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Polarized Issues
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Polarization from Thomson Scattering 

• Quadrupole anisotropies scatter into linear polarization

aligned with
cold lobe

Hu & White (1997)




Whence Polarization Anisotropy?
• Observed photons scatter into the line of sight 

• Polarization arises from the projection of the quadrupole on the

 transverse plane

Hu & White (1997)




Polarization Multipoles
• Mathematically pattern is described by the tensor (spin-2) spherical 
 harmonics [eigenfunctions of Laplacian on trace-free 2 tensor] 

• Correspondence with scalar spherical harmonics established
 via Clebsch-Gordan coefficients (spin x orbital)

• Amplitude of the coefficients in the spherical harmonic expansion
 are the multipole moments; averaged square is the power

E-spin harmonic

l=2, m=0Seljak & Zaldarriaga (1997); 
Kamionkowski, Kosowsky & Stebbins (1997) 



Reionization



Temperature Inhomogeneity
• Temperature inhomogeneity reflects initial density perturbation
 on large scales
• Consider a single Fourier moment:



Locally Transparent
• Presently, the matter density is so low that a typical CMB photon 
 will not scatter in a Hubble time (~age of universe)

recombination

observer

transparent



Reversed Expansion
• Free electron density in an ionized medium increases as scale factor 
 a-3; when the universe was a tenth of its current size CMB photons
 have a finite (~10%) chance to scatter

recombination

rescattering



Polarization Anisotropy
• Electron sees the temperature anisotropy on its recombination 
 surface and scatters it into a polarization

recombination

polarization



Temperature Correlation
• Pattern correlated with the temperature anisotropy that generates
 it; here an m=0 quadrupole



WMAP Correlation
• Measured correlation indicates the universe remained at least partially
 ionized to a surprisingly large redshift or early time (z>10)
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Why Care?
• Early ionization is puzzling if due to ionizing radiation from normal
 stars; may indicate more exotic physics is involved

• Reionization screens temperature anisotropy on small scales
 making the true amplitude of initial fluctuations larger by eτ

• Measuring the growth of fluctuations is one of the best ways of 
 determining the neutrino masses and the dark energy

• Offers an opportunity to study the origin of the low multipole
 statistical anomalies

• Presents a second, and statistically cleaner, window on 
 gravitational waves from the early universe



Ionization History



Polarization Power Spectrum
• Most of the information on ionization history is in the polarization
 (auto) power spectrum - two models with same optical depth
 but different ionization fraction

Kaplinghat et al (2002) [figure: Hu & Holder (2003)]
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Principal Components
•	 Information on the ionization history is contained in ~5 numbers
	 - essentially coefficients of first few Fourier modes
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Representation in Modes
•	 Reproduces the power spectrum and net optical depth
	 (actual τ=0.1375 vs 0.1377); indicates whether multiple 
	 physical mechanisms suggested

Hu & Holder (2003)
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Total Optical Depth
•	 Optical depth measurement unbiased
•	 Ultimate errors set by cosmic variance here 0.01 
•	 Equivalently 1% determination of initial amplitude for dark energy  

Hu & Holder (2003) mode µ
5 10 15

σµ

τµ

στ  (cumul.)

prior

prior

10-5

10-4

10-3

10-2

10-1

1

101

102



Gravitational Waves



Gravitational Waves
• Inflation predicts near scale invariant spectrum of gravitational waves

• Amplitude proportional to the square of the Ei=V1/4 energy scale

• If inflation is associated with the grand unification Ei~1016 GeV
 and potentially observable

 

transverse-traceless
distortion



Gravitational Wave Pattern
• Projection of the quadrupole anisotropy gives polarization pattern

• Transverse polarization of gravitational waves breaks azimuthal

 symmetry 

density 

perturbation

gravitational

wave




Electric & Magnetic Polarization
(a.k.a. gradient & curl)

Kamionkowski, Kosowsky, Stebbins (1997)
Zaldarriaga & Seljak (1997)

• Alignment of principal vs polarization axes 
(curvature matrix vs polarization direction)

E

B



The B-Bump
• Rescattering of gravitational wave anisotropy generates the B-bump

• Potentially the most sensitive probe of inflationary energy scale
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Hu (2001)

