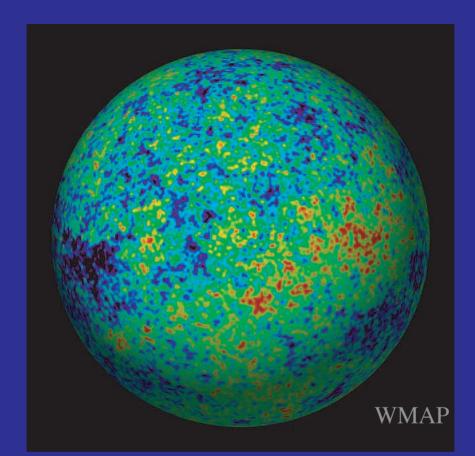
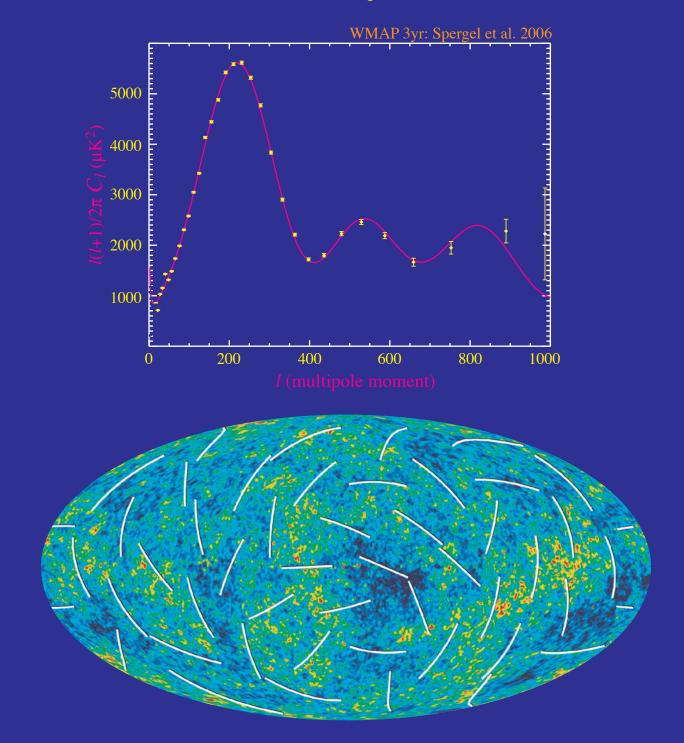
Lecture I

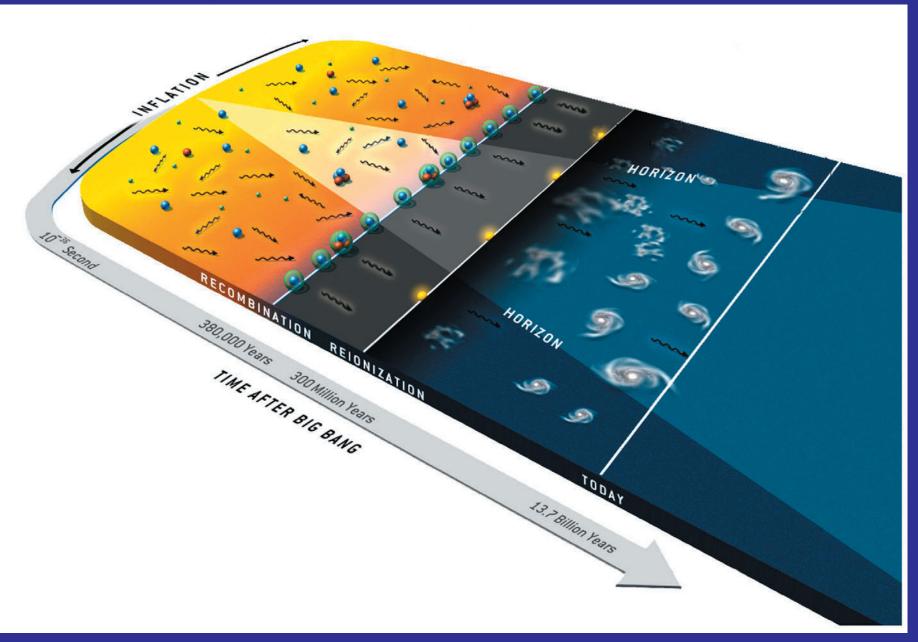


Thermal History and Acoustic Kinematics *Wayne Hu* Tenerife, November 2007

WMAP 3yr Data



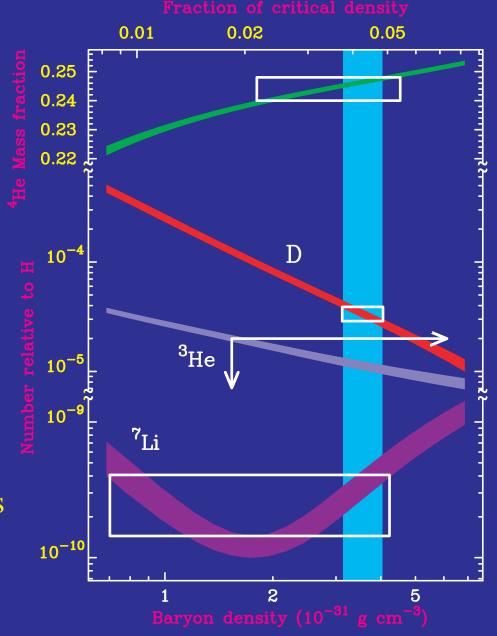
In the Beginning...



Hu & White (2004); artist:B. Christie/SciAm; available at http://background.uchicago.edu

Predicting the CMB: Nucleosynthesis

- Light element abundance depends on baryon/photon ratio
- Existence and temperature of CMB originally predicted (Gamow 1948) by light elements + visible baryons
- With the CMB photon number density fixed by the temperature light elements imply dark baryons
- Peaks say that photon-baryon ratio at MeV and eV scales are same



Burles, Nollett, Turner (1999)

Thermalization

• Compton scattering conserves the number of photons

 $e^- + \gamma \leftrightarrow e^- + \gamma$

hence cannot create a blackbody, only Bose-Einstein spectrum

Above z ~ 10⁵ - 10⁻⁶ creation/absorption processes:
 bremmstrahlung and double (or radiative) Compton scattering

