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Theorist's Time-Ordered Data




Restoring Gravity: Continuity
• Take a simple photon dominated system with gravity

• Continuity altered since a gravitational potential represents a
stretching of the spatial fabric that dilutes number densities –
formally a spatial curvature perturbation

• Think of this as a perturbation to the scale factor a→ a(1 + Φ) so
that the cosmogical redshift is generalized to

ȧ

a
→ ȧ

a
+ Φ̇

(δnγ)
· = −3δnγ

ȧ

a
− 3nγΦ̇− nγ∇ · vγ

so that the continuity equation becomes

Θ̇ = −1

3
kvγ − Φ̇



Metric Stretch

• Potential wells curve or stretch space 

• Like the expansion of the universe, changes in the potential
change the wavelength of photons
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Restoring Gravity: Euler
• Gravitational force in momentum conservation F = −m∇Ψ

generalized to momentum density modifies the Euler equation to

v̇γ = k(Θ + Ψ)

• General relativity says that Φ and Ψ are the relativistic analogues
of the Newtonian potential and that Φ ≈ −Ψ.

• In our matter-dominated approximation, Φ represents matter
density fluctuations through the cosmological Poisson equation

k2Φ = 4πGa2ρm∆m

where the difference comes from the use of comoving coordinates
for k (a2 factor), the removal of the background density into the
background expansion (ρm∆m) and finally a coordinate subtlety
that enters into the definition of ∆m



Constant Potentials
• In the matter dominated epoch potentials are constant because

infall generates velocities as vm ∼ kηΨ

• Velocity divergence generates density perturbations as
∆m ∼ −kηvm ∼ −(kη)2Ψ

• And density perturbations generate potential fluctuations as
Φ ∼ ∆m/(kη)2 ∼ −Ψ, keeping them constant. Note that because
of the expansion, density perturbations must grow to keep
potentials constant.

• Here we have used the Friedman equation H2 = 8πGρm/3 and
η =

∫
d ln a/(aH) ∼ 1/(aH)

• More generally, if stress perturbations are negligible compared
with density perturbations ( δp� δρ ) then potential will remain
roughly constant – more specifically a variant called the Bardeen
or comoving curvature ζ is constant



Oscillator: Take Two
• Combine these to form the simple harmonic oscillator equation

Θ̈ + c2
sk

2Θ = −k
2

3
Ψ− Φ̈

• In a CDM dominated expansion Φ̇ = Ψ̇ = 0. Also for photon
domination c2

s = 1/3 so the oscillator equation becomes

Θ̈ + Ψ̈ + c2
sk

2(Θ + Ψ) = 0

• Solution is just an offset version of the original

[Θ + Ψ](η) = [Θ + Ψ](0) cos(ks)

• Θ + Ψ is also the observed temperature fluctuation since photons
lose energy climbing out of gravitational potentials at
recombination



Gravitational Ringing
• Potential wells = inflationary seeds of structure

• Fluid falls into wells, pressure resists: acoustic
 oscillations




Effective Temperature
• Photons climb out of potential wells at last scattering

• Lose energy to gravitational redshifts

• Observed or effective temperature

Θ + Ψ

• Effective temperature oscillates around zero with amplitude given
by the initial conditions

• Note: initial conditions are set when the perturbation is outside of
horizon, need inflation or other modification to matter-radiation
FRW universe.

• GR says that initial temperature is given by initial potential



Inflation and the Initial Conditions
• Inflation: (nearly) scale-invariant curvature (potential) perturbations

• Superluminal expansion → superhorizon scales → "initial conditions"

• Accompanying temperture perturbations due to cosmological redshift

• Potential perturbation Ψ = time-time metric perturbation
δt/t = Ψ → δT/T = –δa/a = –2/3δt/t = –2/3Ψ

T
im

e

Space

Comoving

cold

hot

Newtonian

Sachs & Wolfe (1967); White & Hu (1997)




Sachs-Wolfe Effect and the Magic 1/3
• A gravitational potential is a perturbation to the temporal

coordinate [formally a gauge transformation]

δt

t
= Ψ

• Convert this to a perturbation in the scale factor,

t =

∫
da

aH
∝
∫

da

aρ1/2
∝ a3(1+w)/2

where w ≡ p/ρ so that during matter domination

δa

a
=

2

3

δt

t

• CMB temperature is cooling as T ∝ a−1 so

Θ + Ψ ≡ δT

T
+ Ψ = −δa

a
+ Ψ =

1

3
Ψ
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Smooth Energy Density & Potential Decay

