Lecture IV

Formalism \& Codes

Wayne Hu
 Tenerife, November 2007

Linear Perturbation Theory

Covariant Perturbation Theory

- Covariant $=$ takes same form in all coordinate systems
- Invariant = takes the same value in all coordinate systems
- Fundamental equations: Einstein equations, covariant conservation of stress-energy tensor:

$$
\begin{aligned}
G_{\mu \nu} & =8 \pi G T_{\mu \nu} \\
\nabla_{\mu} T^{\mu \nu} & =0
\end{aligned}
$$

- Preserve general covariance by keeping all degrees of freedom: 10 for each symmetric 4×4 tensor

1	2	3	4
	5	6	7
		8	9
			10

Metric Tensor

- Expand the metric tensor around the general FRW metric

$$
g_{00}=-a^{2}, \quad g_{i j}=a^{2} \gamma_{i j} .
$$

where the " 0 " component is conformal time $\eta=d t / a$ and $\gamma_{i j}$ is a spatial metric of constant curvature $K=H_{0}^{2}\left(\Omega_{\mathrm{tot}}-1\right)$.

- Add in a general perturbation (Bardeen 1980)

$$
\begin{aligned}
g^{00} & =-a^{-2}(1-2 A) \\
g^{0 i} & =-a^{-2} B^{i} \\
g^{i j} & =a^{-2}\left(\gamma^{i j}-2 H_{L} \gamma^{i j}-2 H_{T}^{i j}\right) .
\end{aligned}
$$

- (1) $A \equiv$ a scalar potential; (3) B^{i} a vector shift, (1) H_{L} a perturbation to the spatial curvature; (5) $H_{T}^{i j}$ a trace-free distortion to spatial metric $=$

Matter Tensor

- Likewise expand the matter stress energy tensor around a homogeneous density ρ and pressure p :

$$
\begin{aligned}
T_{0}^{0} & =-\rho-\delta \rho \\
T_{i}^{0} & =(\rho+p)\left(v_{i}-B_{i}\right), \\
T_{0}^{i} & =-(\rho+p) v^{i}, \\
T_{j}^{i} & =(p+\delta p) \delta_{j}^{i}+p \Pi_{j}^{i},
\end{aligned}
$$

- (1) $\delta \rho$ a density perturbation; (3) v_{i} a vector velocity, (1) δp a pressure perturbation; (5) $\Pi_{i j}$ an anisotropic stress perturbation
- So far this is fully general and applies to any type of matter or coordinate choice including non-linearities in the matter, e.g. cosmological defects.

Counting DOF's

20 Variables (10 metric; 10 matter)
-10 Einstein equations
-4 Conservation equations
$+4 \quad$ Bianchi identities
-4 Gauge (coordinate choice 1 time, 3 space)

6 Degrees of freedom

- Without loss of generality these can be taken to be the 6 components of the matter stress tensor
- For the background, specify $p(a)$ or equivalently $w(a) \equiv p(a) / \rho(a)$ the equation of state parameter.

Scalar, Vector, Tensor

- In linear perturbation theory, perturbations may be separated by their transformation properties under rotation and translation.
- The eigenfunctions of the Laplacian operator form a complete set

$$
\begin{aligned}
\nabla^{2} Q^{(0)} & =-k^{2} Q^{(0)} \\
\nabla^{2} Q_{i}^{(\pm 1)} & =-k^{2} Q_{i}^{(\pm 1)} \\
\nabla^{2} Q_{i j}^{(\pm 2)} & =-k^{2} Q_{i j}^{(\pm 2)}
\end{aligned}
$$

- Vector and tensor modes satisfy divergence-free and transverse-traceless conditions

$$
\begin{aligned}
\nabla^{i} Q_{i}^{(\pm 1)} & =0 \\
\nabla^{i} Q_{i j}^{(\pm 2)} & =0 \\
\gamma^{i j} Q_{i j}^{(\pm 2)} & =0
\end{aligned}
$$

Vector and Tensor Modes vs. Vector and Tensor Quantities

- A scalar mode carries with it associated vector (curl-free) and tensor (longitudinal) quantities
- A vector mode carries an associated tensor (neither longitudinal or transverse) quantities
- These are built from the mode basis out of covariant derivatives and the metric

$$
\begin{aligned}
Q_{i}^{(0)} & =-k^{-1} \nabla_{i} Q^{(0)} \\
Q_{i j}^{(0)} & =\left(k^{-2} \nabla_{i} \nabla_{j}+\frac{1}{3} \gamma_{i j}\right) Q^{(0)}, \\
Q_{i j}^{(\pm 1)} & =-\frac{1}{2 k}\left[\nabla_{i} Q_{j}^{(\pm 1)}+\nabla_{j} Q_{i}^{(\pm 1)}\right],
\end{aligned}
$$

Spatially Flat Case

- For a spatially flat background metric, harmonics are related to plane waves:

$$
\begin{aligned}
Q^{(0)} & =\exp (i \mathbf{k} \cdot \mathbf{x}) \\
Q_{i}^{(\pm 1)} & =\frac{-i}{\sqrt{2}}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{i} \exp (i \mathbf{k} \cdot \mathbf{x}) \\
Q_{i j}^{(\pm 2)} & =-\sqrt{\frac{3}{8}}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{i}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{j} \exp (i \mathbf{k} \cdot \mathbf{x})
\end{aligned}
$$

where $\hat{e}_{3} \| \mathrm{k}$. Chosen as spin states, c.f. polarization.

- For vectors, the harmonic points in a direction orthogonal to k suitable for the vortical component of a vector
- For tensors, the harmonic is transverse and traceless as appropriate for the decompositon of gravitational waves

Perturbation k-Modes

- For the k th eigenmode, the scalar components become

$$
\begin{aligned}
A(\mathbf{x}) & =A(k) Q^{(0)}, & H_{L}(\mathbf{x}) & =H_{L}(k) Q^{(0)}, \\
\delta \rho(\mathbf{x}) & =\delta \rho(k) Q^{(0)}, & \delta p(\mathbf{x}) & =\delta p(k) Q^{(0)},
\end{aligned}
$$

the vectors components become

$$
B_{i}(\mathrm{x})=\sum_{m=-1}^{1} B^{(m)}(k) Q_{i}^{(m)}, \quad v_{i}(\mathbf{x})=\sum_{m=-1}^{1} v^{(m)}(k) Q_{i}^{(m)}
$$

and the tensors components

$$
H_{T i j}(\mathrm{x})=\sum_{m=-2}^{2} H_{T}^{(m)}(k) Q_{i j}^{(m)}, \quad \Pi_{i j}(\mathrm{x})=\sum_{m=-2}^{2} \Pi^{(m)}(k) Q_{i j}^{(m)},
$$

Perturbations \& Their Quadrupoles

- Orientation of quadrupole relative to wave (k) determines pattern
- Scalars (density)
$m=0$
- Vectors (vorticity)
$m= \pm 1$
- Tensors (gravity waves) m= $\quad \mathrm{m}$

Hu \& White (1997)

Homogeneous Einstein Equations

- Einstein (Friedmann) equations:

$$
\begin{aligned}
\left(\frac{1}{a} \frac{d a}{d t}\right)^{2} & =\frac{8 \pi G}{3} \rho \\
\frac{1}{a} \frac{d^{2} a}{d t^{2}} & =-\frac{4 \pi G}{3}(\rho+3 p)
\end{aligned}
$$

so that $w \equiv p / \rho<-1 / 3$ for acceleration

- Conservation equation $\nabla^{\mu} T_{\mu \nu}=0$ implies

$$
\frac{\dot{\rho}}{\rho}=-3(1+w) \frac{\dot{a}}{a}
$$

Homogeneous Einstein Equations

Counting exercise:

20	Variables (10 metric; 10 matter)
-17	Homogeneity and Isotropy
-2	Einstein equations
-1	Conservation equations
+1	Bianchi identities
-1	
	Degree of freedom

without loss of generality choose ratio of homogeneous \& isotropic component of the stress tensor to the density $w(a)=p(a) / \rho(a)$.