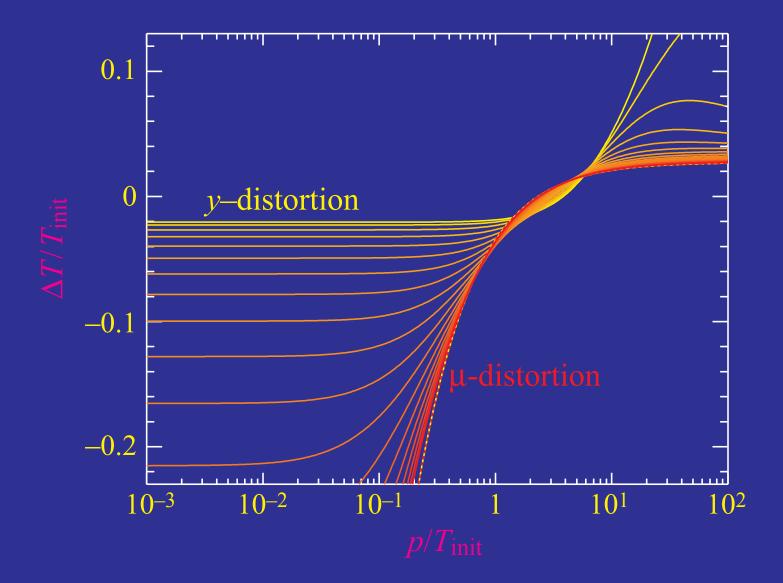
 $e^{-} + p \leftrightarrow e^{-} + p + \gamma$ $e^{-} + \gamma \leftrightarrow e^{-} + \gamma + \gamma$

sufficently rapid to bring spectrum to a blackbody

- Below this redshift, only low frequency spectrum thermalized leaving a μ or y distortion near and above the peak
- Consequently energy injection into the plasma after \sim few months strongly constrained

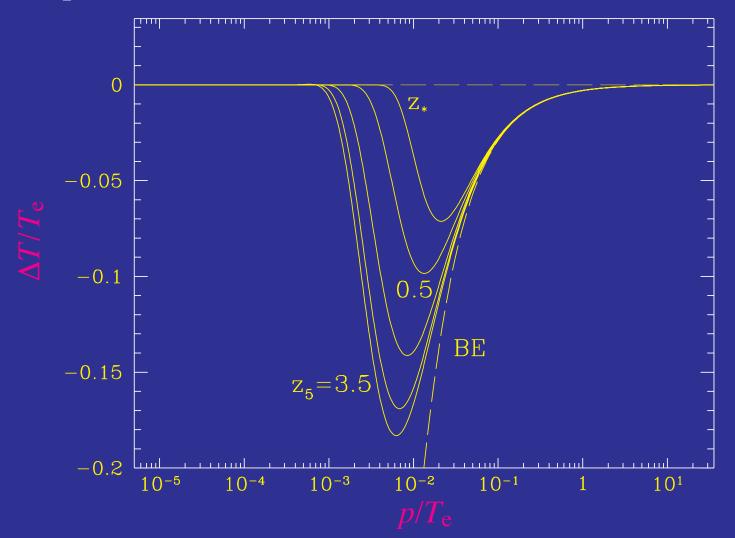
Comptonization

- Compton upscattering: *y*-distortion seen in Galaxy clusters
- Redistribution: µ-distortion



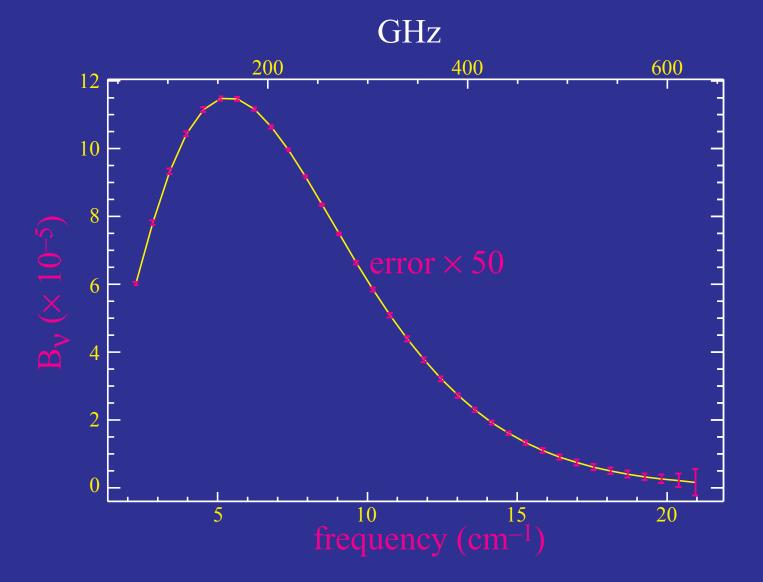
Thermalization

 Photon creation processes effective at low frequency and high redshift; in conjunction with Compton scattering, thermalizes the spectrum



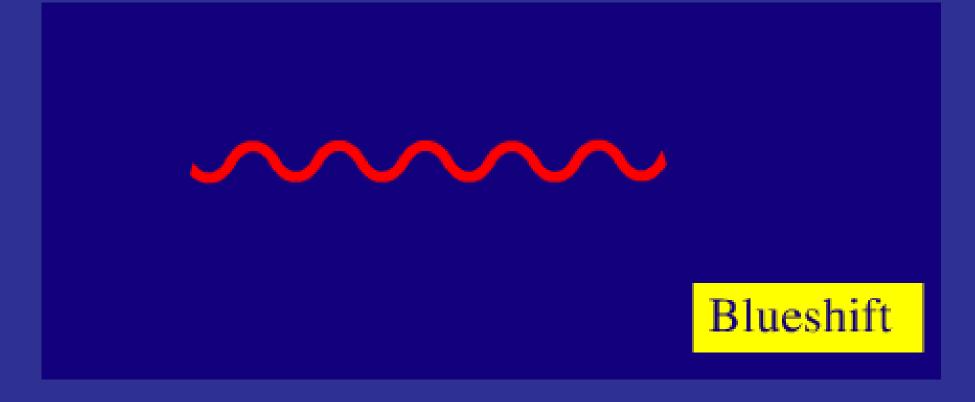
Spectrum

- FIRAS Spectrum
- Perfect Blackbody



Darkness from Light: Recombination

- Reversing the expansion, CMB photons got hotter and hotter into the past
- When the universe was 1000 times smaller and the CMB photons were at 3000K they were energetic enough disintingrate atoms into electrons and protons.