• A smooth component contributes
density ρ to the expansion

but not
density fluctuation δρ to the Poisson equation

• Imbalance causes potential to decay once smooth 
component dominates the expansion



ISW Effect

• Gravitational blueshift on infall does not cancel redshift 
on climbing out

• Contraction of spatial metric doubles the effect: ∆T/T=2∆Φ

• Effect from potential hills and wells cancel on small scales
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ISW Effect
• ISW effect hidden in the temperature power spectrum by primary
 anisotropy and cosmic variance

[plot: Hu & Scranton (2004)]
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Effective Temperature
• Effective temperature initially Θ+Ψ=Ψ/3 and
 is negative in an overdensity 
• Effective temperature oscillates around zero 
• Effective temperature becomes observed 
 temperature after gravitational redshift
    



The Second Peak



Baryon Loading
• Baryons add extra mass to the photon-baryon fluid

• Controlling parameter is the momentum density ratio:

R ≡ pb + ρb
pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of order unity at recombination

• Momentum density of the joint system is conserved

(ργ + pγ)vγ + (ρb + pb)vb ≈ (pγ + pγ + ρb + ργ)vγ

= (1 +R)(ργ + pγ)vγb

where the controlling parameter is the momentum density ratio:

R ≡ pb + ρb
pγ + ργ

≈ 30Ωbh
2
( a

10−3

)
of order unity at recombination
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New Euler Equation
• Momentum density ratio enters as

[(1 +R)(ργ + pγ)vγb]
· = −4

ȧ

a
(1 +R)(ργ + pγ)vγb

−∇pγ − (1 +R)(ργ + pγ)∇Ψ

same as before except for (1 +R) terms so

[(1 +R)vγb]
· = kΘ + (1 +R)kΨ

• Photon continuity remains the same

Θ̇ = −k
3
vγb − Φ̇

• Modification of oscillator equation

[(1 +R)Θ̇]· +
1

3
k2Θ = −1

3
k2(1 +R)Ψ− [(1 +R)Φ̇]·



Baryon & Inertia
• Baryons add inertia to 
 the fluid

• Equivalent to adding mass 
 on a spring

• Same initial conditions

• Same null in fluctuations

• Unequal amplitudes of
 extrema




Oscillator: Take Three
• Combine these to form the not-quite-so simple harmonic oscillator

equation

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = −k

2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

where c2
s ≡ ṗγb/ρ̇γb

c2
s =

1

3

1

1 +R

• In a CDM dominated expansion Φ̇ = Ψ̇ = 0 and the adiabatic
approximation Ṙ/R� ω = kcs

[Θ + (1 +R)Ψ](η) = [Θ + (1 +R)Ψ](0) cos(ks)



Baryon Peak Phenomenology
• Photon-baryon ratio enters in three ways

• Overall larger amplitude:

[Θ + (1 +R)Ψ](0) =
1

3
(1 + 3R)Ψ(0)

• Even-odd peak modulation of effective temperature

[Θ + Ψ]peaks = [±(1 + 3R)− 3R]
1

3
Ψ(0)

[Θ + Ψ]1 − [Θ + Ψ]2 = [−6R]
1

3
Ψ(0)

• Shifting of the sound horizon down or `A up

`A ∝
√

1 +R

• Actual effects smaller since R evolves
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Low Baryons

–

A Baryon-meter
• Low baryons: symmetric compressions and
 rarefactions
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Baryon Loading

–

A Baryon-meter
• Load the fluid adding to gravitational force

• Enhance compressional peaks (odd) over
 rarefaction peaks (even)
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A Baryon-meter

• Enhance compressional peaks (odd) over
 rarefaction peaks (even)
    e.g. relative suppression of second peak



Photon Baryon Ratio Evolution
• Oscillator equation has time evolving mass

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = 0

• Effective mass is is meff = 3c−2
s = (1 +R)

• Adiabatic invariant

E

ω
=

1

2
meffωA

2 =
1

2
3c−2
s kcsA

2 ∝ A2(1 +R)1/2 = const.

