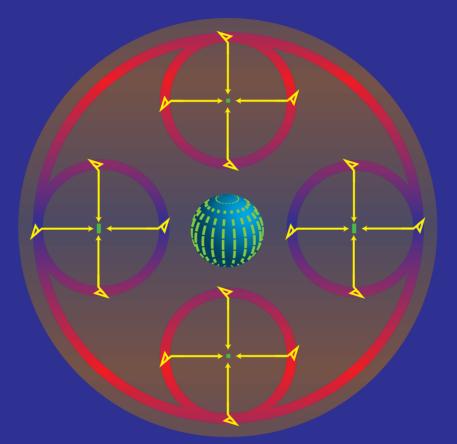
Lecture II



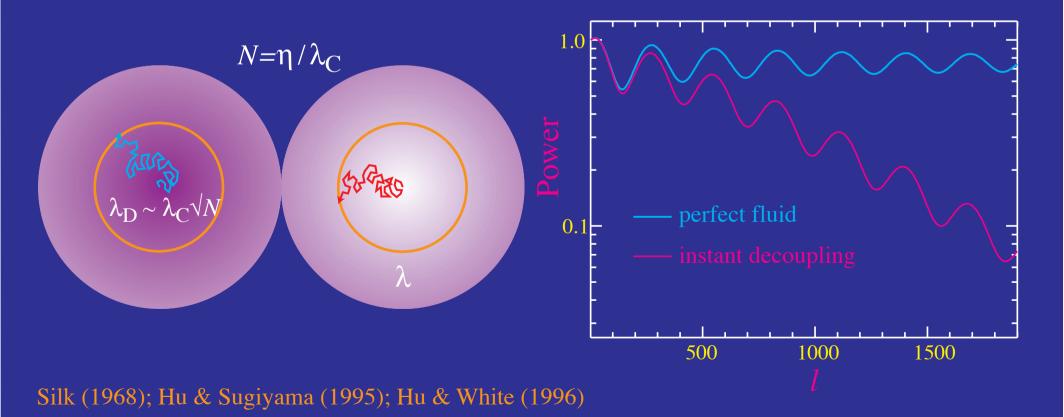
Polarization Anisotropy Spectrum Wayne Hu Crete, July 2008

Damping Tail

SV

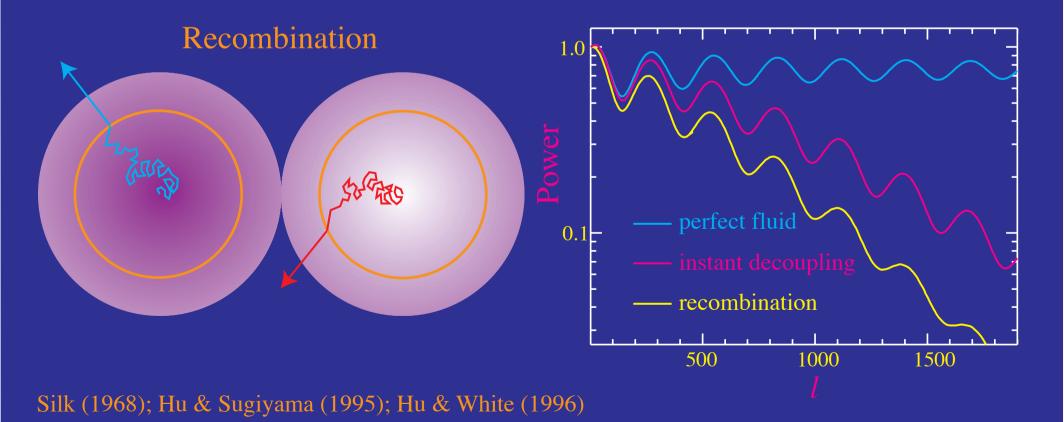
Dissipation / Diffusion Damping

- Imperfections in the coupled fluid \rightarrow mean free path λ_{C} in the baryons
- Random walk over diffusion scale: geometric mean of mfp & horizon $\lambda_D \sim \lambda_C \sqrt{N} \sim \sqrt{\lambda_C \eta} \gg \lambda_C$
- Overtake wavelength: $\lambda_D \sim \lambda$; second order in λ_C/λ
- Viscous damping for *R*<1; heat conduction damping for *R*>1



Dissipation / Diffusion Damping

- Rapid increase at recombination as mfp \uparrow
- Independent of (robust to changes in) perturbation spectrum
- Robust physical scale for angular diameter distance test ($\Omega_{\rm K}, \Omega_{\Lambda}$)



Damping

- Tight coupling equations assume a perfect fluid: no viscosity, no heat conduction
- Fluid imperfections are related to the mean free path of the photons in the baryons

$$\lambda_C = \dot{\tau}^{-1}$$
 where $\dot{\tau} = n_e \sigma_T a$

is the conformal opacity to Thomson scattering

• Dissipation is related to the diffusion length: random walk approximation

$$\lambda_D = \sqrt{N}\lambda_C = \sqrt{\eta/\lambda_C}\,\lambda_C = \sqrt{\eta\lambda_C}$$

the geometric mean between the horizon and mean free path

λ_D/η_{*} ~ few %, so expect the peaks :> 3 to be affected by dissipation

Equations of Motion

• Continuity

$$\dot{\Theta} = -\frac{k}{3}v_{\gamma} - \dot{\Phi} \,, \quad \dot{\delta}_{b} = -kv_{b} - 3\dot{\Phi}$$

where the photon equation remains unchanged and the baryons follow number conservation with $\rho_b = m_b n_b$

