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In the Beginning...

Hu & White (2004); artist:B. Christie/SciAm;  available at http://background.uchicago.edu



Predicting the CMB: Nucleosynthesis

• Light element abundance
 depends on baryon/photon
 ratio

• Existence and temperature
 of CMB originally predicted 
 (Gamow 1948) by light 
 elements + visible baryons

• With the CMB photon number
  density fixed by the temperature
  light elements imply dark baryons

Burles, Nollett, Turner (1999)

• Peaks say that photon-baryon ratio
  at MeV and eV scales are same



Thermalization
• Compton scattering conserves the number of photons

e− + γ ↔ e− + γ

hence cannot create a blackbody, only Bose-Einstein spectrum

• Above z ∼ 105 − 10−6 creation/absorption processes:
bremmstrahlung and double (or radiative) Compton scattering

e− + p↔ e− + p+ γ

e− + γ ↔ e− + γ + γ

sufficently rapid to bring spectrum to a blackbody

• Below this redshift, only low frequency spectrum thermalized
leaving a µ or y distortion near and above the peak

• Consequently energy injection into the plasma after ∼ few months
strongly constrained



Comptonization

• Compton upscattering: y–distortion - seen in Galaxy clusters

• Redistribution: µ-distortion
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Thermalization
• Photon creation processes effective at low frequency and high
 redshift; in conjunction with Compton scattering, thermalizes 
 the spectrum
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Spectrum

• FIRAS Spectrum

• Perfect Blackbody 
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Darkness from Light: Recombination
• Reversing the expansion, CMB photons got hotter and hotter into

the past

• When the universe was 1000 times smaller and the CMB photons
were at 3000K they were energetic enough disintingrate atoms into
electrons and protons.




Recombination
• Maxwell-Boltzmann distribution

n = ge−(m−µ)/T

(
mT

2π

)3/2

determines the equilibrium distribution for species in reaction and
hence the equilibrium ionization:

p+ e− ↔ H + γ

npne
nH
≈ e−B/T

(
meT

2π

)3/2

e(µp+µe−µH)/T

where B = mp +me −mH = 13.6eV is the binding energy,
gp = ge = 1

2
gH = 2, and µp + µe = µH in equilibrium



Recombination
• Define ionization fraction

np = ne = xenb

nH = ntot − nb = (1− xe)nb

• Saha Equation

nenp
nHnb

=
x2
e

1− xe
=

1

nb

(
meT

2π

)3/2

e−B/T

• Naive guess of T∗ = B wrong due to the low baryon-photon ratio

ηbγ ≡ nb/nγ ≈ 3× 10−8Ωbh
2

• Sufficient number of ionizing photons in Wien tail until
T∗ ≈ 0.3eV so recombination at z∗ ≈ 1000



Recombination

• Hung up by Lyα opacity (2γ forbidden transition + redshifting)

• Frozen out with a finite residual ionization fraction
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Anisotropy Formation
• Temperature inhomogeneities at recombination become anisotropy




Temperature Fluctuations
• Observe blackbody radiation with a temperature that differs at

10−5 coming from the surface of recombination

f(ν, n̂) = [exp(2πν/T (n̂))− 1]−1

• Decompose the temperature perturbation in spherical harmonics

T (n̂) =
∑
`m

T`mY`m(n̂)

• For Gaussian random statistically isotropic fluctuations, the
statistical properties of the temperature field are determined by the
power spectrum

〈T`m∗T`′m′〉 = δ``′δmm′C`

in units of µK2 or in terms of dimensionless temperature
Θ = ∆T/T ∼ 10−5



Seeing Spots
• 1 part in 100000 variations in temperature

• Spot sizes ranging from a fraction of a degree to 180 degrees

• Selecting only spots of a given range of sizes gives a power
spectrum or frequency spectrum of the variations much like a
graphic equalizer for sound.

64º




Seeing Spots




Spatial vs Angular Power
• Take the radiation distribution at recombination to be described by

an isotropic temperature field T (x) and recombination to be
instantaneous

T (n̂) =

∫
dD T (x)δ(D −D∗)

where D is the comoving distance and D∗ denotes recombination

• Describe the temperature field by its Fourier moments

T (x) =

∫
d3k

(2π)3
T (k)eik·x

with a power spectrum

〈T (k)∗T (k′)〉 = (2π)3δ(k− k′)PT (k)



Spatial vs Angular Power
• Note that the variance of the field

〈T (x)T (x)〉 =

∫
d3k

(2π)3
P (k)

=

∫
d ln k

k3P (k)

2π2
≡
∫
d ln k∆2

T (k)

so it is more convenient to think in the log power spectrum ∆2
T (k)

• Angular temperature field

T (n̂) =

∫
d3k

(2π)3
T (k)eik·D∗n̂

• Expand out plane wave in spherical coordinates

eikD∗·n̂ = 4π
∑
`m

i`j`(kD∗)Y
∗
`m(k)Y`m(n̂)



Angular Projection
• Angular projection comes from the spherical harmonic 
 decomposition of plane waves
• Angular field is an integral over source shells with Bessel function
 weights