Acceleration Implies Negative Pressure

- Role of stresses in the background cosmology
- Homogeneous Einstein equations $G_{\mu \nu}=8 \pi G T_{\mu \nu}$ imply the two Friedman equations (flat universe, or associating curvature $\rho_{K}=-3 K / 8 \pi G a^{2}$)

$$
\begin{aligned}
\left(\frac{1}{a} \frac{d a}{d t}\right)^{2} & =\frac{8 \pi G}{3} \rho \\
\frac{1}{a} \frac{d^{2} a}{d t^{2}} & =-\frac{4 \pi G}{3}(\rho+3 p)
\end{aligned}
$$

so that the total equation of state $w \equiv p / \rho<-1 / 3$ for acceleration
Conservation equation $\nabla^{\mu} T_{\mu \nu}=0$ implies

$$
\frac{\dot{\rho}}{\rho}=-3(1+w) \frac{\dot{a}}{a}
$$

- so that ρ must scale more slowly than a^{-2}

Questions regarding Dark Energy

- Coincidence: given the very different scalings of matter and dark energy with a, why are they comparable now?
- Stability: why doesn't negative pressure imply accelerated collapse? or why doesn't the vacuum suck?
- Answer: stability is associated with stress (pressure) gradients not stress (pressure) itself.
- Example: the cosmological constant $w_{\Lambda}=-1$, a constant in time and space - no gradients.
- Example: a scalar field where $w=p / \rho \neq \delta p / \delta \rho=$ sound speed.

Covariant Scalar Equations

Einstein equations (suppressing 0) superscripts (Hu \& Eisenstein 1999):

$$
\begin{aligned}
& \left(k^{2}-3 K\right)\left[H_{L}+\frac{1}{3} H_{T}+\frac{\dot{a}}{a} \frac{1}{k^{2}}\left(k B-\dot{H}_{T}\right)\right] \\
& =4 \pi G a^{2}\left[\delta \rho+3 \frac{\dot{a}}{a}(\rho+p)(v-B) / k\right], \text { Poisson } \\
& k^{2}\left(A+H_{L}+\frac{1}{3} H_{T}\right)+\left(\frac{d}{d \eta}+2 \frac{\dot{a}}{a}\right)\left(k B-\dot{H}_{T}\right) \\
& =8 \pi G a^{2} p \Pi, \\
& \frac{\dot{a}}{a} A-\dot{H}_{L}-\frac{1}{3} \dot{H}_{T}-\frac{K}{k^{2}}\left(k B-\dot{H}_{T}\right) \\
& \quad=4 \pi G a^{2}(\rho+p)(v-B) / k, \\
& {\left[2 \frac{\ddot{a}}{a}-2\left(\frac{\dot{a}}{a}\right)^{2}+\frac{\dot{a}}{a} \frac{d}{d \eta}-\frac{k^{2}}{3}\right] A-\left[\frac{d}{d \eta}+\frac{\dot{a}}{a}\right]\left(\dot{H}_{L}+\frac{1}{3} k B\right)} \\
& \quad=4 \pi G a^{2}\left(\delta p+\frac{1}{3} \delta \rho\right) .
\end{aligned}
$$

Covariant Scalar Equations

- Conservation equations: continuity and Navier Stokes

$$
\begin{aligned}
{\left[\frac{d}{d \eta}+3 \frac{\dot{a}}{a}\right] \delta \rho+3 \frac{\dot{a}}{a} \delta p } & =-(\rho+p)\left(k v+3 \dot{H}_{L}\right), \\
{\left[\frac{d}{d \eta}+4 \frac{\dot{a}}{a}\right]\left[(\rho+p) \frac{(v-B)}{k}\right] } & =\delta p-\frac{2}{3}\left(1-3 \frac{K}{k^{2}}\right) p \Pi+(\rho+p) A,
\end{aligned}
$$

- Equations are not independent since $\nabla_{\mu} G^{\mu \nu}=0$ via the Bianchi identities.
- Related to the ability to choose a coordinate system or "gauge" to represent the perturbations.

Covariant Scalar Equations

DOF counting exercise

8 Variables (4 metric; 4 matter)
-4 Einstein equations
-2 Conservation equations
+2 Bianchi identities
-2 Gauge (coordinate choice 1 time, 1 space)

2 Degrees of freedom
owithout loss of generality choose scalar components of the tensor $\delta p, \Pi$.

Covariant Vector Equations

Einstein equations

$$
\begin{gathered}
\left(1-2 K / k^{2}\right)\left(k B^{(\pm 1)}-\dot{H}_{T}^{(\pm 1)}\right) \\
=16 \pi G a^{2}(\rho+p)\left(v^{(\pm 1)}-B^{(\pm 1)}\right) / k \\
{\left[\frac{d}{d \eta}+2 \frac{\dot{a}}{a}\right]\left(k B^{(\pm 1)}-\dot{H}_{T}^{(\pm 1)}\right)} \\
=-8 \pi G a^{2} p \Pi^{(\pm 1)}
\end{gathered}
$$

- Conservation Equations

$$
\begin{gathered}
{\left[\frac{d}{d \eta}+4 \frac{\dot{a}}{a}\right]\left[(\rho+p)\left(v^{(\pm 1)}-B^{(\pm 1)}\right) / k\right]} \\
=-\frac{1}{2}\left(1-2 K / k^{2}\right) p \Pi^{(\pm 1)},
\end{gathered}
$$

- Gravity provides no source to vorticity \rightarrow decay

Covariant Vector Equations

DOF counting exercise

8 Variables (4 metric; 4 matter)
-4 Einstein equations
-2 Conservation equations
+2 Bianchi identities
-2 Gauge (coordinate choice 1 time, 1 space)

2 Degrees of freedom

- without loss of generality choose vector components of the tensor $\Pi^{(\pm 1)}$.