• Euler

$$\dot{\boldsymbol{v}}_{\boldsymbol{\gamma}} = k(\boldsymbol{\Theta} + \boldsymbol{\Psi}) - \frac{k}{6}\pi_{\boldsymbol{\gamma}} - \dot{\tau}(\boldsymbol{v}_{\boldsymbol{\gamma}} - \boldsymbol{v}_{\boldsymbol{b}})$$
$$\dot{\boldsymbol{v}}_{\boldsymbol{b}} = -\frac{\dot{a}}{a}\boldsymbol{v}_{\boldsymbol{b}} + k\boldsymbol{\Psi} + \dot{\tau}(\boldsymbol{v}_{\boldsymbol{\gamma}} - \boldsymbol{v}_{\boldsymbol{b}})/R$$

where the photons gain an anisotropic stress term π_{γ} from radiation viscosity and a momentum exchange term with the baryons and are compensated by the opposite term in the baryon Euler equation

Viscosity

• Viscosity is generated from radiation streaming from hot to cold regions

• Expect

$$au_{\gamma} \sim v_{\gamma} \frac{k}{\dot{ au}}$$

generated by streaming, suppressed by scattering in a wavelength of the fluctuation. Radiative transfer says

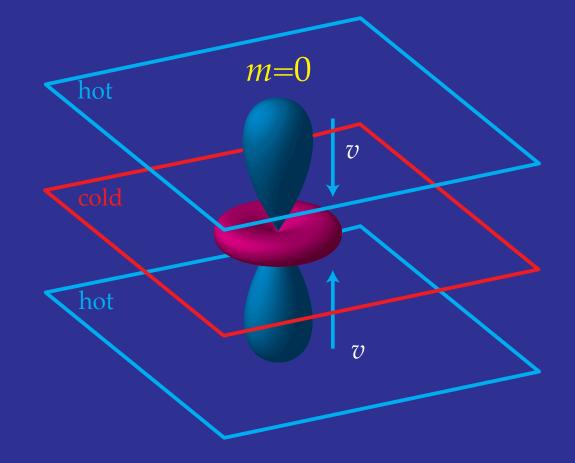
$$\pi_{\gamma} \approx 2A_v v_{\gamma} \frac{k}{\dot{\tau}}$$

where $A_v = 16/15$

$$\dot{v}_{\gamma} = k(\Theta + \Psi) - \frac{k}{3}A_v \frac{k}{\dot{\tau}}v_{\gamma}$$

Viscosity & Heat Conduction

- Both fluid imperfections are related to the gradient of the velocity kv_{γ} by opacity $\dot{\tau}$: slippage of fluids $v_{\gamma} v_b$.
- Viscosity is an anisotropic stress or quadrupole moment formed by radiation streaming from hot to cold regions



Damping & Viscosity

• Quadrupole moments:

damp acoustic oscillations from fluid viscosity generates polarization from scattering (next lecture)

• Rise in polarization power coincides with fall in temperature power $-l \sim 1000$



Oscillator: Penultimate Take

• Adiabatic approximation ($\omega \gg \dot{a}/a$)

$$\dot{\Theta} \approx -\frac{k}{3}v_{\gamma}$$

• Oscillator equation contains a $\dot{\Theta}$ damping term

$$c_s^2 \frac{d}{d\eta} (c_s^{-2} \dot{\Theta}) + \frac{k^2 c_s^2}{\dot{\tau}} A_v \dot{\Theta} + k^2 c_s^2 \Theta = -\frac{k^2}{3} \Psi - c_s^2 \frac{d}{d\eta} (c_s^{-2} \dot{\Phi})$$

Heat conduction term similar in that it is proportional to v_γ and is suppressed by scattering k/τ. Expansion of Euler equations to leading order in k/τ gives

$$A_h = \frac{R^2}{1+R}$$

since the effects are only significant if the baryons are dynamically important

Oscillator: Final Take

• Final oscillator equation

$$c_s^2 \frac{d}{d\eta} (c_s^{-2} \dot{\Theta}) + \frac{k^2 c_s^2}{\dot{\tau}} [A_v + A_h] \dot{\Theta} + k^2 c_s^2 \Theta = -\frac{k^2}{3} \Psi - c_s^2 \frac{d}{d\eta} (c_s^{-2} \dot{\Phi})$$

• Solve in the adiabatic approximation

$$\Theta \propto \exp(i \int \omega d\eta)$$

$$-\omega^2 + \frac{k^2 c_s^2}{\dot{\tau}} (A_v + A_h)i\omega + k^2 c_s^2 = 0$$

Dispersion Relation

• Solve

$$\boldsymbol{\omega}^{2} = k^{2}c_{s}^{2}\left[1 + i\frac{\boldsymbol{\omega}}{\dot{\tau}}(A_{v} + A_{h})\right]$$
$$\boldsymbol{\omega} = \pm kc_{s}\left[1 + \frac{i}{2}\frac{\boldsymbol{\omega}}{\dot{\tau}}(A_{v} + A_{h})\right]$$
$$= \pm kc_{s}\left[1 \pm \frac{i}{2}\frac{kc_{s}}{\dot{\tau}}(A_{v} + A_{h})\right]$$