Recombination

• Maxwell-Boltzmann distribution

$$\mathbf{n} = g e^{-(\mathbf{m} - \boldsymbol{\mu})/T} \left(\frac{mT}{2\pi}\right)^{3/2}$$

determines the equilibrium distribution for species in reaction and hence the equilibrium ionization:

$$p + e^- \leftrightarrow H + \gamma$$

$$\frac{n_p n_e}{n_H} \approx e^{-B/T} \left(\frac{m_e T}{2\pi}\right)^{3/2} e^{(\mu_p + \mu_e - \mu_H)/T}$$

where $B = m_p + m_e - m_H = 13.6$ eV is the binding energy, $g_p = g_e = \frac{1}{2}g_H = 2$, and $\mu_p + \mu_e = \mu_H$ in equilibrium

Recombination

• Define ionization fraction

$$n_p = n_e = x_e n_b$$
$$n_H = n_{\text{tot}} - n_b = (1 - x_e) n_b$$

• Saha Equation

$$\frac{n_e n_p}{n_H n_b} = \frac{x_e^2}{1 - x_e} = \frac{1}{n_b} \left(\frac{m_e T}{2\pi}\right)^{3/2} e^{-B/T}$$

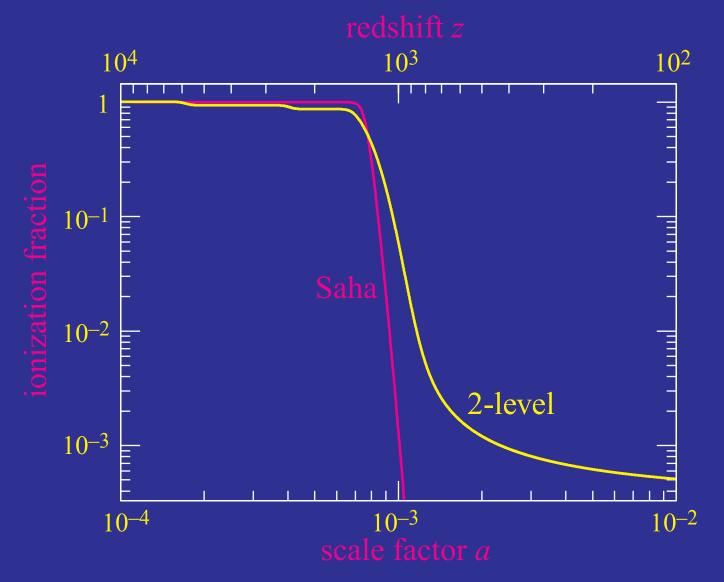
• Naive guess of $T_* = B$ wrong due to the low baryon-photon ratio

$$\eta_{b\gamma} \equiv n_b/n_\gamma \approx 3 \times 10^{-8} \Omega_b h^2$$

• Sufficient number of ionizing photons in Wien tail until $T_* \approx 0.3 \text{eV}$ so recombination at $z_* \approx 1000$

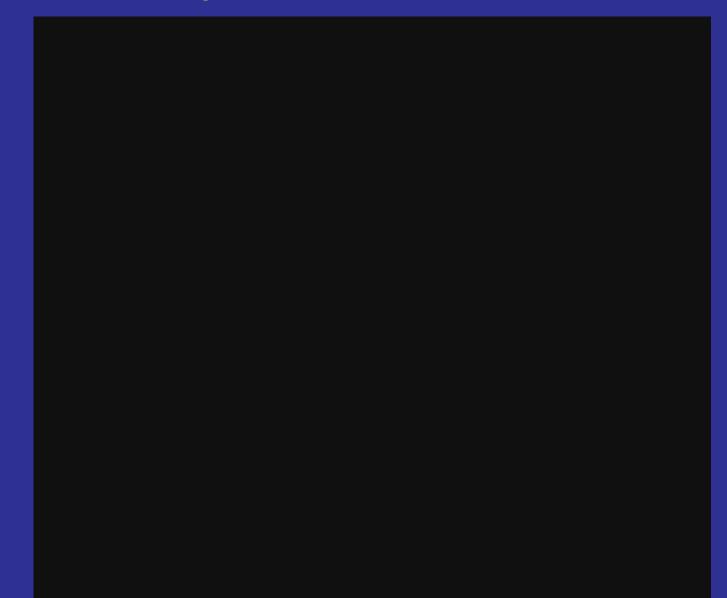
Recombination

- Hung up by Ly α opacity (2 γ forbidden transition + redshifting)
- Frozen out with a finite residual ionization fraction



Anisotropy Formation

• Temperature inhomogeneities at recombination become anisotropy



Temperature Fluctuations

 Observe blackbody radiation with a temperature that differs at 10⁻⁵ coming from the surface of recombination

 $f(\nu, \hat{\mathbf{n}}) = [\exp(2\pi\nu/T(\hat{\mathbf{n}})) - 1]^{-1}$

• Decompose the temperature perturbation in spherical harmonics

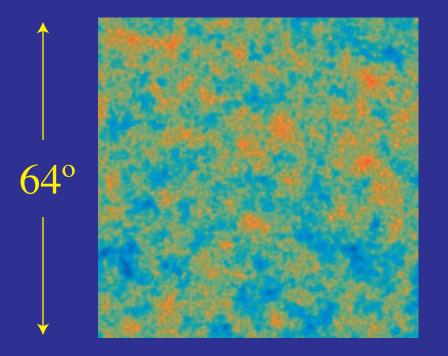
$$T(\hat{\mathbf{n}}) = \sum_{\ell m} T_{\ell m} Y_{\ell m}(\hat{\mathbf{n}})$$

• For Gaussian random statistically isotropic fluctuations, the statistical properties of the temperature field are determined by the power spectrum

$$\langle T_{\ell m}^* T_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}$$

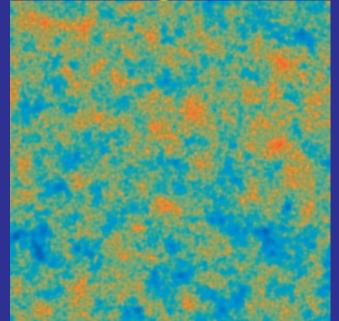
in units of μK^2 or in terms of dimensionless temperature $\Theta = \Delta T/T \sim 10^{-5}$

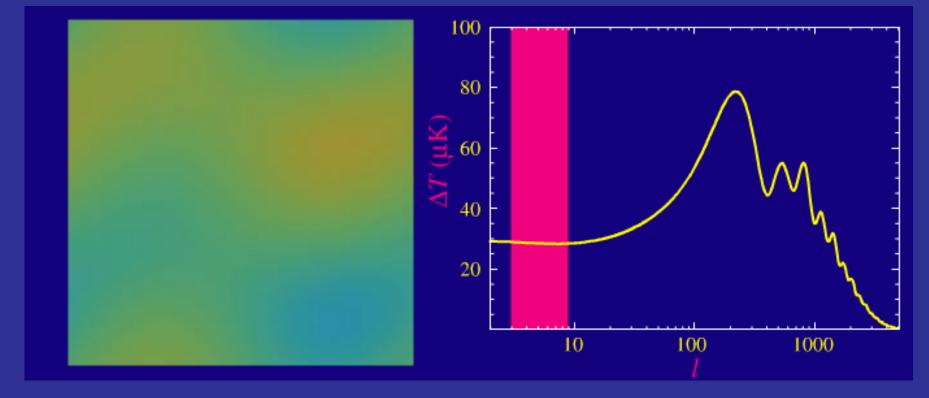
- 1 part in 100000 variations in temperature
- Spot sizes ranging from a fraction of a degree to 180 degrees



 Selecting only spots of a given range of sizes gives a power spectrum or frequency spectrum of the variations much like a graphic equalizer for sound.