Covariant Tensor Equation

- Einstein equation

$$
\left[\frac{d^{2}}{d \eta^{2}}+2 \frac{\dot{a}}{a} \frac{d}{d \eta}+\left(k^{2}+2 K\right)\right] H_{T}^{(\pm 2)}=8 \pi G a^{2} p \Pi^{(\pm 2)} .
$$

- DOF counting exercise

4 Variables (2 metric; 2 matter)
-2 Einstein equations
-0 Conservation equations
$+0 \quad$ Bianchi identities
-0 Gauge (coordinate choice 1 time, 1 space)

2 Degrees of freedom
owlog choose tensor components of the stress tensor $\Pi^{(\pm 2)}$.

Arbitrary Dark Components

- Total stress energy tensor can be broken up into individual pieces
- Dark components interact only through gravity and so satisfy separate conservation equations
- Einstein equation source remains the sum of components.
- To specify an arbitrary dark component, give the behavior of the stress tensor: 6 components: $\delta p, \Pi^{(i)}$, where $i=-2, \ldots, 2$.
- Many types of dark components (dark matter, scalar fields, massive neutrinos,..) have simple forms for their stress tensor in terms of the energy density, i.e. described by equations of state.
- An equation of state for the background $w=p / \rho$ is not sufficient to determine the behavior of the perturbations.

Gauge Freedom \& Choice

Gauge

- Metric and matter fluctuations take on different values in different coordinate system
- No such thing as a "gauge invariant" density perturbation!
- General coordinate transformation:

$$
\begin{aligned}
\tilde{\eta} & =\eta+T \\
\tilde{x}^{i} & =x^{i}+L^{i}
\end{aligned}
$$

free to choose (T, L^{i}) to simplify equations or physics. Decompose these into scalar and vector harmonics.

- $G_{\mu \nu}$ and $T_{\mu \nu}$ transform as tensors, so components in different frames can be related

Sachs-Wolfe Gauge Transformation

- Inflation: (nearly) scale-invariant curvature (potential) perturbations
- Superluminal expansion \rightarrow superhorizon scales \rightarrow "initial conditions"
- Accompanying temperture perturbations due to cosmological redshift

- Potential perturbation $\Psi=$ time-time metric perturbation

$$
\delta t / t=\Psi \quad \rightarrow \quad \delta T / T=\delta a / a=-2 / 3 \delta t / t=-2 / 3 \Psi
$$

Gauge

- Metric and matter fluctuations take on different values in different coordinate system
- No such thing as a "gauge invariant" density perturbation!
- General coordinate transformation:

$$
\begin{aligned}
\tilde{\eta} & =\eta+T \\
\tilde{x}^{i} & =x^{i}+L^{i}
\end{aligned}
$$

free to choose (T, L^{i}) to simplify equations or physics. Decompose these into scalar and vector harmonics.

- $G_{\mu \nu}$ and $T_{\mu \nu}$ transform as tensors, so components in different frames can be related

Gauge Transformation

- Scalar Metric:

$$
\begin{aligned}
\tilde{A} & =A-\dot{T}-\frac{\dot{a}}{a} T, \\
\tilde{B} & =B+\dot{L}+k T, \\
\tilde{H}_{L} & =H_{L}-\frac{k}{3} L-\frac{\dot{a}}{a} T, \\
\tilde{H}_{T} & =H_{T}+k L,
\end{aligned}
$$

- Scalar Matter (Jth component):

$$
\begin{aligned}
\delta \tilde{\rho}_{J} & =\delta \rho_{J}-\dot{\rho}_{J} T, \\
\delta \tilde{p}_{J} & =\delta p_{J}-\dot{p}_{J} T, \\
\tilde{v}_{J} & =v_{J}+\dot{L},
\end{aligned}
$$

- Vector:

$$
\tilde{B}^{(\pm 1)}=B^{(\pm 1)}+\dot{L}^{(\pm 1)}, \tilde{H}_{T}^{(\pm 1)}=H_{T}^{(\pm 1)}+k L^{(\pm 1)}, \tilde{v}_{J}^{(\pm 1)}=v_{J}^{(\pm 1)}+\dot{L}^{(\pm 1)}
$$

Common Scalar Gauge Choices

- A coordinate system is fully specified if there is an explicit prescription for $\left(T, L^{i}\right)$ or for scalars (T, L)
- Newtonian:

$$
\begin{aligned}
\tilde{B} & =\tilde{H}_{T}=0 \\
\Psi & \equiv \tilde{A} \text { (Newtonian } \\
\Phi & \equiv \tilde{H}_{L} \quad \text { (Newtonian } \\
L & =-H_{T} / k \\
T & =-B / k+\dot{H}_{T} / k^{2}
\end{aligned}
$$

Good: intuitive Newtonian like gravity; matter and metric algebraically related; commonly chosen for analytic CMB and lensing work

Bad: numerically unstable

Example: Newtonian Reduction

- In the general equations, set $B=H_{T}=0$:

$$
\begin{aligned}
\left(k^{2}-3 K\right) \Phi & =4 \pi G a^{2}\left[\delta \rho+3 \frac{\dot{a}}{a}(\rho+p) v / k\right] \\
k^{2}(\Psi+\Phi) & =8 \pi G a^{2} p \Pi
\end{aligned}
$$

so $\Psi=-\Phi$ if anisotropic stress $\Pi=0$ and

$$
\begin{aligned}
{\left[\frac{d}{d \eta}+3 \frac{\dot{a}}{a}\right] \delta \rho+3 \frac{\dot{a}}{a} \delta p } & =-(\rho+p)(k v+3 \dot{\Phi}), \\
{\left[\frac{d}{d \eta}+4 \frac{\dot{a}}{a}\right](\rho+p) v } & =k \delta p-\frac{2}{3}\left(1-3 \frac{K}{k^{2}}\right) p k \Pi+(\rho+p) k \Psi,
\end{aligned}
$$

- Competition between stress (pressure and viscosity) and potential gradients

Common Scalar Gauge Choices

- Comoving:

$$
\begin{aligned}
\tilde{B} & =\tilde{v} \quad\left(T_{i}^{0}=0\right) \\
H_{T} & =0 \\
\xi & =\tilde{A} \\
\zeta & =\tilde{H}_{L} \quad \text { (Bardeen curvature) } \\
\Delta & =\tilde{\delta} \quad \text { (comoving density per } \\
T & =(v-B) / k \\
L & =-H_{T} / k
\end{aligned}
$$

Good: Algebraic relations between matter and metric
Euler equation becomes an algebraic relation between stress and potential

$$
(\rho+p) \xi=-\delta p+\frac{2}{3}\left(1-\frac{3 K}{k}\right) p \Pi
$$

Common Scalar Gauge Choices

- Einstein equation lacks momentum density source

$$
\frac{\dot{a}}{a} \xi-\dot{\zeta}-\frac{K}{k^{2}} k v=0
$$

- Combine: ζ is conserved if stress fluctuations negligible, e.g. above the horizon if $|K| \ll H^{2}$
$\dot{\zeta}+K v / k=\frac{\dot{a}}{a}\left[-\frac{\delta p}{\rho+p}+\frac{2}{3}\left(1-\frac{3 K}{k^{2}}\right) \frac{p}{\rho+p} \Pi\right] \rightarrow 0$
Bad: explicitly relativistic choice

Common Scalar Gauge Choices

- Synchronous:

$$
\begin{aligned}
\tilde{A} & =\tilde{B}=0 \\
\eta_{L} & \equiv-\tilde{H}_{L}-\frac{1}{3} \tilde{H}_{T} \\
h_{T} & =\tilde{H}_{T} \quad \text { or } \quad h=6 H_{L} \\
T & =a^{-1} \int d \eta a A+c_{1} a^{-1} \\
L & =-\int d \eta(B+k T)+c_{2}
\end{aligned}
$$

Good: stable, the choice of numerical codes
Bad: residual gauge freedom in constants c_{1}, c_{2} must be specified as an initial condition, intrinsically relativistic.