• Exponentiate

$$\exp(i\int\omega d\eta) = e^{\pm iks} \exp\left[-k^2 \int d\eta \frac{1}{2} \frac{c_s^2}{\dot{\tau}} (A_v + A_h)\right]$$
$$= e^{\pm iks} \exp\left[-(k/k_D)^2\right]$$

• Damping is exponential under the scale k_D

Diffusion Scale

• Diffusion wavenumber

$$k_D^{-2} = \int d\eta \frac{1}{\dot{\tau}} \frac{1}{6(1+R)} \left(\frac{16}{15} + \frac{R^2}{(1+R)}\right)$$

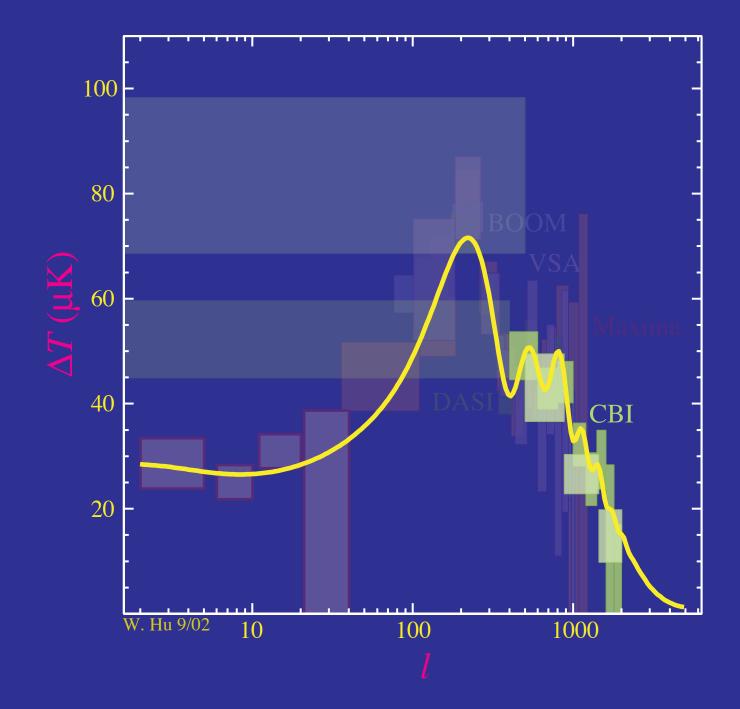
• Limiting forms

$$\lim_{R \to 0} k_D^{-2} = \frac{1}{6} \frac{16}{15} \int d\eta \frac{1}{\dot{\tau}}$$
$$\lim_{R \to \infty} k_D^{-2} = \frac{1}{6} \int d\eta \frac{1}{\dot{\tau}}$$

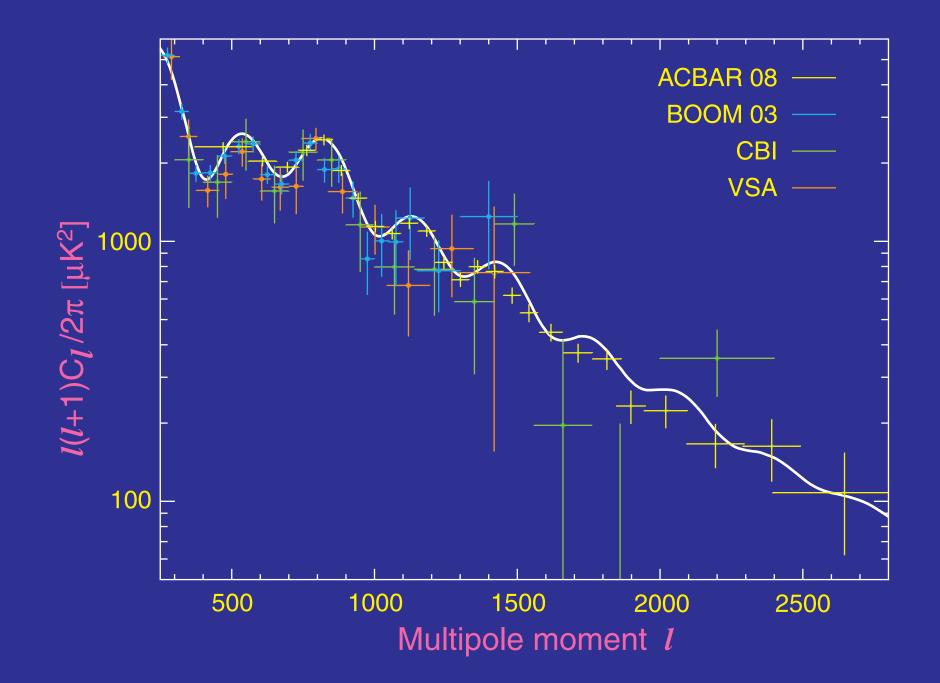
• Geometric mean between horizon and mean free path as expected from a random walk

$$\lambda_D = \frac{2\pi}{k_D} \sim \frac{2\pi}{\sqrt{6}} (\eta \dot{\tau}^{-1})^{1/2}$$