T/S, Inflation and the B-Bump
•	 B-bump up to 20x more sensitive to T/S

•	 In combination with recombination peak, constrain spectrum
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Quadrupole Aside



Low Quadrupole
•	 Known since COBE: a ~2σ problem
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ISW Spatial Modes
•	 ISW effect comes from nearby acceleration regime 
•	 Shorter wavelengths project onto same angle
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Quadrupole Origins
•	 Transfer function for the quadrupole

Gordon & Hu (2004)
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•	 Transfer function for the quadrupole
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Gordon & Hu (2004) [Contaldi et al 2003;    Hu 1998; Erikson et al 2002; Bean & Dore 2003]



Low Quadrupole Models
•	 Distinguished by polarization

Gordon & Hu (2004) [Dore, Holder & Loeb 2003]
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•	 Models: initial conditions vs. dark energy

fiducial
sound speed
cut-off

Gordon & Hu (2004) [Contaldi et al 2003;    Hu 1998; Erikson et al 2002; Bean & Dore 2003]



Initial Spectrum



Transfer of Initial Power

Hu & Okamoto (2003)



• Polarization crucial for detailed study of initial conditions,
 decade in scale of the acoustic peaks can provide exquisite
 tests of scale free initial conditions 

Wang et al (1999); Kinney (2001); Miller et al (2002); Tegmark & Zaldarriaga (2002); Bridle et al (2003) 
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• Polarization crucial for detailed study of initial conditions,
 decade in scale of the acoustic peaks can provide exquisite
 tests of scale free initial conditions 

Wang et al (1999); Kinney (2001); Miller et al (2002); Tegmark & Zaldarriaga (2002); Bridle et al (2003) 
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Temperature and Polarization Spectra
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Gravitational Lensing



Gravitational Lensing
• Gravitational lensing by large scale structure distorts the observed
 temperature and polarization fields

• Exaggerated example for the temperature

Original Lensed



Polarization Lensing



Polarization Lensing
• Since E and B denote the relationship between the polarization
 amplitude and direction, warping due to lensing creates B-modes

Original Lensed BLensed E

Zaldarriaga & Seljak (1998) [figure: Hu & Okamoto (2001)]



Temperature and Polarization Spectra
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Lensing by a Gaussian Random Field
• Mass distribution at large angles and high redshift in

in the linear regime 

• Projected mass distribution (low pass filtered reflecting
deflection angles): 1000 sq. deg

rms deflection
2.6'

deflection coherence
10°



Power Spectrum Measurements
• Lensed field is non-Gaussian in that a single degree scale lens
 controls the polarization at arcminutes

• Increased variance and covariance implies that 10x as much 
 sky needed compared with Gaussian fields

Smith, Hu & Kaplinghat (2004)
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Sample vs Noise Variance
•	 Non-Gaussian sample variance doubles total variance at 4µK'
	 for resolved B-modes
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Reconstruction from Polarization
• Lensing B-modes correlated to the orignal E-modes in a specific
 way

• Correlation of E and B allows for a reconstruction of the lens

• Reference experiment of  4' beam, 1µK' noise and 100 deg2

Original Mass Map Reconstructed Mass Map
Hu & Okamoto (2001) [iterative improvement Hirata & Seljak (2003)]



Matter Power Spectrum
• Measuring projected matter power spectrum to cosmic vari-

ance limit across whole linear regime 0.002< k < 0.2 h/Mpc

Hu & Okamoto (2001) [parameter forecasts: Kaplighat et al 2003]
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Matter Power Spectrum
• Measuring projected matter power spectrum to cosmic vari-

ance limit across whole linear regime 0.002< k < 0.2 h/Mpc

Hu & Okamoto (2001) [non-linear: see Amblard, Vale & White (2004)]
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Summary
• CMB polarizationgenerated byscatteringalone and hence

provides probes that are welllocalizedin timeandspace

• Early reionizationprovides anew windownot only on thefirst
generationof structure but also ongravitational waves, statistical
anomalieson large scales, and calibration of fluctuations fordark
energystudies

• Acoustic polarizationcan provide exceedingly precise
measurements of theinitial power spectrumand anyfeaturesthat
might exist in the decade of the peaks

• Lensingof the acoustic polarization provides a means of
reconstructing themass distributionand hence constrain the
neutrino massand thedark energy
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