Common Scalar Gauge Choices

- Spatially Unperturbed:

$$
\begin{aligned}
\tilde{H}_{L} & =\tilde{H}_{T}=0 \\
L & =-H_{T} / k \\
\tilde{A}, \tilde{B} & =\text { metric perturbations } \\
T & =\left(\frac{\dot{a}}{a}\right)^{-1}\left(H_{L}+\frac{1}{3} H_{T}\right)
\end{aligned}
$$

Good: eliminates spatial metric in evolution equations; useful in inflationary calculations (Mukhanov et al)
Bad: intrinsically relativistic.

- Caution: perturbation evolution is governed by the behavior of stress fluctuations and an isotropic stress fluctuation δp is gauge dependent.

Hybrid "Gauge Invariant" Approach

- With the gauge transformation relations, express variables of one gauge in terms of those in another - allows a mixture in the equations of motion
- Example: Newtonian curvature and comoving density

$$
\left(k^{2}-3 K\right) \Phi=4 \pi G a^{2} \rho \Delta
$$

ordinary Poisson equation then implies Φ approximately constant if stresses negligible.

- Example: Exact Newtonian curvature above the horizon derived through Bardeen curvature conservation

Gauge transformation

$$
\Phi=\zeta+\frac{\dot{a}}{a} \frac{v}{k}
$$

Hybrid "Gauge Invariant" Approach

Einstein equation to eliminate velocity

$$
\frac{\dot{a}}{a} \Psi-\dot{\Phi}=4 \pi G a^{2}(\rho+p) v / k
$$

Friedman equation with no spatial curvature

$$
\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} a^{2} \rho
$$

With $\dot{\Phi}=0$ and $\Psi \approx-\Phi$

$$
\frac{\dot{a} v}{a} \frac{v}{k}=-\frac{2}{3(1+w)} \Phi
$$

Hybrid "Gauge Invariant" Approach

Combining gauge transformation with velocity relation

$$
\Phi=\frac{3+3}{5+3} \zeta
$$

Usage: calculate ζ from inflation determines Φ for any choice of matter content or causal evolution.

- Example: Scalar field ("quintessence" dark energy) equations in comoving gauge imply a sound speed $\delta p / \delta \rho=1$ independent of potential $V(\phi)$. Solve in synchronous gauge (Hu 1998).

Boltzmann Formalism

Boltzmann Equation

- CMB radiation is generally described by the phase space distribution function for each polarization state $f_{a}(\mathbf{x}, \mathbf{q}, \eta)$, where x is the comoving position and q is the photon momentum
- Boltzmann equation describes the evolution of the distribution function under gravity and collisions
- Low order moments of the Boltzmann equation are simply the covariant conservation equations
- Higher moments provide the closure condition to the conservation law (specification of stress tensor) and the CMB observable - fine scale anisotropy
- Higher moments mainly describe the simple geometry of source projection

Liouville Equation

- In absence of scattering, the phase space distribution of photons is conserved along the propagation path
- Rewrite variables in terms of the photon propagation direction $\mathbf{q}=q \hat{\mathbf{n}}$, so $f_{a}(\mathbf{x}, \hat{\mathbf{n}}, q, \eta)$ and
$\frac{d}{d \eta} f_{a}(\mathbf{x}, \hat{\mathbf{n}}, q, \eta)=0$

$$
=\left(\frac{\partial}{\partial \eta}+\frac{d \mathbf{x}}{d \eta} \cdot \frac{\partial}{\partial \mathbf{x}}+\frac{d \hat{\mathbf{n}}}{d \eta} \cdot \frac{\partial}{\partial \hat{\mathbf{n}}}+\frac{d q}{d \eta} \cdot \frac{\partial}{\partial q}\right) f_{a}
$$

- For simplicity, assume spatially flat universe $K=0$ then $d \hat{\mathbf{n}} / d \eta=0$ and $d \mathbf{x}=\hat{\mathbf{n}} d \eta$

$$
\dot{f}_{a}+\hat{\mathbf{n}} \cdot \nabla f_{a}+\dot{q} \frac{\partial}{\partial q} f_{a}=0
$$

Correspondence to Einstein Eqn.

- Geodesic equation gives the redshifting term

$$
\frac{\dot{q}}{q}=-\frac{\dot{a}}{a}-\frac{1}{2} n^{i} n^{j} \dot{H}_{T i j}-\dot{H}_{L}+n^{i} \dot{B}_{i}-\hat{\mathbf{n}} \cdot \nabla A
$$

- which is incorporated in the conservation and gauge transformation equations
- Stress energy tensor involves integrals over the distribution function the two polarization states

$$
T^{\mu \nu}=\int \frac{d^{3} q}{(2 \pi)^{3}} \frac{q^{\mu} q^{\nu}}{E}\left(f_{a}+f_{b}\right)
$$

- Components are simply the low order angular moments of the distribution function

Angular Moments

- Define the angularly dependent temperature perturbation

$$
\Theta(\mathbf{x}, \hat{\mathbf{n}}, \eta)=\frac{1}{4 \rho_{\gamma}} \int \frac{q^{3} d q}{2 \pi^{2}}\left(f_{a}+f_{b}\right)-1
$$

and likewise for the linear polarization states Q and U

- Decompose into normal modes: plane waves for spatial part and spherical harmonics for angular part

$$
\begin{aligned}
G_{\ell}^{m}(\mathbf{k}, \mathbf{x}, \hat{\mathbf{n}}) & \equiv(-i)^{\ell} \sqrt{\frac{4 \pi}{2 \ell+1}} Y_{\ell}^{m}(\hat{\mathbf{n}}) \exp (i \mathbf{k} \cdot \mathbf{x}) \\
{ }_{ \pm 2} G_{\ell}^{m}(\mathbf{k}, \mathbf{x}, \hat{\mathbf{n}}) & \equiv(-i)^{\ell} \sqrt{\frac{4 \pi}{2 \ell+1}} \pm 2 Y_{\ell}^{m}(\hat{\mathbf{n}}) \exp (i \mathbf{k} \cdot \mathbf{x})
\end{aligned}
$$

- In a spatially curved universe generalize the plane wave part

Stokes Parameters

- Polarization state of radiation in direction \hat{n} described by the intensity matrix $\left\langle E_{i}(\hat{\mathbf{n}}) E_{j}^{*}(\hat{\mathbf{n}})\right\rangle$, where \mathbf{E} is the electric field vector and the brackets denote time averaging.
- As a hermitian matrix, it can be decomposed into the Pauli basis

$$
\begin{aligned}
\mathbf{P} & =C\left\langle\mathbf{E}(\hat{\mathbf{n}}) \mathbf{E}^{\dagger}(\hat{\mathbf{n}})\right\rangle \\
& =\Theta(\hat{\mathbf{n}}) \boldsymbol{\sigma}_{0}+Q(\hat{\mathbf{n}}) \boldsymbol{\sigma}_{3}+U(\hat{\mathbf{n}}) \boldsymbol{\sigma}_{1}+V(\hat{\mathbf{n}}) \boldsymbol{\sigma}_{2},
\end{aligned}
$$

where

$$
\sigma_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Stokes parameters recovered as $\operatorname{Tr}\left(\sigma_{i} \mathbf{P}\right) / 2$

Linear Polarization

$Q \propto\left\langle E_{1} E_{1}^{*}\right\rangle-\left\langle E_{2} E_{2}^{*}\right\rangle, U \propto\left\langle E_{1} E_{2}^{*}\right\rangle+\left\langle E_{2} E_{1}^{*}\right\rangle$.