Damping Tail Measured

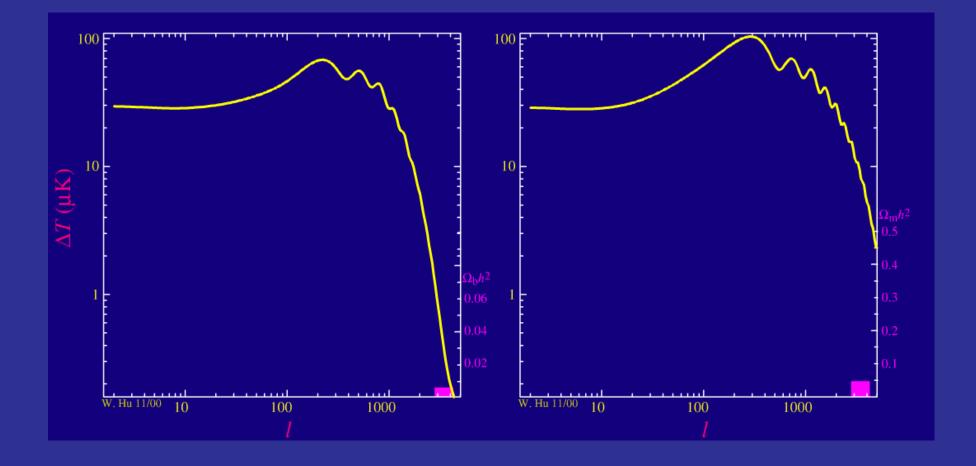


Power Spectrum Present



Standard Ruler

- Damping length is a fixed physical scale given properties at recombination
- Gemoetric mean of mean free path and horizon: depends on baryon-photon ratio and matter-radiation ratio