• Amplitude of oscillation A ∝ (1 +R)−1/4 decays adiabatically as
the photon-baryon ratio changes



Baryons in the Power Spectrum
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 Higher Peaks



Radiation and Dark Matter
• Radiation domination: 
    potential wells created by CMB itself

• Pressure support ⇒ potential decay ⇒ driving

• Heights measures when dark matter dominates




Driving Effects and Matter/Radiation
• Potential perturbation: k2Ψ = –4πGa2δρ generated by radiation
• Radiation →  Potential: inside sound horizon δρ/ρ pressure supported

δρ hence Ψ decays with expansion

Θ+Ψ

−Ψ

η
∆T

/T

Hu & Sugiyama (1995)
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Oscillator: Take Three and a Half
• The not-quite-so simple harmonic oscillator equation is a forced

harmonic oscillator

c2
s

d

dη
(c−2
s Θ̇) + c2

sk
2Θ = −k

2

3
Ψ− c2

s

d

dη
(c−2
s Φ)

changes in the gravitational potentials alter the form of the
acoustic oscillations

• If the forcing term has a temporal structure that is related to the
frequency of the oscillation, this becomes a driven harmonic
oscillator

• Term involving Ψ is the ordinary gravitational force

• Term involving Φ involves the Φ̇ term in the continuity equation as
a (curvature) perturbation to the scale factor



Potential Decay
• Matter-to-radiation ratio

ρm
ρr
≈ 24Ωmh

2
( a

10−3

)
of order unity at recombination in a low Ωm universe

• Radiation is not stress free and so impedes the growth of structure

k2Φ = 4πGa2ρr∆r

∆r ∼ 4Θ oscillates around a constant value, ρr ∝ a−4 so the
Netwonian curvature decays.

• General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sound
horizon or Jeans scale



Radiation Driving
• Decay is timed precisely to drive the oscillator - close to fully

coherent

[Θ + Ψ](η) = [Θ + Ψ](0) + ∆Ψ−∆Φ

=
1

3
Ψ(0)− 2Ψ(0) =

5

3
Ψ(0)

• 5× the amplitude of the Sachs-Wolfe effect!

• Coherent approximation is exact for a photon-baryon fluid but
reality is reduced to ∼ 4× because of neutrino contribution to
radiation

• Actual initial conditions are Θ + Ψ = Ψ/2 for radiation
domination but comparison to matter dominated SW correct



External Potential Approach
• Solution to homogeneous equation

(1 +R)−1/4cos(ks) , (1 +R)−1/4sin(ks)

• Give the general solution for an external potential by propagating
impulsive forces

(1 +R)1/4Θ(η) = Θ(0)cos(ks) +

√
3

k

[
Θ̇(0) +

1

4
Ṙ(0)Θ(0)

]
sin ks

+

√
3

k

∫ η

0

dη′(1 +R′)3/4sin[ks− ks′]F (η′)

where

F = −Φ̈− Ṙ

1 +R
Φ̇− k2

3
Ψ

• Useful if general form of potential evolution is known



Dark Matter in the Power Spectrum
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Damping Tail



Dissipation / Diffusion Damping
• Imperfections in the coupled fluid → mean free path λC in the baryons
• Random walk over diffusion scale: geometric mean of mfp & horizon

 λD ~ λC√N ~ √λCη >> λC

• Overtake wavelength:  λD ~ λ ; second order in λC/λ 

• Viscous damping for R<1;  heat conduction damping for R>1

N=η / λC

λD ~ λC√N

λ

Po
w

er

0.1

1.0

500 1000 1500
l

perfect fluid

instant decoupling

Silk (1968); Hu & Sugiyama (1995); Hu & White (1996)



Dissipation / Diffusion Damping
• Rapid increase at recombination as mfp ↑

• Independent of (robust to changes in) perturbation spectrum

• Robust physical scale for angular diameter distance test (ΩK, ΩΛ)

Po
w

er

0.1

1.0

500 1000 1500
l

perfect fluid

instant decoupling

recombination

Silk (1968); Hu & Sugiyama (1995); Hu & White (1996)

Recombination



Damping
• Tight coupling equations assume a perfect fluid: no viscosity, no

heat conduction

• Fluid imperfections are related to the mean free path of the
photons in the baryons

λC = τ̇−1 where τ̇ = neσTa

is the conformal opacity to Thomson scattering

• Dissipation is related to the diffusion length: random walk
approximation

λD =
√
NλC =

√
η/λC λC =

√
ηλC

the geometric mean between the horizon and mean free path

• λD/η∗ ∼ few %, so expect the peaks :> 3 to be affected by
dissipation



Equations of Motion
• Continuity

Θ̇ = −k
3
vγ − Φ̇ , δ̇b = −kvb − 3Φ̇

where the photon equation remains unchanged and the baryons
follow number conservation with ρb = mbnb

