle \\
& =\frac{1}{2} C_{\Theta, i j}^{-1} \frac{\partial C_{\Theta, j k}}{\partial B_{a}} C_{\Theta, k l}^{-1} \frac{\partial C_{\Theta, l i}}{\partial B_{b}} .
\end{aligned}
$$

- This is a general statement: for a gaussian distribution the Fisher matrix

$$
F_{a b}=\frac{1}{2} \operatorname{Tr}\left[\mathbf{C}^{-1} \mathbf{C}_{, a} \mathbf{C}^{-1} \mathbf{C}_{, b}\right]
$$

- Kramer-Rao identity says that the best possible covariance matrix on a set of parameters is $\mathbf{C}=\mathbf{F}^{-1}$
- Thus, the iteration returns an estimate of the covariance matrix of the estimators C_{B}

Cosmological Parameters

- The probability distribution of the bandpowers given the cosmological parameters c_{i} is not Gaussian but it is often an adequate approximation

$$
\mathcal{L}_{c}\left(\hat{B}_{a}\right) \approx \frac{1}{(2 \pi)^{N_{c} / 2} \sqrt{\operatorname{det} \mathbf{C}_{B}}} \exp \left[-\frac{1}{2}\left(\hat{B}_{a}-B_{a}\right) C_{B, a b}^{-1}\left(\hat{B}_{b}-B_{b}\right)\right]
$$

- Grid based approaches evaluate the likelihood in cosmological parameter space and maximize
- Faster approaches monte carlo the exploration of the likelihood space intelligently ("Monte Carlo Markov Chains")
- Since the number of cosmological parameters in the working model is $N_{c} \sim 10$ this represents a final radical compression of information in the original timestream which recall has up to $N_{t} \sim 10^{10}$ data points.

Parameter Forecasts

- The Fisher matrix of the cosmological parameters becomes

$$
F_{c, i j}=\frac{\partial B_{a}}{\partial c_{i}} C_{B, a b}^{-1} \frac{\partial B_{b}}{\partial c_{j}} .
$$

which is the error propagation formula discussed above

- The Fisher matrix can be more accurately defined for an experiment by taking the pixel covariance and using the general formula for the Fisher matrix of gaussian data
- Corrects for edge effects with the approximate effect of

$$
F_{\mu \nu}=\sum_{\ell} \frac{(2 \ell+1) f_{\text {sky }}}{2\left(C_{\ell}^{\Theta \Theta}+C_{\ell}^{N N}\right)^{2}} \frac{\partial C_{\ell}^{\Theta \Theta}}{\partial p_{\mu}} \frac{\partial C_{\ell}^{\Theta \Theta}}{\partial p_{\nu}}
$$

where the sky fraction $f_{\text {sky }}$ quantifies the loss of independent modes due to the sky cut