Seeing Spots





Spatial vs Angular Power

 Take the radiation distribution at recombination to be described by an isotropic temperature field T(x) and recombination to be instantaneous

$$T(\hat{\mathbf{n}}) = \int dD \, T(\mathbf{x}) \delta(D - D_*)$$

where D is the comoving distance and D_* denotes recombination

• Describe the temperature field by its Fourier moments

$$T(\mathbf{x}) = \int \frac{d^3k}{(2\pi)^3} T(\mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{x}}$$

with a power spectrum

$$\langle T(\mathbf{k})^*T(\mathbf{k}')\rangle = (2\pi)^3 \delta(\mathbf{k} - \mathbf{k}') P_T(\mathbf{k})$$

Spatial vs Angular Power

• Note that the variance of the field

$$\langle T(\mathbf{x})T(\mathbf{x})\rangle = \int \frac{d^3k}{(2\pi)^3} P(k)$$
$$= \int d\ln k \, \frac{k^3 P(k)}{2\pi^2} \equiv \int d\ln k \, \Delta_T^2(k)$$

so it is more convenient to think in the log power spectrum $\Delta_T^2(k)$

• Angular temperature field

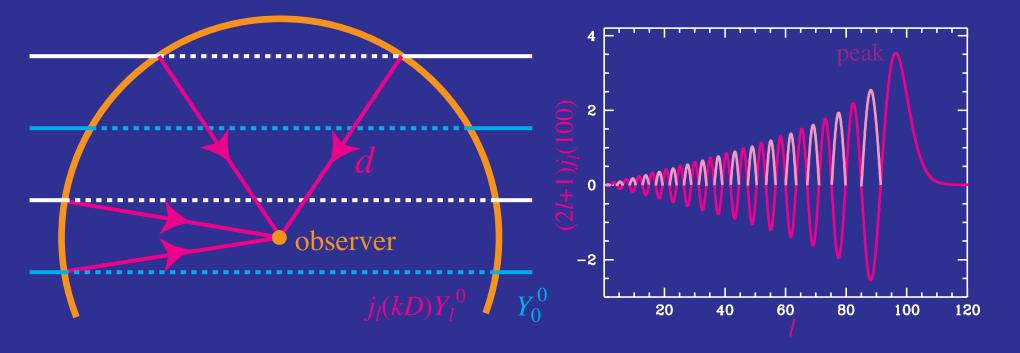
$$T(\hat{\mathbf{n}}) = \int \frac{d^3k}{(2\pi)^3} T(\mathbf{k}) e^{i\mathbf{k}\cdot D_*\hat{\mathbf{n}}}$$

• Expand out plane wave in spherical coordinates

$$e^{i\mathbf{k}D_*\cdot\hat{\mathbf{n}}} = 4\pi \sum_{\ell m} i^\ell j_\ell (kD_*) Y^*_{\ell m}(\mathbf{k}) Y_{\ell m}(\hat{\mathbf{n}})$$

Angular Projection

- Angular projection comes from the spherical harmonic decomposition of plane waves
- Angular field is an integral over source shells with Bessel function weights
- Bessel function peaks near *l=kD* with a long tail to lower multipoles



Spatial vs Angular Power

• Multipole moments

$$T_{\ell m} = \int \frac{d^3k}{(2\pi)^3} T(\mathbf{k}) 4\pi i^{\ell} j_{\ell}(kD_*) Y_{\ell m}(\mathbf{k})$$

• Power spectrum

$$\langle T_{\ell m}^* T_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{m m'} 4\pi \int d\ln k \, j_{\ell}^2 (k D_*) \Delta_T^2(k)$$

with $\int_0^\infty j_\ell^2(x) d\ln x = 1/(2\ell(\ell+1))$, slowly varying Δ_T^2

$$C_{\ell} = \frac{4\pi \Delta_T^2(\ell/D_*)}{2\ell(\ell+1)} = \frac{2\pi}{\ell(\ell+1)} \Delta_T^2(\ell/D_*)$$

so $\ell(\ell+1)C_{\ell}/2\pi = \Delta_T^2$ is commonly used log power

Spatial vs Angular Power

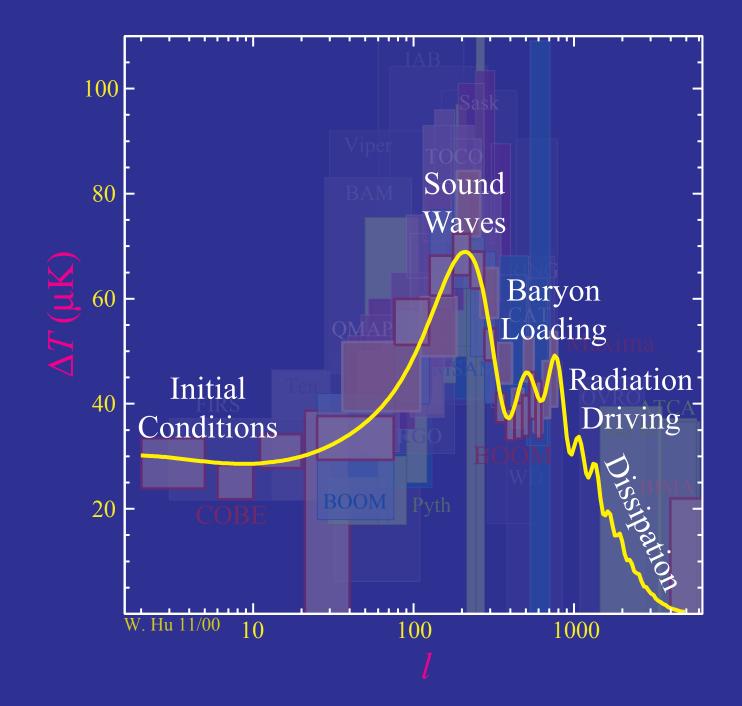
• Closely related to the variance per log interval in multipole space:

$$\begin{split} \langle T(\hat{\mathbf{n}})T(\hat{\mathbf{n}}) \rangle &= \sum_{\ell m} \sum_{\ell' m'} \langle T_{\ell m}^* T_{\ell' m'} \rangle Y_{\ell m}^*(\hat{\mathbf{n}}) Y_{\ell' m'}(\hat{\mathbf{n}}) \\ &= \sum_{\ell} C_{\ell} \sum_{m} Y_{\ell m}^*(\hat{\mathbf{n}}) Y_{\ell' m'}(\hat{\mathbf{n}}) \\ &= \sum_{\ell} \frac{2\ell + 1}{4\pi} C_{\ell} \\ &\approx \int d\ln \ell \frac{\ell(2\ell + 1)}{4\pi} C_{\ell} \end{split}$$

• In particular: scale invariant in physical space becomes scale invariant in multipole space at $\ell \gg 1$