- Counterclockwise rotation of axes by $\theta=45^{\circ}$

$$
E_{1}=\left(E_{1}^{\prime}-E_{2}^{\prime}\right) / \sqrt{2}, \quad E_{2}=\left(E_{1}^{\prime}+E_{2}^{\prime}\right) / \sqrt{2}
$$

- $U \propto\left\langle E_{1}^{\prime} E_{1}^{\prime *}\right\rangle-\left\langle E_{2}^{\prime} E_{2}^{\prime *}\right\rangle$, difference of intensities at 45° or Q^{\prime}
o More generally, \mathbf{P} transforms as a tensor under rotations and

$$
\begin{aligned}
Q^{\prime} & =\cos (2 \theta) Q+\sin (2 \theta) U \\
U^{\prime} & =-\sin (2 \theta) Q+\cos (2 \theta) U
\end{aligned}
$$

or

$$
Q^{\prime} \pm i U^{\prime}=e^{\mp 2 i \theta}[Q \pm i U]
$$

acquires a phase under rotation and is a spin ± 2 object

Coordinate Independent Representation

- Two directions: orientation of polarization and change in amplitude, i.e. Q and U in the basis of the Fourier wavevector for small sections of sky are called E and B components

$$
\begin{aligned}
E(\mathbf{l}) \pm i B(\mathbf{l}) & =-\int d \hat{\mathbf{n}}\left[Q^{\prime}(\hat{\mathbf{n}}) \pm i U^{\prime}(\hat{\mathbf{n}})\right] e^{-i \cdot \mathbf{1} \cdot \hat{\mathbf{n}}} \\
& =-e^{\mp 2 i \phi_{l}} \int d \hat{\mathbf{n}}[Q(\hat{\mathbf{n}}) \pm i U(\hat{\mathbf{n}})] e^{i \mathbf{l} \cdot \hat{\mathbf{n}}}
\end{aligned}
$$

- For the B-mode to not vanish, the polarization must point in a direction not related to the wavevector - not possible for density fluctuations in linear theory
- Generalize to all-sky: plane waves are eigenmodes of the Laplace operator on the tensor \mathbf{P}.

Spin Harmonics

- Laplace Eigenfunctions

$$
\nabla_{ \pm 2}^{2} Y_{\ell m}\left[\boldsymbol{\sigma}_{3} \mp i \boldsymbol{\sigma}_{1}\right]=-[l(l+1)-4]_{ \pm 2} Y_{\ell m}\left[\boldsymbol{\sigma}_{3} \mp i \boldsymbol{\sigma}_{1}\right]
$$

- Spin s spherical harmonics: orthogonal and complete

$$
\begin{aligned}
\int d \hat{\mathbf{n}}_{s} Y_{\ell m}^{*}(\hat{\mathbf{n}})_{s} Y_{\ell m}(\hat{\mathbf{n}}) & =\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} \\
\sum_{\ell m}{ }_{s} Y_{\ell m}^{*}(\hat{\mathbf{n}})_{s} Y_{\ell m}\left(\hat{\mathbf{n}}^{\prime}\right) & =\delta\left(\phi-\phi^{\prime}\right) \delta\left(\cos \theta-\cos \theta^{\prime}\right)
\end{aligned}
$$

where the ordinary spherical harmonics are $Y_{\ell m}={ }_{0} Y_{\ell m}$

- Given in terms of the rotation matrix

$$
{ }_{s} Y_{\ell m}(\beta \alpha)=(-1)^{m} \sqrt{\frac{2 \ell+1}{4 \pi}} D_{-m s}^{\ell}(\alpha \beta 0)
$$

Statistical Representation

- All-sky decomposition

$$
[Q(\hat{\mathbf{n}}) \pm i U(\hat{\mathbf{n}})]=\sum_{\ell m}\left[E_{\ell m} \pm i B_{\ell m}\right]_{ \pm 2} Y_{\ell m}(\hat{\mathbf{n}})
$$

- Power spectra

$$
\begin{aligned}
& \left\langle E_{\ell m}^{*} E_{\ell m}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{E E} \\
& \left\langle B_{\ell m}^{*} B_{\ell m}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{B B}
\end{aligned}
$$

- Cross correlation

$$
\left\langle E_{\ell m}^{*} E_{\ell m}\right\rangle=\delta_{\ell \ell^{\prime}} \delta_{m m^{\prime}} C_{\ell}^{\Theta E}
$$

others vanish if parity is conserved

Normal Modes

- Temperature and polarization fields

$$
\begin{aligned}
\Theta(\mathbf{x}, \hat{\mathbf{n}}, \eta) & =\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{\ell m} \Theta_{\ell}^{(m)} G_{\ell}^{m} \\
{[Q \pm i U](\mathbf{x}, \hat{\mathbf{n}}, \eta) } & =\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{\ell m}\left[E_{\ell}^{(m)} \pm i B_{\ell}^{(m)}\right]_{ \pm 2} G_{\ell}^{m}
\end{aligned}
$$

- For each \mathbf{k} mode, work in coordinates where $\mathbf{k} \| \mathbf{z}$ and so $m=0$ represents scalar modes, $m= \pm 1$ vector modes, $m= \pm 2$ tensor modes, $|m|>2$ vanishes. Since modes add incoherently and $Q \pm i U$ is invariant up to a phase, rotation back to a fixed coordinate system is trivial.