Standard Rulers
Calibrating the Standard Rulers

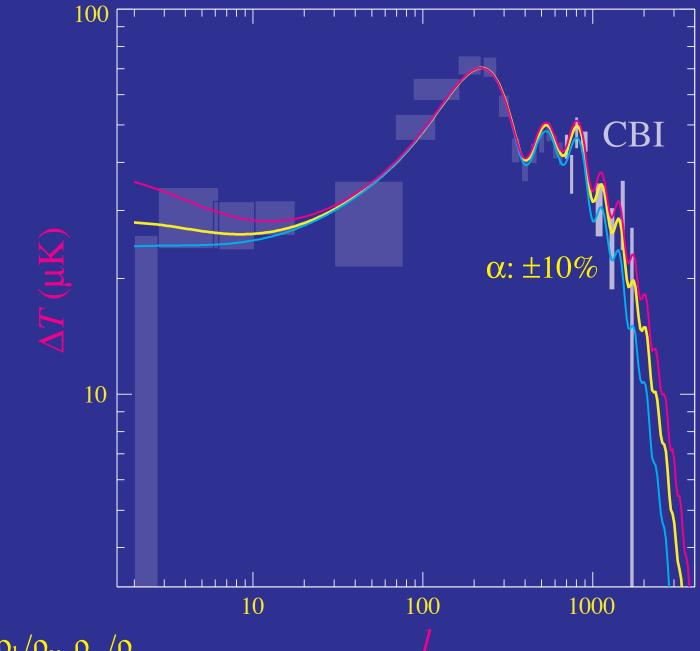
Sound Horizon

Damping Scale

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

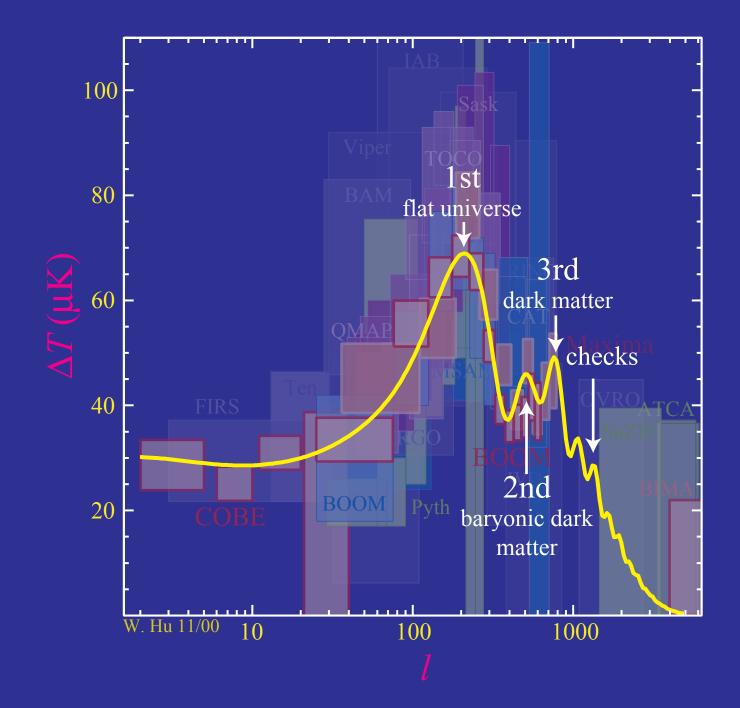
Matter/Radiation —

Consistency Check on Recombinaton

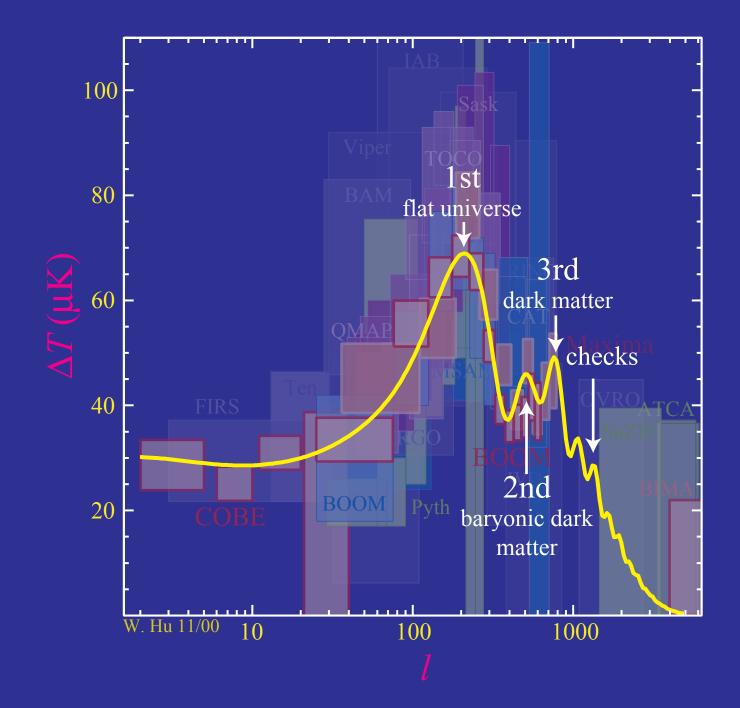


fixed l_A , ρ_b/ρ_γ , ρ_m/ρ_r

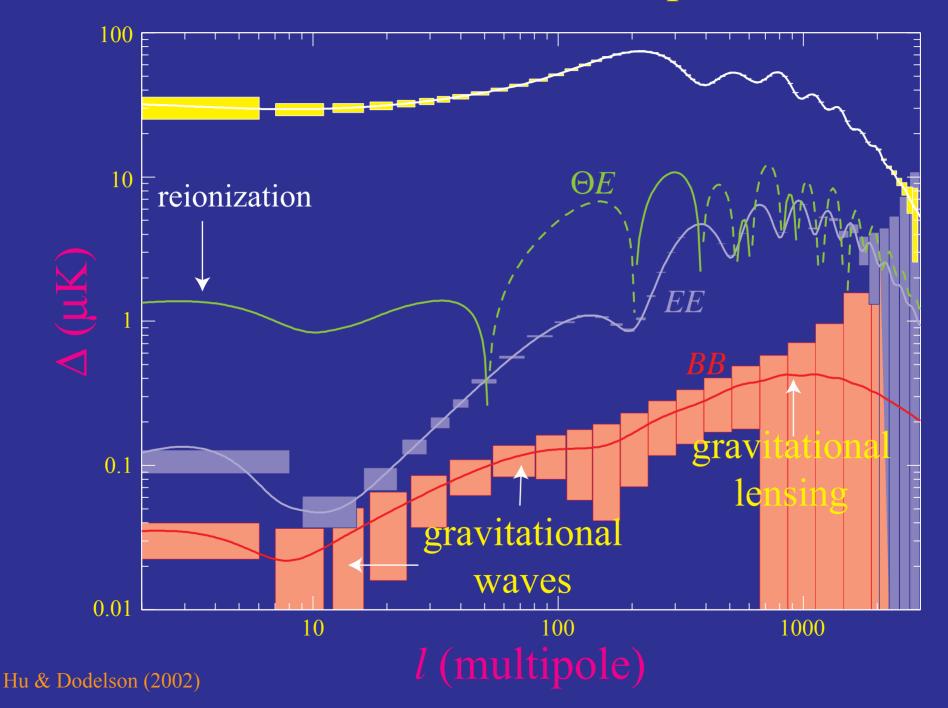
The Peaks



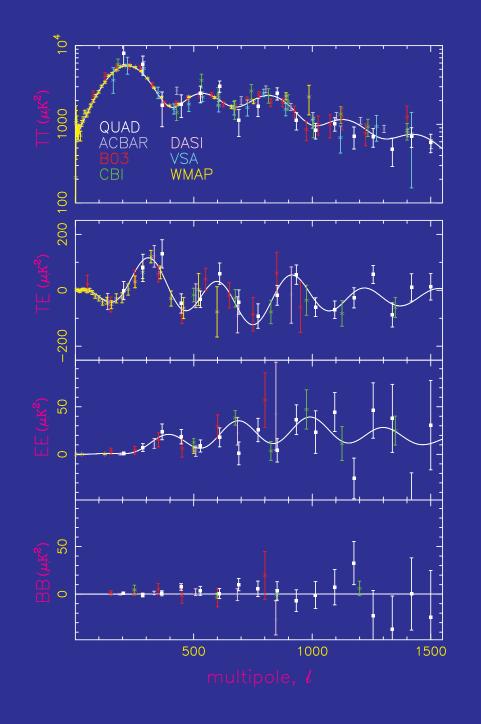