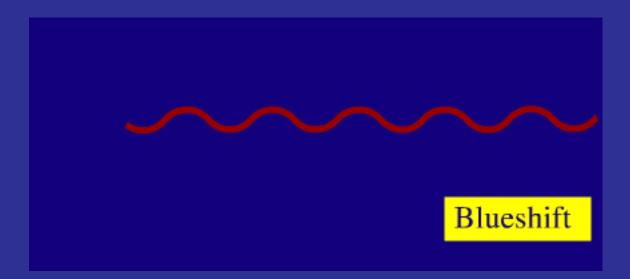
Angular Peaks

Physical Landscape



Seeing Sound

- Colliding electrons, protons and photons forms a plasma
- Acts as gas just like molecules in the air
- Compressional disturbance propagates in the gas through particle collisions



- Unlike sound in the air, we see the sound in the CMB
- Compression heats the gas resulting in a hot spot in the CMB

Thomson Scattering

• Thomson scattering of photons off of free electrons is the most important CMB process with a cross section (averaged over polarization states) of

$$\sigma_T = \frac{8\pi\alpha^2}{3m_e^2} = 6.65 \times 10^{-25} \text{cm}^2$$

• Density of free electrons in a fully ionized $x_e = 1$ universe

$$n_e = (1 - Y_p/2) x_e n_b \approx 10^{-5} \Omega_b h^2 (1+z)^3 \text{cm}^{-3}$$
,

where $Y_p \approx 0.24$ is the Helium mass fraction, creates a high (comoving) Thomson opacity

$$\dot{\tau} \equiv n_e \sigma_T a$$

where dots are conformal time $\eta \equiv \int dt/a$ derivatives and τ is the optical depth.

Tight Coupling Approximation

• Near recombination $z \approx 10^3$ and $\Omega_b h^2 \approx 0.02$, the (comoving) mean free path of a photon

$$\lambda_C \equiv \frac{1}{\dot{\tau}} \sim 2.5 \mathrm{Mpc}$$

small by cosmological standards!

- On scales λ ≫ λ_C photons are tightly coupled to the electrons by Thomson scattering which in turn are tightly coupled to the baryons by Coulomb interactions
- Specifically, their bulk velocities are defined by a single fluid velocity v_γ = v_b and the photons carry no anisotropy in the rest frame of the baryons
- \rightarrow No heat conduction or viscosity (anisotropic stress) in fluid

Zeroth Order Approximation

- Momentum density of a fluid is $(\rho + p)v$, where p is the pressure
- Neglect the momentum density of the baryons

$$R \equiv \frac{(\rho_b + p_b)v_b}{(\rho_\gamma + p_\gamma)v_\gamma} = \frac{\rho_b + p_b}{\rho_\gamma + p_\gamma} = \frac{3\rho_b}{4\rho_\gamma}$$
$$\approx 0.6 \left(\frac{\Omega_b h^2}{0.02}\right) \left(\frac{a}{10^{-3}}\right)$$

since $\rho_{\gamma} \propto T^4$ is fixed by the CMB temperature T = 2.73(1+z)K – OK substantially before recombination

• Neglect radiation in the expansion

$$\frac{\rho_m}{\rho_r} = 3.6 \left(\frac{\Omega_m h^2}{0.15}\right) \left(\frac{a}{10^{-3}}\right)$$

Number Continuity

• Photons are not created or destroyed. Without expansion

$$\dot{n}_{\gamma} + \nabla \cdot (n_{\gamma} \mathbf{v}_{\gamma}) = 0$$

but the expansion or Hubble flow causes $n_{\gamma} \propto a^{-3}$ or

$$\dot{n}_{\gamma} + 3n_{\gamma}\frac{\dot{a}}{a} + \nabla \cdot (n_{\gamma}\mathbf{v}_{\gamma}) = 0$$

• Linearize $\delta n_{\gamma} = n_{\gamma} - \bar{n}_{\gamma}$

$$(\delta n_{\gamma})^{\cdot} = -3\delta n_{\gamma}\frac{\dot{a}}{a} - n_{\gamma}\nabla\cdot\mathbf{v}_{\gamma}$$
$$\left(\frac{\delta n_{\gamma}}{n_{\gamma}}\right)^{\cdot} = -\nabla\cdot\mathbf{v}_{\gamma}$$

Continuity Equation

• Number density $n_{\gamma} \propto T^3$ so define temperature fluctuation Θ

$$\frac{\delta n_{\gamma}}{n_{\gamma}} = 3\frac{\delta T}{T} \equiv 3\Theta$$

• Real space continuity equation

$$\dot{\Theta} = -\frac{1}{3}\nabla \cdot \mathbf{v}_{\gamma}$$

• Fourier space

$$\dot{\Theta} = -\frac{1}{3}i\mathbf{k}\cdot\mathbf{v}_{\gamma}$$

Momentum Conservation

- No expansion: $\dot{\mathbf{q}} = \mathbf{F}$
- De Broglie wavelength stretches with the expansion

$$\dot{\mathbf{q}} + \frac{\dot{a}}{a}\mathbf{q} = \mathbf{F}$$

for photons this the redshift, for non-relativistic particles expansion drag on peculiar velocities

 Collection of particles: momentum → momentum density (ρ_γ + p_γ)v_γ and force → pressure gradient

$$\begin{split} [(\rho_{\gamma} + p_{\gamma})\mathbf{v}_{\gamma}]^{\cdot} &= -4\frac{\dot{a}}{a}(\rho_{\gamma} + p_{\gamma})\mathbf{v}_{\gamma} - \nabla p_{\gamma} \\ &\frac{4}{3}\rho_{\gamma}\dot{\mathbf{v}}_{\gamma} = \frac{1}{3}\nabla\rho_{\gamma} \\ &\dot{\mathbf{v}}_{\gamma} = -\nabla\Theta \end{split}$$

Euler Equation

• Fourier space

 $\dot{\mathbf{v}}_{\gamma} = -ik\Theta$

- Pressure gradients (any gradient of a scalar field) generates a curl-free flow
- For convenience define velocity amplitude:

$$\mathbf{v}_{\gamma} \equiv -iv_{\gamma}\hat{\mathbf{k}}$$

• Euler Equation:

$$\dot{v}_{\gamma} = k\Theta$$

• Continuity Equation:

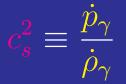
$$\dot{\Theta} = -\frac{1}{3}kv_{\gamma}$$