Scalar, Vector, Tensor

- Normalization of modes is chosen so that the lowest angular mode for scalars, vectors and tensors are normalized in the same way as the mode function

$$
\begin{aligned}
G_{0}^{0} & =Q^{(0)} \quad G_{1}^{0}=n^{i} Q_{i}^{(0)} \quad G_{2}^{0} \propto n^{i} n^{j} Q_{i j}^{(0)} \\
G_{1}^{ \pm 1} & =n^{i} Q_{i}^{(\pm 1)} \quad G_{2}^{ \pm 1} \propto n^{i} n^{j} Q_{i j}^{(\pm 1)} \\
G_{2}^{ \pm 2} & =n^{i} n^{j} Q_{i j}^{(\pm 2)}
\end{aligned}
$$

where recall

$$
\begin{aligned}
Q^{(0)} & =\exp (i \mathbf{k} \cdot \mathbf{x}) \\
Q_{i}^{(\pm 1)} & =\frac{-i}{\sqrt{2}}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{i} \exp (i \mathbf{k} \cdot \mathbf{x}) \\
Q_{i j}^{(\pm 2)} & =-\sqrt{\frac{3}{8}}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{i}\left(\hat{\mathbf{e}}_{1} \pm i \hat{\mathbf{e}}_{2}\right)_{j} \exp (i \mathbf{k} \cdot \mathbf{x})
\end{aligned}
$$

Geometrical Projection

- Main content of Liouville equation is purely geometrical and describes the projection of inhomogeneities into anisotropies
- Spatial gradient term hits plane wave:

$$
\hat{\mathbf{n}} \cdot \nabla e^{i \mathbf{k} \cdot \mathbf{x}}=i \hat{\mathbf{n}} \cdot \mathbf{k} e^{i \mathbf{k} \cdot \mathbf{x}}=i \sqrt{\frac{4 \pi}{3}} k Y_{1}^{0}(\hat{\mathbf{n}}) e^{i \mathbf{k} \cdot \mathbf{x}}
$$

- Dipole term adds to angular dependence through the addition of angular momentum
$\sqrt{\frac{4 \pi}{3}} Y_{1}^{0} Y_{\ell}^{m}=\frac{\kappa_{\ell}^{m}}{\sqrt{(2 \ell+1)(2 \ell-1)}} Y_{\ell-1}^{m}+\frac{\kappa_{\ell+1}^{m}}{\sqrt{(2 \ell+1)(2 \ell+3)}} Y_{\ell+1}^{m}$
where $\kappa_{\ell}^{m}=\sqrt{\ell^{2}-m^{2}}$ is given by Clebsch-Gordon coefficients.

Temperature Hierarchy

- Absorb recoupling of angular momentum into evolution equation for normal modes

$$
\dot{\Theta}_{\ell}^{(m)}=k\left[\frac{\kappa_{\ell}^{m}}{2 \ell+1} \Theta_{\ell-1}^{(m)}-\frac{\kappa_{\ell+1}^{m}}{2 \ell+3} \Theta_{\ell+1}^{(m)}\right]-\dot{\tau} \Theta_{\ell}^{(m)}+S_{\ell}^{(m)}
$$

where $S_{\ell}^{(m)}$ are the gravitational (and later scattering sources; added scattering suppression of anisotropy)

- An originally isotropic $\ell=0$ temperature perturbation will eventually become a high order anisotropy by "free streaming" or simple projection
- Original CMB codes solved the full hierarchy equations out to the ℓ of interest.

Integral Solution

- Hierarchy equation simply represents geometric projection, exactly as we have seen before in the projection of temperature perturbations on the last scattering surface
- In general, the solution describes the decomposition of the source $S_{\ell}^{(m)}$ with its local angular dependence as seen at a distance $\mathrm{x}=D \hat{\mathbf{n}}$.
- Proceed by decomposing the angular dependence of the plane wave

$$
e^{i \mathbf{k} \cdot \mathbf{x}}=\sum_{\ell}(-i)^{\ell} \sqrt{4 \pi(2 \ell+1)} j_{\ell}(k D) Y_{\ell}^{0}(\hat{\mathbf{n}})
$$

- Recouple to the local angular dependence of G_{ℓ}^{m}

$$
G_{\ell_{s}}^{m}=\sum_{\ell}(-i)^{\ell} \sqrt{4 \pi(2 \ell+1)} \alpha_{\ell_{s} \ell}^{(m)}(k D) Y_{\ell}^{m}(\hat{\mathbf{n}})
$$

Doppler Peaks?

Doppler effect has lower amplitude and weak features from projection

Integral Solution

- Projection kernels:

$$
\begin{array}{lll}
\ell_{s}=0, & m=0 & \alpha_{0 \ell}^{(0)} \equiv j_{\ell} \\
\ell_{s}=1, & m=0 & \alpha_{1 \ell}^{(0)} \equiv j_{\ell}^{\prime}
\end{array}
$$

- Integral solution:

$$
\frac{\Theta_{\ell}^{(m)}\left(k, \eta_{0}\right)}{2 \ell+1}=\int_{0}^{\eta_{0}} d \eta e^{-\tau} \sum_{\ell_{s}} S_{\ell_{s}}^{(m)} \alpha_{\ell_{s} \ell}^{(m)}\left(k\left(\eta_{0}-\eta\right)\right)
$$

- Power spectrum:

$$
C_{\ell}=\frac{2}{\pi} \int \frac{d k}{k} \sum_{m} \frac{k^{3}\left\langle\Theta_{\ell}^{(m) *} \Theta_{\ell}^{(m)}\right\rangle}{(2 \ell+1)^{2}}
$$

- Solving for C_{ℓ} reduces to solving for the behavior of a handful of sources

Polarization Integral Solution

- Again, we can recouple the plane wave angular momentum of the source inhomogeneity to its local angular dependence directly

$$
\begin{aligned}
\frac{E_{\ell}^{(m)}\left(k, \eta_{0}\right)}{2 \ell+1} & =\int_{0}^{\eta_{0}} d \eta e^{-\tau} \mathcal{E}_{\ell_{s}}^{(m)} \epsilon_{\ell_{s} \ell}^{(m)}\left(k\left(\eta_{0}-\eta\right)\right) \\
\frac{B_{\ell}^{(m)}\left(k, \eta_{0}\right)}{2 \ell+1} & =\int_{0}^{\eta_{0}} d \eta e^{-\tau} \mathcal{E}_{\ell_{s}}^{(m)} \beta_{\ell_{s} \ell}^{(m)}\left(k\left(\eta_{0}-\eta\right)\right)
\end{aligned}
$$

The only source to the polarization is from the quadrupole anisotropy so we only need $\ell_{s}=2$, e.g. for scalars

$$
\epsilon_{2 \ell}^{(0)}(x)=\sqrt{\frac{3}{8} \frac{(\ell+2)!}{(\ell-2)!} j_{\ell}(x)} x^{2} \quad \beta_{2 \ell}^{(0)}=0
$$

Polarization Hiearchy

- In the same way, the coupling of a gradient or dipole angular momentum to the spin harmonics leads to the polarization hiearchy:
$\dot{E}_{\ell}^{(m)}=k\left[\frac{{ }_{2} \kappa_{\ell}^{m}}{2 \ell-1} E_{\ell-1}^{(m)}-\frac{2 m}{\ell(\ell+1)} B_{\ell}^{(m)}-\frac{{ }_{2} \kappa_{\ell+1}^{m}}{2 \ell+3}\right]-\dot{\tau} E_{\ell}^{(m)}+\mathcal{E}_{\ell}^{(m)}$
$\dot{B}_{\ell}^{(m)}=k\left[\frac{2 \kappa_{\ell}^{m}}{2 \ell-1} B_{\ell-1}^{(m)}+\frac{2 m}{\ell(\ell+1)} B_{\ell}^{(m)}-\frac{2 \kappa_{\ell+1}^{m}}{2 \ell+3}\right]-\dot{\tau} E_{\ell}^{(m)}+\mathcal{B}_{\ell}^{(m)}$
where ${ }_{2} \kappa_{\ell}^{m}=\sqrt{\left(\ell^{2}-m^{2}\right)\left(\ell^{2}-4\right) / \ell^{2}}$ is given by the
Clebsch-Gordon coefficients and \mathcal{E}, \mathcal{B} are the sources (scattering only).
- Note that for vectors and tensors $|m|>0$ and B modes may be generated from E modes by projection. Cosmologically $\mathcal{B}_{\ell}^{(m)}=0$