The Peaks



Polarized Landscape

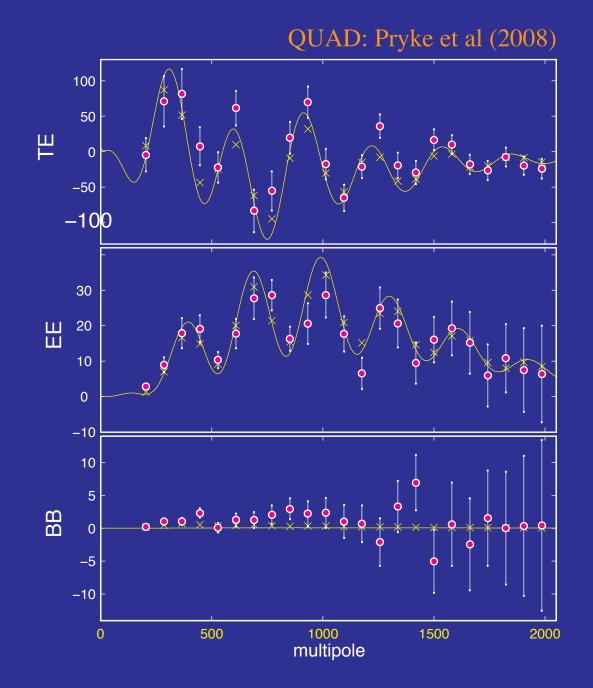


Recent Data



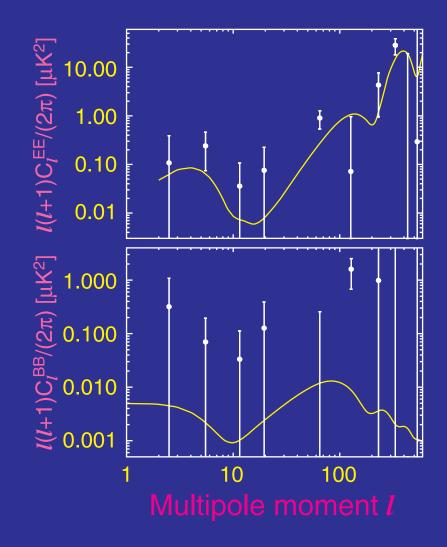
Ade et al (QUAD, 2007)

Power Spectrum Present



Instantaneous Reionization

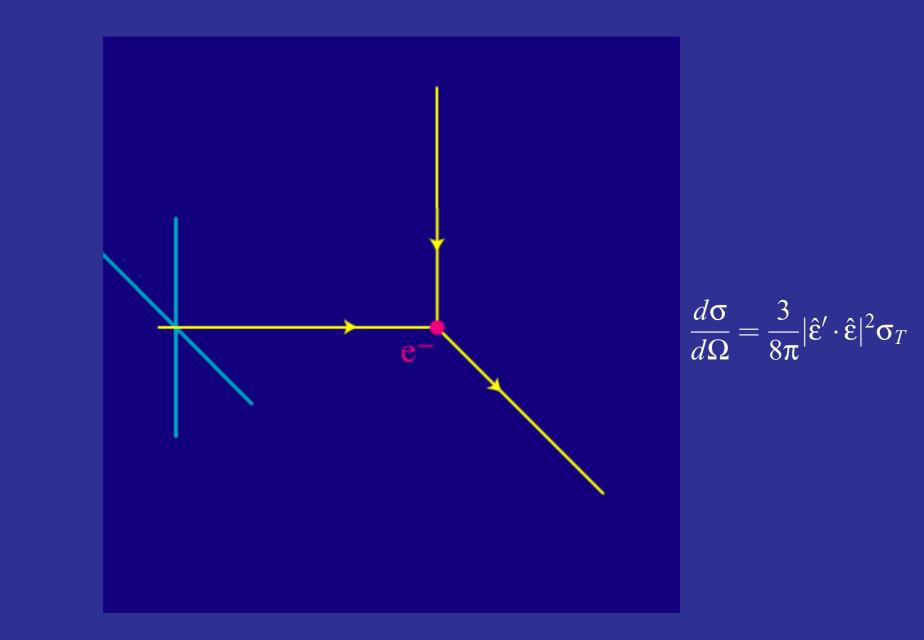
- WMAP data constrains optical depth for instantaneous models of $\tau=0.087\pm0.017$
- Upper limit on gravitational waves weaker than from temperature



Why is the CMB polarized?