Oscillator: Take One

• Combine these to form the simple harmonic oscillator equation

 $\ddot{\Theta} + c_s^2 k^2 \Theta = 0$

where the adiabatic sound speed is defined through



here $c_s^2 = 1/3$ since we are photon-dominated

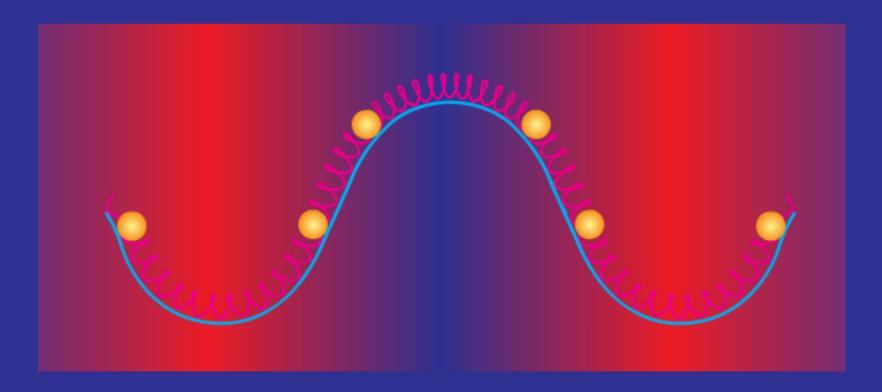
• General solution:

$$\Theta(\eta) = \Theta(0)\cos(ks) + \frac{\dot{\Theta}(0)}{kc_s}\sin(ks)$$

where the sound horizon is defined as $s \equiv \int c_s d\eta$

Oscillations frozen at recombination

Compression=hot spots, Rarefaction=cold spots



Harmonic Extrema

All modes are frozen in at recombination (denoted with a subscript *) yielding temperature perturbations of different amplitude for different modes. For the adiabatic (curvature mode) Θ(0) = 0

 $\Theta(\eta_*) = \Theta(0) \cos(ks_*)$

• Modes caught in the extrema of their oscillation will have enhanced fluctuations

$$k_n s_* = n\pi$$

yielding a fundamental scale or frequency, related to the inverse sound horizon

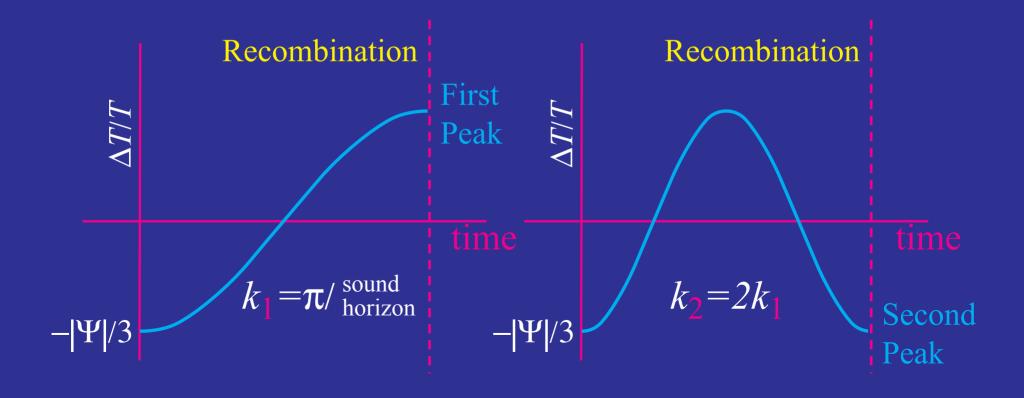
$$k_A = \pi/s_*$$

and a harmonic relationship to the other extrema as 1:2:3...

The First Peak

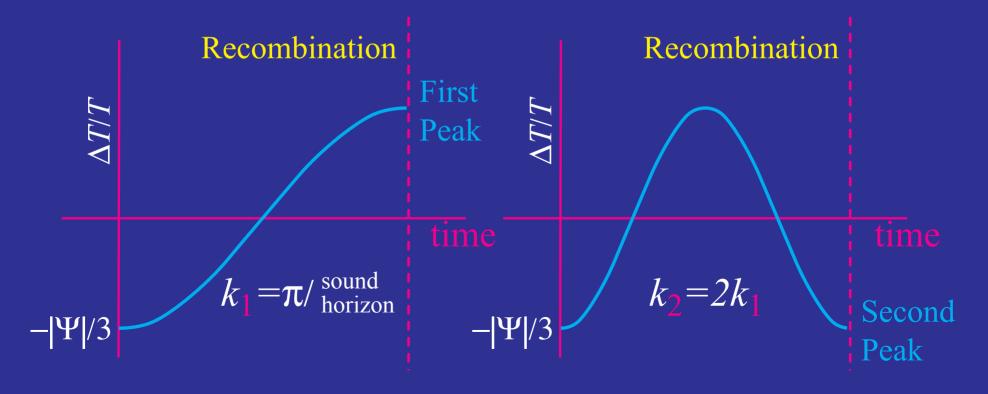
Extrema=Peaks

- First peak = mode that just compresses
- Second peak = mode that compresses then rarefies: twice the wavenumber



Extrema=Peaks

- First peak = mode that just compresses
- Second peak = mode that compresses then rarefies: twice the wavenumber
- Harmonic peaks: 1:2:3 in wavenumber



Peak Location

 The fundmental physical scale is translated into a fundamental angular scale by simple projection according to the angular diameter distance D_A

> $heta_A = \lambda_A / D_A$ $\ell_A = k_A D_A$

• In a flat universe, the distance is simply $D_A = D \equiv \eta_0 - \eta_* \approx \eta_0$, the horizon distance, and $k_A = \pi/s_* = \sqrt{3}\pi/\eta_*$ so

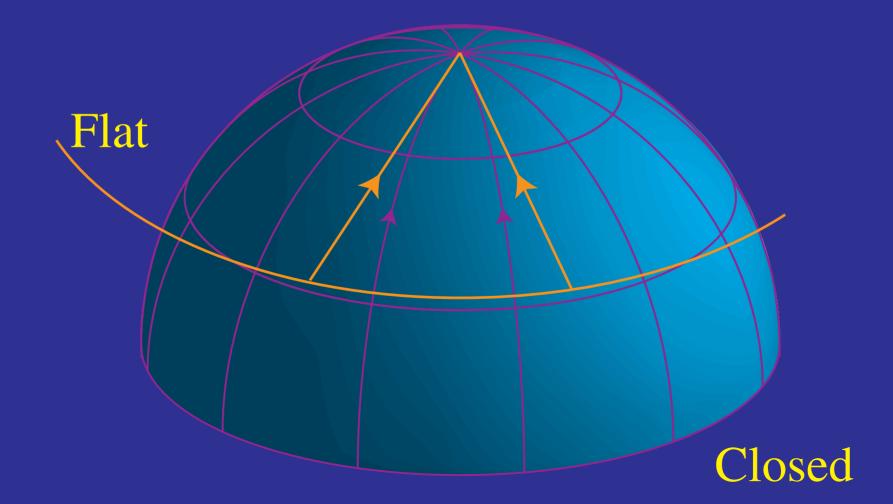
$$\theta_A \approx \frac{\eta_*}{\eta_0}$$