• Euler

v̇γ = k(Θ + Ψ)− k

6
πγ − τ̇(vγ − vb)

v̇b = − ȧ
a
vb + kΨ + τ̇(vγ − vb)/R

where the photons gain an anisotropic stress term πγ from radiation
viscosity and a momentum exchange term with the baryons and
are compensated by the opposite term in the baryon Euler equation



Viscosity
• Viscosity is generated from radiation streaming from hot to cold

regions

• Expect

πγ ∼ vγ
k

τ̇

generated by streaming, suppressed by scattering in a wavelength
of the fluctuation. Radiative transfer says

πγ ≈ 2Avvγ
k

τ̇

where Av = 16/15

v̇γ = k(Θ + Ψ)− k

3
Av
k

τ̇
vγ



Viscosity & Heat Conduction
• Both fluid imperfections are related to the gradient of the velocity

kvγ by opacity τ̇ : slippage of fluids vγ − vb.

• Viscosity is an anisotropic stress or quadrupole moment formed by
radiation streaming from hot to cold regions

m=0

v

hot

hot

cold

v



Damping & Viscosity

• Quadrupole moments:

   damp acoustic oscillations from fluid viscosity
   generates polarization from scattering (next lecture)

• Rise in polarization power coincides with fall in
 temperature power – l ~ 1000     

105 15 20

Ψ

Θ+Ψ

πγ

ks/π

damping

driving

polarization



Oscillator: Penultimate Take
• Adiabatic approximation ( ω � ȧ/a)

Θ̇ ≈ −k
3
vγ

• Oscillator equation contains a Θ̇ damping term

c2
s

d

dη
(c−2
s Θ̇) +

k2c2
s

τ̇
AvΘ̇ + k2c2

sΘ = −k
2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

• Heat conduction term similar in that it is proportional to vγ and is
suppressed by scattering k/τ̇ . Expansion of Euler equations to
leading order in k/τ̇ gives

Ah =
R2

1 +R

since the effects are only significant if the baryons are dynamically
important



Oscillator: Final Take
• Final oscillator equation

c2
s

d

dη
(c−2
s Θ̇) +

k2c2
s

τ̇
[Av + Ah]Θ̇ + k2c2

sΘ = −k
2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

• Solve in the adiabatic approximation

Θ ∝ exp(i

∫
ωdη)

−ω2 +
k2c2

s

τ̇
(Av + Ah)iω + k2c2

s = 0



Dispersion Relation
• Solve

ω2 = k2c2
s

[
1 + i

ω

τ̇
(Av + Ah)

]
ω = ±kcs

[
1 +

i

2

ω

τ̇
(Av + Ah)

]
= ±kcs

[
1± i

2

kcs
τ̇

(Av + Ah)

]
• Exponentiate

exp(i

∫
ωdη) = e±iks exp[−k2

∫
dη

1

2

c2
s

τ̇
(Av + Ah)]

= e±iks exp[−(k/kD)2]

• Damping is exponential under the scale kD



Diffusion Scale
• Diffusion wavenumber

k−2
D =

∫
dη

1

τ̇

1

6(1 +R)

(
16

15
+

R2

(1 +R)

)
• Limiting forms

lim
R→0

k−2
D =

1

6

16

15

∫
dη

1

τ̇

lim
R→∞

k−2
D =

1

6

∫
dη

1

τ̇

• Geometric mean between horizon and mean free path as expected
from a random walk

λD =
2π

kD
∼ 2π√

6
(ητ̇−1)1/2
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Standard Ruler
• Damping length is a fixed physical scale given properties at

recombination

• Gemoetric mean of mean free path and horizon: depends on
baryon-photon ratio and matter-radiation ratio




Standard Rulers
• Calibrating the Standard Rulers

• Sound Horizon

• Damping Scale

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Baryons
Matter/Radiation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Baryons
Matter/Radiation



Curvature
• Calibration from lower peaks of Ωbh

2 and Ωmh2 allows
measurement of curvature from damping scale

• Independently of peak scale, confirms flat geometry
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Lecture II: Summary
• Gravitational potential redshift combines with gravitationally

induced initial perturbation to form the Sachs-Wolfe effect

• Baryon loading enhances odd numbered peaks so that the ratio of
first to second peak height determines the baryon density

• Decay of potentials during radiation domination drives oscillations
so that the relative peak heights across the first three peaks
determines the matter-radiation ratio

• Fluid imperfections due to viscosity (quadrupole stresses) and heat
conduction dissipate acoustic waves in a manner predicted by
baryon density and matter-radiation ratio

• Strong consistency checks for recombination physics, angular
diameter distance and source of acoustic polarization
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