Polarization Patterns

Scalars

Vectors

Tensors

Patterns and Perturbation Types

- Amplitude modulated by plane wave \rightarrow Principle axis
- Direction detemined by perturbation type \rightarrow Polarization axis

Kamionkowski, Kosowski, Stebbins (1997); Zaldarriaga \& Seljak (1997); Hu \& White (1997)

Truncated Hierarchy

- CMBFast uses the integral solution and relies on a fast j_{ℓ} generator
- However sources are not external to system and are defined through the Boltzmann hierarchy itself
- Solution: recall that we used this technique in the tight coupling regime by applying a closure condition from tight coupling
- CMBFast extends this idea by solving a truncated hierarchy of equations, e.g. out to $\ell=25$ with non-reflecting boundary conditions

Collision Source Terms

Thomson Collision Term

- Full Boltzmann equation

$$
\frac{d}{d \eta} f_{a, b}=C\left[f_{a}, f_{b}\right]
$$

- Collision term describes the scattering out of and into a phase space element
- Thomson collision based on differential cross section

$$
\frac{d \sigma}{d \Omega}=\frac{3}{8 \pi}\left|\hat{\mathbf{E}}^{\prime} \cdot \hat{\mathbf{E}}\right|^{2} \sigma_{T},
$$

where $\hat{\mathbf{E}}^{\prime}$ and $\hat{\mathbf{E}}$ denote the incoming and outgoing directions of the electric field or polarization vector.

Polarization from Thomson Scattering

Quadrupole anisotropies scatter into linear polarization

aligned with cold lobe

Scattering Calculation

- Start in the electron rest frame and in a coordinate system fixed by the scattering plane, spanned by incoming and outgoing directional vectors $-\hat{\mathbf{n}}^{\prime} \cdot \hat{\mathbf{n}}=\cos \beta$, where β is the scattering angle
- $\Theta_{\|}$: in-plane polarization state; $\Theta_{\perp}: \perp$-plane polarization state
- Transfer probability (constant set by $\dot{\tau}$)

$$
\Theta_{\|} \propto \cos ^{2} \beta \Theta_{\|}^{\prime}, \quad \Theta_{\perp} \propto \Theta_{\perp}^{\prime}
$$

- and with the 45° axes as

$$
\hat{\mathbf{E}}_{1}=\frac{1}{\sqrt{2}}\left(\hat{\mathbf{E}}_{\|}+\hat{\mathbf{E}}_{\perp}\right), \quad \hat{\mathbf{E}}_{2}=\frac{1}{\sqrt{2}}\left(\hat{\mathbf{E}}_{\|}-\hat{\mathbf{E}}_{\perp}\right)
$$

Stokes Parameters

- Define the temperature in this basis

$$
\begin{aligned}
\Theta_{1} & \propto\left|\hat{\mathbf{E}}_{1} \cdot \hat{\mathbf{E}}_{1}\right|^{2} \Theta_{1}^{\prime}+\left|\hat{\mathbf{E}}_{1} \cdot \hat{\mathbf{E}}_{2}\right|^{2} \Theta_{2}^{\prime} \\
& \propto \frac{1}{4}(\cos \beta+1)^{2} \Theta_{1}^{\prime}+\frac{1}{4}(\cos \beta-1)^{2} \Theta_{2}^{\prime} \\
\Theta_{2} & \propto\left|\hat{\mathbf{E}}_{2} \cdot \hat{\mathbf{E}}_{2}\right|^{2} \Theta_{2}^{\prime}+\left|\hat{\mathbf{E}}_{2} \cdot \hat{\mathbf{E}}_{1}\right|^{2} \Theta_{1}^{\prime} \\
& \propto \frac{1}{4}(\cos \beta+1)^{2} \Theta_{2}^{\prime}+\frac{1}{4}(\cos \beta-1)^{2} \Theta_{1}^{\prime}
\end{aligned}
$$

or $\Theta_{1}-\Theta_{2} \propto \cos \beta\left(\Theta_{1}^{\prime}-\Theta_{2}^{\prime}\right)$
Define Θ, Q, U in the scattering coordinates

$$
\Theta \equiv \frac{1}{2}\left(\Theta_{\|}+\Theta_{\perp}\right), \quad Q \equiv \frac{1}{2}\left(\Theta_{\|}-\Theta_{\perp}\right), \quad U \equiv \frac{1}{2}\left(\Theta_{1}-\Theta_{2}\right)
$$

Scattering Matrix

Transfer of Stokes states, e.g.

$$
\Theta=\frac{1}{2}\left(\Theta_{\|}+\Theta_{\perp}\right) \propto \frac{1}{4}\left(\cos ^{2} \beta+1\right) \Theta^{\prime}+\frac{1}{4}\left(\cos ^{2} \beta-1\right) Q^{\prime}
$$

- Transfer matrix of Stokes state $\mathbf{T} \equiv(\Theta, Q+i U, Q-i U)$

$$
\begin{gathered}
\mathbf{T} \propto \mathbf{S}(\beta) \mathbf{T}^{\prime} \\
\mathbf{S}(\beta)=\frac{3}{4}\left(\begin{array}{ccc}
\cos ^{2} \beta+1 & -\frac{1}{2} \sin ^{2} \beta & -\frac{1}{2} \sin ^{2} \beta \\
-\frac{1}{2} \sin ^{2} \beta & \frac{1}{2}(\cos \beta+1)^{2} & \frac{1}{2}(\cos \beta-1)^{2} \\
-\frac{1}{2} \sin ^{2} \beta & \frac{1}{2}(\cos \beta-1)^{2} & \frac{1}{2}(\cos \beta+1)^{2}
\end{array}\right)
\end{gathered}
$$

normalization factor of 3 is set by photon conservation in scattering

Scattering Matrix

- Transform to a fixed basis, by a rotation of the incoming and outgoing states $\mathbf{T}=\mathbf{R}(\psi) \mathbf{T}$ where

$$
\mathbf{R}(\psi)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{-2 i \psi} & 0 \\
0 & 0 & e^{2 i \psi}
\end{array}\right)
$$

giving the scattering matrix

$$
\mathbf{R}(-\gamma) \mathbf{S}(\beta) \mathbf{R}(\alpha)=
$$

$$
\frac{1}{2} \sqrt{\frac{4 \pi}{5}}\left(\begin{array}{ccc}
Y_{2}^{0}(\beta, \alpha)+2 \sqrt{5} Y_{0}^{0}(\beta, \alpha) & -\sqrt{\frac{3}{2}} Y_{2}^{-2}(\beta, \alpha) & -\sqrt{\frac{3}{2}} Y_{2}^{2}(\beta, \alpha) \\
-\sqrt{6}{ }_{2} Y_{2}^{0}(\beta, \alpha) e^{2 i \gamma} & 3_{2} Y_{2}^{-2}(\beta, \alpha) e^{2 i \gamma} & 3_{2} Y_{2}^{2}(\beta, \alpha) e^{2 i \gamma} \\
-\sqrt{6}-2 Y_{2}^{0}(\beta, \alpha) e^{-2 i \gamma} & 3_{-2} Y_{2}^{-2}(\beta, \alpha) e^{-2 i \gamma} & 3_{-2} Y_{2}^{2}(\beta, \alpha) e^{-2 i \gamma}
\end{array}\right)
$$