• In a matter-dominated universe $\eta \propto a^{1/2}$ so $\theta_A \approx 1/30 \approx 2^\circ$ or

 $\ell_A \approx 200$

Spatial Curvature

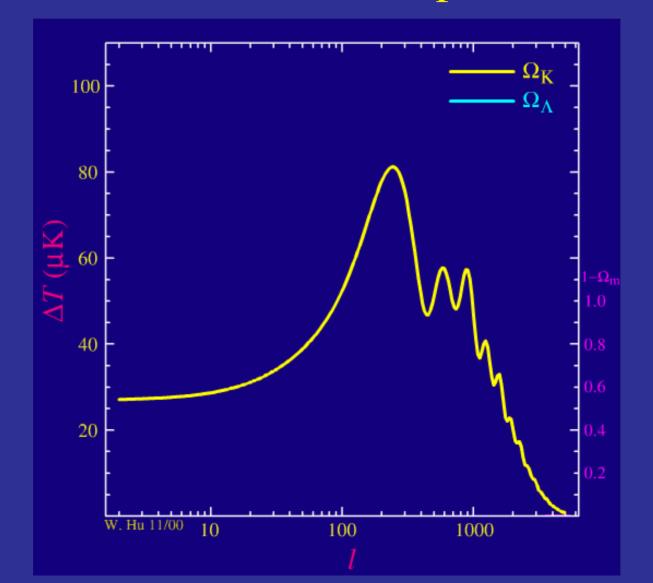
- Physical scale of peak = distance sound travels
- Angular scale measured: comoving angular diameter distance test for curvature



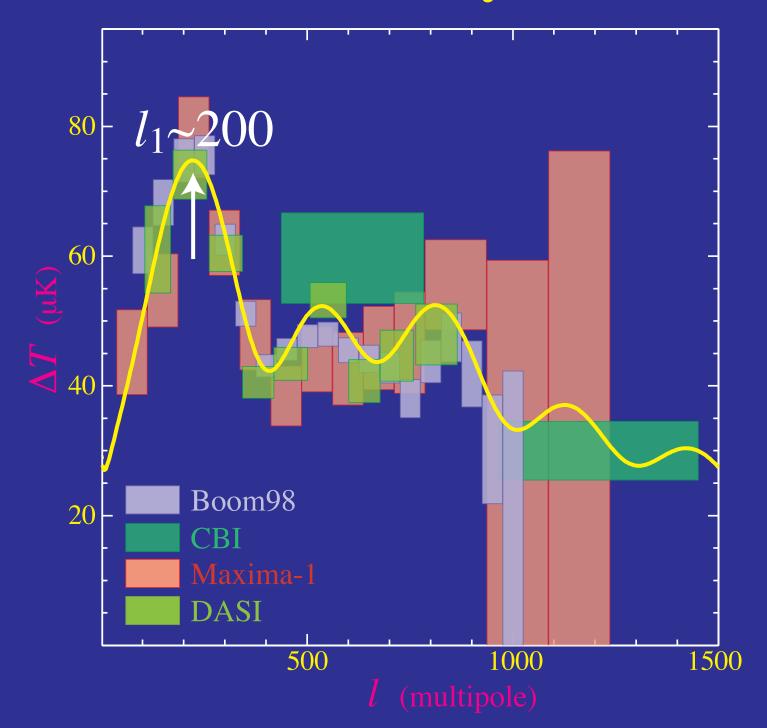
Curvature

- In a curved universe, the apparent or angular diameter distance is no longer the conformal distance $D_A = R \sin(D/R) \neq D$
- Objects in a closed universe are further than they appear! gravitational lensing of the background...
- Curvature scale of the universe must be substantially larger than current horizon
- Flat universe indicates critical density and implies missing energy given local measures of the matter density "dark energy"
- D also depends on dark energy density $\Omega_{\rm DE}$ and equation of state $w = p_{\rm DE}/\rho_{\rm DE}$.
- Expansion rate at recombination or matter-radiation ratio enters into calculation of k_A .

Curvature in the Power Spectrum
Features scale with angular diameter distance
Angular location of the first peak



First Peak Precisely Measured



Doppler Effect

 Bulk motion of fluid changes the observed temperature via Doppler shifts

$$\left(\frac{\Delta T}{T}\right)_{\rm dop} = \hat{\mathbf{n}} \cdot \mathbf{v}_{\gamma}$$

• Averaged over directions

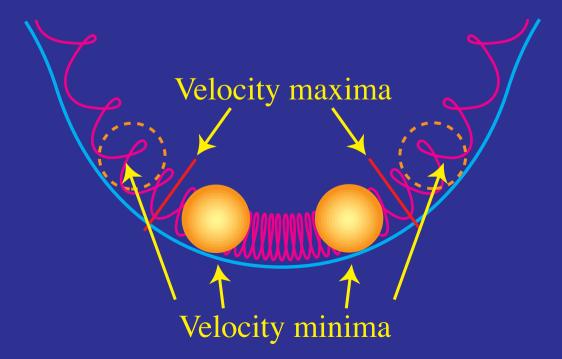
$$\left(\frac{\Delta T}{T}\right)_{\rm rms} = \frac{\boldsymbol{v_{\gamma}}}{\sqrt{3}}$$

• Acoustic solution

$$\frac{v_{\gamma}}{\sqrt{3}} = -\frac{\sqrt{3}}{k}\dot{\Theta} = \frac{\sqrt{3}}{k}kc_s\,\Theta(0)\sin(ks)$$
$$= \Theta(0)\sin(ks)$$

Doppler Effect

- Relative velocity of fluid and observer
- Extrema of oscillations are turning points or velocity zero points
- Velocity $\pi/2$ out of phase with temperature



Doppler Effect

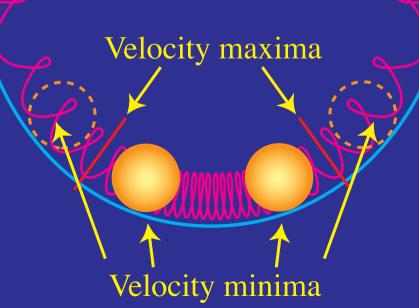
No baryons

 $-|\Psi|/3$

 $-\Psi/3$

Baryons

- Relative velocity of fluid and observer
- Extrema of oscillations are turning points or velocity zero points
- Velocity $\pi/2$ out of phase with temperature
- Zero point not shifted by baryon drag
- Increased baryon inertia decreases effect $m_{\rm eff} V^2 = {\rm const.} \quad V \propto \ m_{\rm eff}^{-1/2} = (1+R)^{-1/2}$



Doppler Peaks?