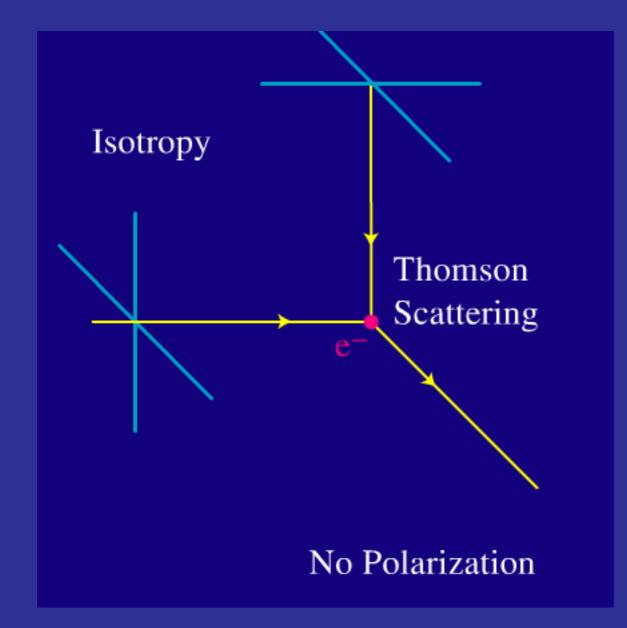
Polarization from Thomson Scattering

• Differential cross section depends on polarization and angle



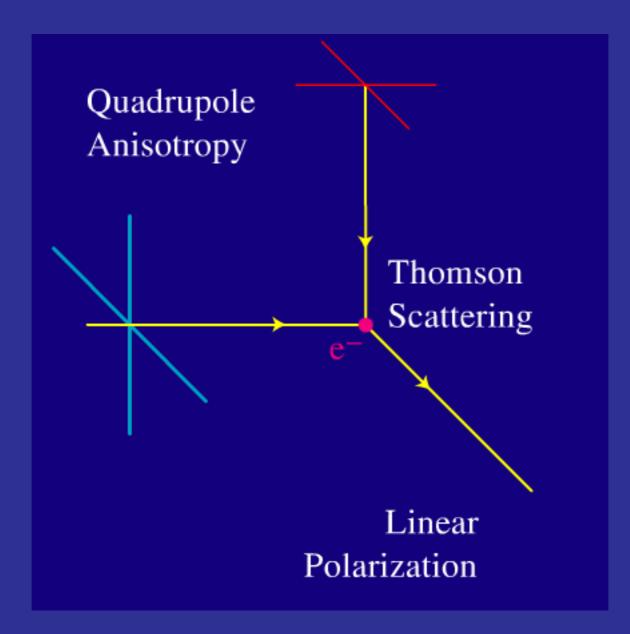
Polarization from Thomson Scattering

Isotropic radiation scatters into unpolarized radiation



Polarization from Thomson Scattering

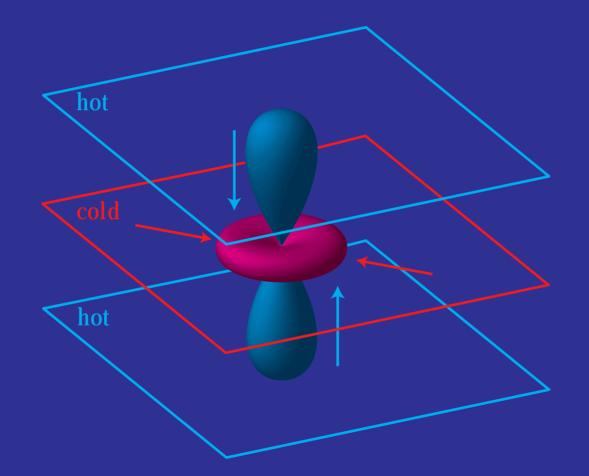
Quadrupole anisotropies scatter into linear polarization



aligned with cold lobe

Whence Quadrupoles?

- Temperature inhomogeneities in a medium
- Photons arrive from different regions producing an anisotropy

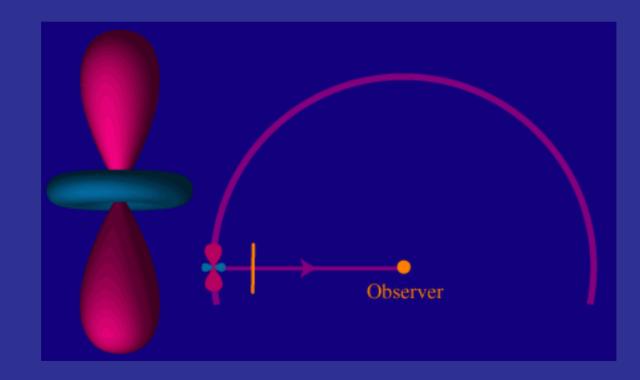


(Scalar) Temperature Inhomogeneity

Hu & White (1997)

Whence Polarization Anisotropy?

- Observed photons scatter into the line of sight
- Polarization arises from the projection of the quadrupole on the transverse plane



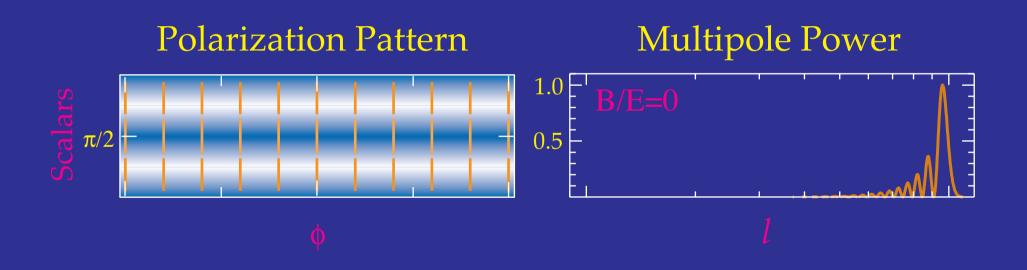
Polarization Multipoles

- Mathematically pattern is described by the tensor (spin-2) spherical harmonics [eigenfunctions of Laplacian on trace-free 2 tensor]
- Correspondence with scalar spherical harmonics established via Clebsch-Gordan coefficients (spin x orbital)
- Amplitude of the coefficients in the spherical harmonic expansion are the multipole moments; averaged square is the power