• Bessel function peaks near l=kD with a long tail to lower 
 multipoles
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Spatial vs Angular Power
• Multipole moments

T`m =

∫
d3k

(2π)3
T (k)4πi`j`(kD∗)Y`m(k)

• Power spectrum

〈T ∗`mT`′m′〉 = δ``′δmm′4π

∫
d ln k j2

` (kD∗)∆
2
T (k)

with
∫∞

0
j2
` (x)d lnx = 1/(2`(`+ 1)), slowly varying ∆2

T

C` =
4π∆2

T (`/D∗)

2`(`+ 1)
=

2π

`(`+ 1)
∆2
T (`/D∗)

so `(`+ 1)C`/2π = ∆2
T is commonly used log power



Spatial vs Angular Power
• Closely related to the variance per log interval in multipole space:

〈T (n̂)T (n̂)〉 =
∑
`m

∑
`′m′

〈T ∗`mT`′m′〉Y ∗`m(n̂)Y`′m′(n̂)

=
∑
`

C`
∑
m

Y ∗`m(n̂)Y`′m′(n̂)

=
∑
`

2`+ 1

4π
C`

≈
∫
d ln `

`(2`+ 1)

4π
C`

• In particular: scale invariant in physical space becomes scale
invariant in multipole space at `� 1



Angular Peaks



Physical Landscape
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Seeing Sound
• Colliding electrons, protons and photons forms a plasma

• Acts as gas just like molecules in the air

• Compressional disturbance propagates in the gas through particle
collisions

• Unlike sound in the air, we see the sound in the CMB

• Compression heats the gas resulting in a hot spot in the CMB




Thomson Scattering
• Thomson scattering of photons off of free electrons is the most

important CMB process with a cross section (averaged over
polarization states) of

σT =
8πα2

3m2
e

= 6.65× 10−25cm2

• Density of free electrons in a fully ionized xe = 1 universe

ne = (1− Yp/2)xenb ≈ 10−5Ωbh
2(1 + z)3cm−3 ,

where Yp ≈ 0.24 is the Helium mass fraction, creates a high
(comoving) Thomson opacity

τ̇ ≡ neσTa

where dots are conformal time η ≡
∫
dt/a derivatives and τ is the

optical depth.



Tight Coupling Approximation
• Near recombination z ≈ 103 and Ωbh

2 ≈ 0.02, the (comoving)
mean free path of a photon

λC ≡
1

τ̇
∼ 2.5Mpc

small by cosmological standards!

• On scales λ� λC photons are tightly coupled to the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

• Specifically, their bulk velocities are defined by a single fluid
velocity vγ = vb and the photons carry no anisotropy in the rest
frame of the baryons

• → No heat conduction or viscosity (anisotropic stress) in fluid



Zeroth Order Approximation
• Momentum density of a fluid is (ρ+ p)v, where p is the pressure

• Neglect the momentum density of the baryons

R ≡ (ρb + pb)vb
(ργ + pγ)vγ

=
ρb + pb
ργ + pγ

=
3ρb
4ργ

≈ 0.6

(
Ωbh

2

0.02

)( a

10−3

)
since ργ ∝ T 4 is fixed by the CMB temperature T = 2.73(1 + z)K
– OK substantially before recombination

• Neglect radiation in the expansion

ρm
ρr

= 3.6

(
Ωmh

2

0.15

)( a

10−3

)



Number Continuity
• Photons are not created or destroyed. Without expansion

ṅγ +∇ · (nγvγ) = 0

but the expansion or Hubble flow causes nγ ∝ a−3 or

ṅγ + 3nγ
ȧ

a
+∇ · (nγvγ) = 0

• Linearize δnγ = nγ − n̄γ

(δnγ)
· = −3δnγ

ȧ

a
− nγ∇ · vγ(

δnγ
nγ

)·
= −∇ · vγ



Continuity Equation
• Number density nγ ∝ T 3 so define temperature fluctuation Θ

δnγ
nγ

= 3
δT

T
≡ 3Θ

• Real space continuity equation

Θ̇ = −1

3
∇ · vγ

• Fourier space

Θ̇ = −1

3
ik · vγ



Momentum Conservation
• No expansion: q̇ = F

• De Broglie wavelength stretches with the expansion

q̇ +
ȧ

a
q = F

for photons this the redshift, for non-relativistic particles
expansion drag on peculiar velocities

• Collection of particles: momentum→ momentum density
(ργ + pγ)vγ and force→ pressure gradient

[(ργ + pγ)vγ]
· = −4

ȧ

a
(ργ + pγ)vγ −∇pγ

4

3
ργv̇γ =

1

3
∇ργ

v̇γ = −∇Θ



Euler Equation
• Fourier space

v̇γ = −ikΘ

• Pressure gradients (any gradient of a scalar field) generates a
curl-free flow

• For convenience define velocity amplitude:

vγ ≡ −ivγk̂

• Euler Equation:

v̇γ = kΘ

• Continuity Equation:

Θ̇ = −1

3
kvγ



Oscillator: Take One
• Combine these to form the simple harmonic oscillator equation

Θ̈ + c2
sk

2Θ = 0

where the adiabatic sound speed is defined through

c2
s ≡

ṗγ
ρ̇γ

here c2
s = 1/3 since we are photon-dominated

• General solution:

Θ(η) = Θ(0) cos(ks) +
Θ̇(0)

kcs
sin(ks)

where the sound horizon is defined as s ≡
∫
csdη



Seeing Sound
• Oscillations frozen at recombination

• Compression=hot spots, Rarefaction=cold spots




Harmonic Extrema
• All modes are frozen in at recombination (denoted with a subscript
∗) yielding temperature perturbations of different amplitude for
different modes. For the adiabatic (curvature mode) Θ̇(0) = 0

Θ(η∗) = Θ(0) cos(ks∗)

• Modes caught in the extrema of their oscillation will have
enhanced fluctuations

kns∗ = nπ

yielding a fundamental scale or frequency, related to the inverse
sound horizon

kA = π/s∗

and a harmonic relationship to the other extrema as 1 : 2 : 3...



The First Peak



Extrema=Peaks
• First peak = mode that just compresses

• Second peak = mode that compresses then
 rarefies: twice the wavenumber
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Extrema=Peaks
• First peak = mode that just compresses

• Second peak = mode that compresses then
 rarefies: twice the wavenumber

• Harmonic peaks: 1:2:3 in wavenumber
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Peak Location
• The fundmental physical scale is translated into a fundamental

angular scale by simple projection according to the angular
diameter distance DA

θA = λA/DA

`A = kADA

• In a flat universe, the distance is simply DA = D ≡ η0 − η∗ ≈ η0,
the horizon distance, and kA = π/s∗ =

√
3π/η∗ so

θA ≈
η∗
η0

• In a matter-dominated universe η ∝ a1/2 so θA ≈ 1/30 ≈ 2◦ or

`A ≈ 200



Spatial Curvature
•	Physical scale of peak = distance sound travels

•	Angular scale measured: comoving angular
	 diameter distance test for curvature

Flat

Closed



Curvature
• In a curved universe, the apparent or angular diameter distance is

no longer the conformal distance DA = R sin(D/R) 6= D

• Objects in a closed universe are further than they appear!
gravitational lensing of the background...

• Curvature scale of the universe must be substantially larger than
current horizon

• Flat universe indicates critical density and implies missing energy
given local measures of the matter density “dark energy”

• D also depends on dark energy density ΩDE and equation of state
w = pDE/ρDE.

• Expansion rate at recombination or matter-radiation ratio enters
into calculation of kA.



Curvature in the Power Spectrum
•	Features scale with angular diameter distance

•	Angular location of the first peak




First Peak Precisely Measured
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Doppler Effect
• Bulk motion of fluid changes the observed temperature via

Doppler shifts (
∆T

T

)
dop

= n̂ · vγ

• Averaged over directions(
∆T

T

)
rms

=
vγ√

3

• Acoustic solution

vγ√
3

= −
√

3

k
Θ̇ =

√
3

k
kcs Θ(0)sin(ks)

= Θ(0)sin(ks)



Doppler Effect
• Relative velocity of fluid and observer 
• Extrema of oscillations are turning points or velocity zero points
• Velocity π/2 out of phase with temperature

Velocity minima

Velocity maxima



Doppler Effect
• Relative velocity of fluid and observer 
• Extrema of oscillations are turning points or velocity zero points
• Velocity π/2 out of phase with temperature
• Zero point not shifted by baryon drag
• Increased baryon inertia decreases effect

meff V2 = const.   V ∝  meff
–1/2 = (1+R)–1/2

V||

V||

η

∆T
/T

η
∆T
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Doppler Peaks?
• Doppler effect for the photon dominated system is of equal

amplitude and π/2 out of phase: extrema of temperature are
turning points of velocity

• Effects add in quadrature:(
∆T

T

)2

= Θ2(0)[cos2(ks) + sin2(ks)] = Θ2(0)

• No peaks in k spectrum! However the Doppler effect carries an
angular dependence that changes its projection on the sky
n̂ · vγ ∝ n̂ · k̂
• Coordinates where ẑ ‖ k̂

Y10Y`0 → Y`±1 0

recoupling j′`Y`0: no peaks in Doppler effect



Doppler Peaks?
• Doppler effect has lower amplitude and weak features from projection
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Relative Contributions
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Lecture I: Summary
• CMB photons emerge from the cosmic photosphere at z ∼ 103

when the universe (re)combines

• Temperature inhomogeneity at recombination becomes anisotropy
to the observer at present

• Initial temperature inhomogeneities oscillate as sound waves in the
plasma

• Harmonic series of peaks based on the distance sound travels by
recombination

• Distance can be calibrated if expansion history is known and
baryon content known

• Angular scale measures the angular diameter distance to
recombination involving the curvature and to a lesser extent the
dark energy
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