- Doppler effect for the photon dominated system is of equal amplitude and π/2 out of phase: extrema of temperature are turning points of velocity
- Effects add in quadrature:

$$\left(\frac{\Delta T}{T}\right)^2 = \Theta^2(0)[\cos^2(ks) + \sin^2(ks)] = \Theta^2(0)$$

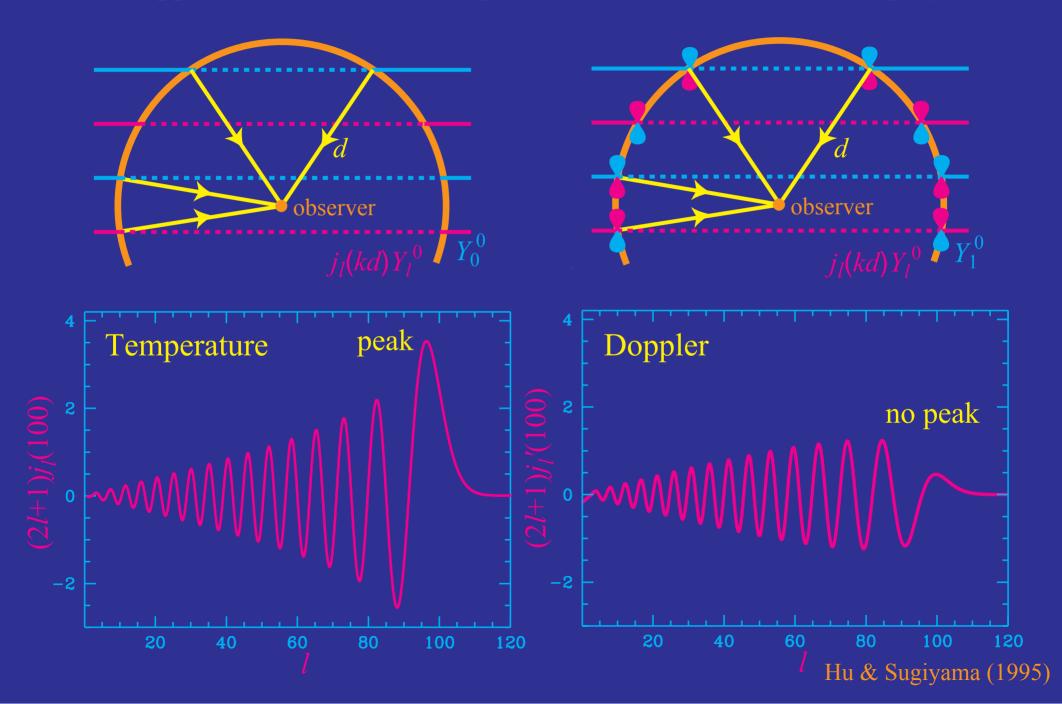
- No peaks in k spectrum! However the Doppler effect carries an angular dependence that changes its projection on the sky $\hat{\mathbf{n}} \cdot \mathbf{v}_{\gamma} \propto \hat{\mathbf{n}} \cdot \hat{\mathbf{k}}$
- Coordinates where $\hat{\mathbf{z}} \parallel \hat{\mathbf{k}}$

$$Y_{10}Y_{\ell 0} \to Y_{\ell \pm 10}$$

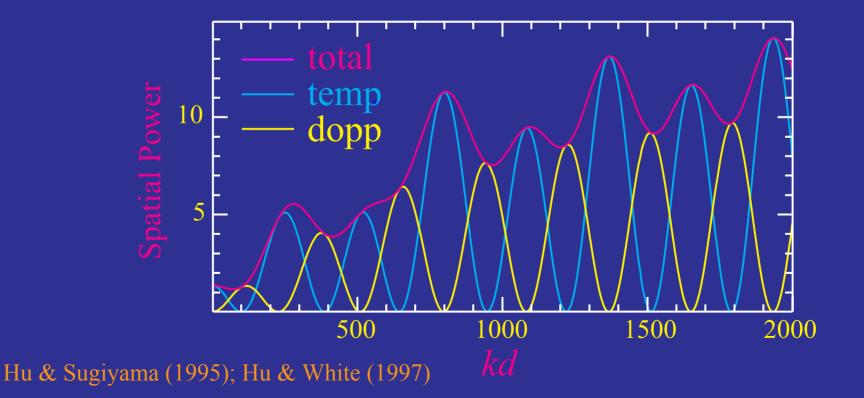
recoupling $j'_{\ell}Y_{\ell 0}$: no peaks in Doppler effect

Doppler Peaks?

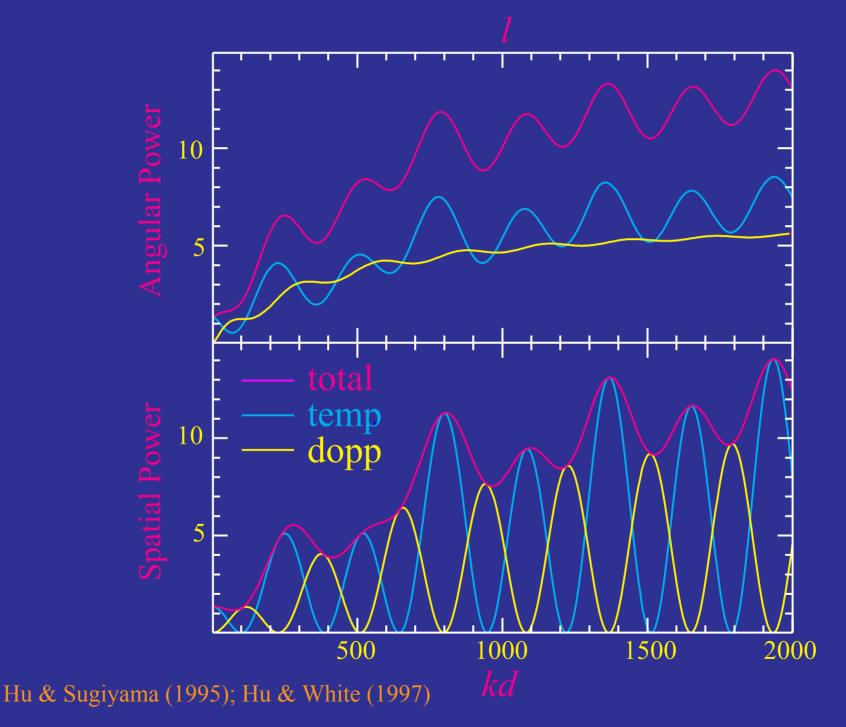
• Doppler effect has lower amplitude and weak features from projection



Relative Contributions



Relative Contributions



Lecture I: Summary

- CMB photons emerge from the cosmic photosphere at $z \sim 10^3$ when the universe (re)combines
- Temperature inhomogeneity at recombination becomes anisotropy to the observer at present
- Initial temperature inhomogeneities oscillate as sound waves in the plasma
- Harmonic series of peaks based on the distance sound travels by recombination
- Distance can be calibrated if expansion history is known and baryon content known
- Angular scale measures the angular diameter distance to recombination involving the curvature and to a lesser extent the dark energy