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Effective Temperature
• Effective temperature initially Θ+Ψ=Ψ/3 and
 is negative in an overdensity 
• Effective temperature oscillates around zero 
• Effective temperature becomes observed 
 temperature after gravitational redshift
    



The Second Peak



Baryon Loading
• Baryons add extra mass to the photon-baryon fluid

• Controlling parameter is the momentum density ratio:

R ≡ pb + ρb
pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of order unity at recombination

• Momentum density of the joint system is conserved

(ργ + pγ)vγ + (ρb + pb)vb ≈ (pγ + pγ + ρb + ργ)vγ

= (1 +R)(ργ + pγ)vγb

where the controlling parameter is the momentum density ratio:

R ≡ pb + ρb
pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of order unity at recombination
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New Euler Equation
• Momentum density ratio enters as

[(1 +R)(ργ + pγ)vγb]
· = −4

ȧ

a
(1 +R)(ργ + pγ)vγb

−∇pγ − (1 +R)(ργ + pγ)∇Ψ

same as before except for (1 +R) terms so

[(1 +R)vγb]
· = kΘ + (1 +R)kΨ

• Photon continuity remains the same

Θ̇ = −k
3
vγb − Φ̇

• Modification of oscillator equation

[(1 +R)Θ̇]· +
1

3
k2Θ = −1

3
k2(1 +R)Ψ− [(1 +R)Φ̇]·



Baryon & Inertia
• Baryons add inertia to 
 the fluid

• Equivalent to adding mass 
 on a spring

• Same initial conditions

• Same null in fluctuations

• Unequal amplitudes of
 extrema




Oscillator: Take Three
• Combine these to form the not-quite-so simple harmonic oscillator

equation

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = −k

2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

where c2
s ≡ ṗγb/ρ̇γb

c2
s =

1

3

1

1 +R

• In a CDM dominated expansion Φ̇ = Ψ̇ = 0 and the adiabatic
approximation Ṙ/R� ω = kcs

[Θ + (1 +R)Ψ](η) = [Θ + (1 +R)Ψ](0) cos(ks)



Baryon Peak Phenomenology
• Photon-baryon ratio enters in three ways

• Overall larger amplitude:

[Θ + (1 +R)Ψ](0) =
1

3
(1 + 3R)Ψ(0)

• Even-odd peak modulation of effective temperature

[Θ + Ψ]peaks = [±(1 + 3R)− 3R]
1

3
Ψ(0)

[Θ + Ψ]1 − [Θ + Ψ]2 = [−6R]
1

3
Ψ(0)

• Shifting of the sound horizon down or `A up

`A ∝
√

1 +R

• Actual effects smaller since R evolves
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Low Baryons

–

A Baryon-meter
• Low baryons: symmetric compressions and
 rarefactions
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Baryon Loading

–

A Baryon-meter
• Load the fluid adding to gravitational force

• Enhance compressional peaks (odd) over
 rarefaction peaks (even)
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A Baryon-meter

• Enhance compressional peaks (odd) over
 rarefaction peaks (even)
    e.g. relative suppression of second peak



Photon Baryon Ratio Evolution
• Oscillator equation has time evolving mass

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = 0

• Effective mass is is meff = 3c−2
s = (1 +R)

• Adiabatic invariant

E

ω
=

1

2
meffωA

2 =
1

2
3c−2
s kcsA

2 ∝ A2(1 +R)1/2 = const.

• Amplitude of oscillation A ∝ (1 +R)−1/4 decays adiabatically as
the photon-baryon ratio changes



Baryons in the Power Spectrum
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 Higher Peaks



Radiation and Dark Matter
• Radiation domination: 
    potential wells created by CMB itself

• Pressure support ⇒ potential decay ⇒ driving

• Heights measures when dark matter dominates




Driving Effects and Matter/Radiation
• Potential perturbation: k2Ψ = –4πGa2δρ generated by radiation
• Radiation →  Potential: inside sound horizon δρ/ρ pressure supported

δρ hence Ψ decays with expansion

Θ+Ψ

−Ψ

η
∆T

/T

Hu & Sugiyama (1995)



Driving Effects and Matter/Radiation
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Driving Effects and Matter/Radiation
• Potential perturbation: k2Ψ = –4πGa2δρ generated by radiation
• Radiation →  Potential: inside sound horizon δρ/ρ pressure supported

δρ hence Ψ decays with expansion
• Potential →  Radiation: Ψ–decay timed to drive oscillation

–2Ψ + (1/3)Ψ = –(5/3)Ψ  → 5x boost
• Feedback stops at matter domination
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Dark Matter in the Power Spectrum




Damping Tail



Dissipation / Diffusion Damping
• Imperfections in the coupled fluid → mean free path λC in the baryons
• Random walk over diffusion scale: geometric mean of mfp & horizon

 λD ~ λC√N ~ √λCη >> λC

• Overtake wavelength:  λD ~ λ ; second order in λC/λ 

• Viscous damping for R<1;  heat conduction damping for R>1

N=η / λC

λD ~ λC√N

λ

Po
w

er

0.1

1.0

500 1000 1500
l

perfect fluid

instant decoupling

Silk (1968); Hu & Sugiyama (1995); Hu & White (1996)



Dissipation / Diffusion Damping
• Rapid increase at recombination as mfp ↑

• Independent of (robust to changes in) perturbation spectrum

• Robust physical scale for angular diameter distance test (ΩK, ΩΛ)
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Recombination



Standard Rulers
• Calibrating the Standard Rulers

• Sound Horizon

• Damping Scale
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Curvature
• Calibration from lower peaks of Ωbh

2 and Ωmh2 allows
measurement of curvature from damping scale

• Independently of peak scale, confirms flat geometry
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Lecture II: Summary
• Gravitational potential redshift combines with gravitationally

induced initial perturbation to form the Sachs-Wolfe effect

• Baryon loading enhances odd numbered peaks so that the ratio of
first to second peak height determines the baryon density

• Decay of potentials during radiation domination drives oscillations
so that the relative peak heights across the first three peaks
determines the matter-radiation ratio

• Fluid imperfections due to viscosity (quadrupole stresses) and heat
conduction dissipate acoustic waves in a manner predicted by
baryon density and matter-radiation ratio

• Strong consistency checks for recombination physics, angular
diameter distance and source of acoustic polarization
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