Scattering Geometry

- Rotation from scattering frame to fixed sky basis

Addition Theorem for Spin Harmonics

- Spin harmonics are related to rotation matrices as

$$
{ }_{s} Y_{\ell}^{m}(\theta, \phi)=\sqrt{\frac{2 \ell+1}{4 \pi}} \mathcal{D}_{-m s}^{\ell}(\phi, \theta, 0)
$$

Note: for explicit evaluation sign convention differs from usual (e.g. Jackson) by $(-1)^{m}$

- Multiplication of rotations

$$
\sum_{m^{\prime \prime}} \mathcal{D}_{m m^{\prime \prime}}^{\ell}\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right) \mathcal{D}_{m^{\prime \prime} m}^{\ell}\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)=\mathcal{D}_{m m^{\prime}}^{\ell}(\alpha, \beta, \gamma)
$$

- Implies

$$
\sum_{m}{ }_{s_{1}} Y_{\ell}^{m *}\left(\theta^{\prime}, \phi^{\prime}\right){ }_{s_{2}} Y_{\ell}^{m}(\theta, \phi)=(-1)^{s_{1}-s_{2}} \sqrt{\frac{2 \ell+1}{4 \pi}}{ }_{s_{2}} Y_{\ell}^{-s_{1}}(\beta, \alpha) e^{i s_{2} \gamma}
$$

Sky Basis

- Scattering into the state (rest frame)

$$
\begin{aligned}
C_{\mathrm{in}}[\mathbf{T}] & =\dot{\tau} \int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi} \mathbf{R}(-\gamma) \mathbf{S}(\beta) \mathbf{R}(\alpha) \mathbf{T}\left(\hat{\mathbf{n}}^{\prime}\right), \\
& =\dot{\tau} \int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi}\left(\Theta^{\prime}, 0,0\right)+\frac{1}{10} \dot{\tau} \int d \hat{\mathbf{n}}^{\prime} \sum_{m=-2}^{2} \mathbf{P}^{(m)}\left(\hat{\mathbf{n}}, \hat{\mathbf{n}}^{\prime}\right) \mathbf{T}\left(\hat{\mathbf{n}}^{\prime}\right) .
\end{aligned}
$$

where the quadrupole coupling term is $\mathbf{P}^{(m)}\left(\hat{\mathbf{n}}, \hat{\mathbf{n}}^{\prime}\right)=$

$$
\left(\begin{array}{ccc}
Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right) Y_{2}^{m}(\hat{\mathbf{n}}) & -\sqrt{\frac{3}{2}}{ }_{2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right) Y_{2}^{m}(\hat{\mathbf{n}}) & -\sqrt{\frac{3}{2}}{ }_{-2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right) Y_{2}^{m}(\hat{\mathbf{n}}) \\
-\sqrt{6} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right){ }_{2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right){ }_{2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{-2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right){ }_{2} Y_{2}^{m}(\hat{\mathbf{n}}) \\
-\sqrt{6} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right){ }_{-2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right)_{-2} Y_{2}^{m}(\hat{\mathbf{n}}) & 3_{-2} Y_{2}^{m *}\left(\hat{\mathbf{n}}^{\prime}\right){ }_{-2} Y_{2}^{m}(\hat{\mathbf{n}})
\end{array}\right)
$$

expression uses angle addition relation above. We call this term C_{Q}.

Scattering Matrix

- Full scattering matrix involves difference of scattering into and out of state

$$
C[\mathbf{T}]=C_{\mathrm{in}}[\mathbf{T}]-C_{\mathrm{out}}[\mathbf{T}]
$$

- In the electron rest frame

$$
C[\mathbf{T}]=\dot{\tau} \int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi}\left(\Theta^{\prime}, 0,0\right)-\dot{\tau} \mathbf{T}+C_{Q}[\mathbf{T}]
$$

which describes isotropization in the rest frame. All moments have $e^{-\tau}$ suppression except for isotropic temperature Θ_{0}.
Transformation into the background frame simply induces a dipole term

$$
C[\mathbf{T}]=\dot{\tau}\left(\hat{\mathbf{n}} \cdot \mathbf{v}_{b}+\int \frac{d \hat{\mathbf{n}}^{\prime}}{4 \pi} \Theta^{\prime}, 0,0\right)-\dot{\tau} \mathbf{T}+C_{Q}[\mathbf{T}]
$$

Source Terms

Temperature source terms $S_{l}^{(m)}$ (rows $\pm|m|$; flat assumption

$$
\left(\begin{array}{lll}
\dot{\tau} \Theta_{0}^{(0)}-\dot{H}_{L}^{(0)} & \dot{\tau} v_{b}^{(0)}+\dot{B}^{(0)} & \dot{\tau} P^{(0)}-\frac{2}{3} \dot{H}_{T}^{(0)} \\
0 & \dot{\tau} v_{b}^{(\pm 1)}+\dot{B}^{(\pm 1)} & \dot{\tau} P^{(\pm 1)}-\frac{\sqrt{3}}{3} \dot{H}_{T}^{(\pm 1)} \\
0 & 0 & \dot{\tau} P^{(\pm 2)}-\dot{H}_{T}^{(\pm 2)}
\end{array}\right)
$$

where

$$
P^{(m)} \equiv \frac{1}{10}\left(\Theta_{2}^{(m)}-\sqrt{6} E_{2}^{(m)}\right)
$$

Polarization source term

$$
\begin{aligned}
& \mathcal{E}_{\ell}^{(m)}=-\dot{\tau} \sqrt{6} P^{(m)} \delta_{\ell, 2} \\
& \mathcal{B}_{\ell}^{(m)}=0
\end{aligned}
$$

Lecture IV: Summary

- General relativistic perturbation theory: energy momentum conservation plus closure relation for stresses for scalar, vector, tensor degrees of freedom
- Choice of gauge and/or mixed "gauge invariant" conditions to simplify equations of motion
- Energy momentum conservation equations are first 2 moments of more general Boltzmann equation
- Formal integral solution to Boltzmann equation is simply a projection of sources from the first 3 moments
- Spin-spherical harmonics describe linear polarization field
- Modern codes use truncated Boltzmann hierarchy to solve for the sources on a coarse grid, interpolate and integrate