E-tensor harmonic

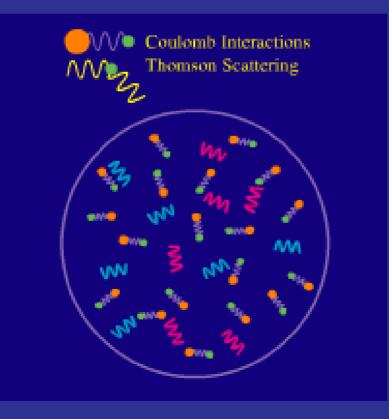
Modulation by Plane Wave

- Amplitude modulated by plane wave \rightarrow higher multipole moments
- Direction detemined by perturbation type \rightarrow E-modes



A Catch-22

- Polarization is generated by scattering of anisotropic radiation
- Scattering isotropizes radiation
- Polarization only arises in optically thin conditions: reionization and end of recombination
- Polarization fraction is at best a small fraction of the 10^{-5} anisotropy: $\sim 10^{-6}$ or μK in amplitude



Polarization Peaks

Fluid Imperfections

- Perfect fluid: no anisotropic stresses due to scattering isotropization; baryons and photons move as single fluid
- Fluid imperfections are related to the mean free path of the photons in the baryons

$$\lambda_C = \dot{\tau}^{-1}$$
 where $\dot{\tau} = n_e \sigma_T a$

is the conformal opacity to Thomson scattering

• Dissipation is related to the diffusion length: random walk approximation

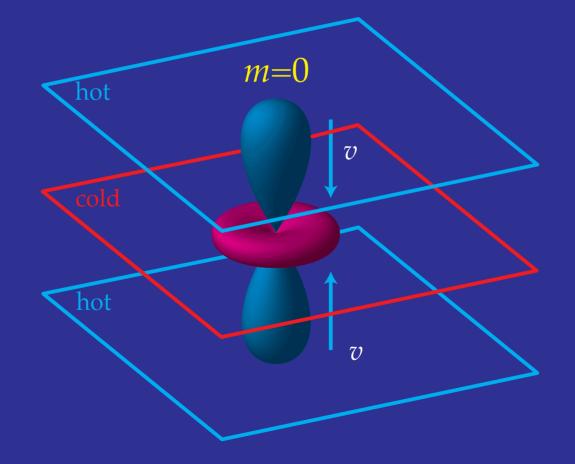
$$\lambda_D = \sqrt{N}\lambda_C = \sqrt{\eta/\lambda_C}\,\lambda_C = \sqrt{\eta\lambda_C}$$

the geometric mean between the horizon and mean free path

λ_D/η_{*} ~ few %, so expect the peaks >3 to be affected by dissipation

Viscosity & Heat Conduction

- Both fluid imperfections are related to the gradient of the velocity kv_{γ} by opacity $\dot{\tau}$: slippage of fluids $v_{\gamma} v_b$.
- Viscosity is an anisotropic stress or quadrupole moment formed by radiation streaming from hot to cold regions



Dimensional Analysis

• Viscosity= quadrupole anisotropy that follows the fluid velocity

$$\pi_{\gamma} \approx \frac{k}{\dot{\tau}} v_{\gamma}$$

- Mean free path related to the damping scale via the random walk $k_D = (\dot{\tau}/\eta_*)^{1/2} \rightarrow \dot{\tau} = k_D^2 \eta_*$
- Damping scale at $\ell \sim 1000$ vs horizon scale at $\ell \sim 100$ so $k_D \eta_* \approx 10$
- Polarization amplitude rises to the damping scale to be ~ 10% of anisotropy

$$\pi_{\gamma} \approx \frac{k}{k_D} \frac{1}{10} v_{\gamma} \qquad \Delta_P \approx \frac{\ell}{\ell_D} \frac{1}{10} \Delta_T$$

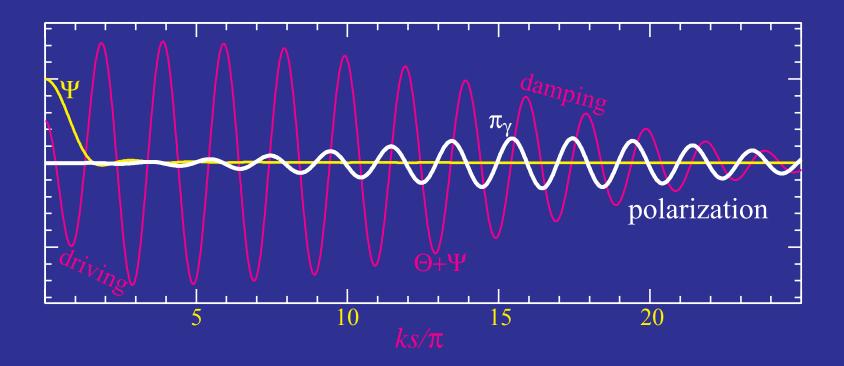
Polarization phase follows fluid velocity

Damping & Polarization

• Quadrupole moments:

damp acoustic oscillations from fluid viscosity generates polarization from scattering

• Rise in polarization power coincides with fall in temperature power $-l \sim 1000$



Acoustic Polarization

- Gradient of velocity is along direction of wavevector, so polarization is pure *E*-mode
- Velocity is 90° out of phase with temperature turning points of oscillator are zero points of velocity:

 $\Theta + \Psi \propto \cos(ks); \quad v_{\gamma} \propto \sin(ks)$

• Polarization peaks are at troughs of temperature power

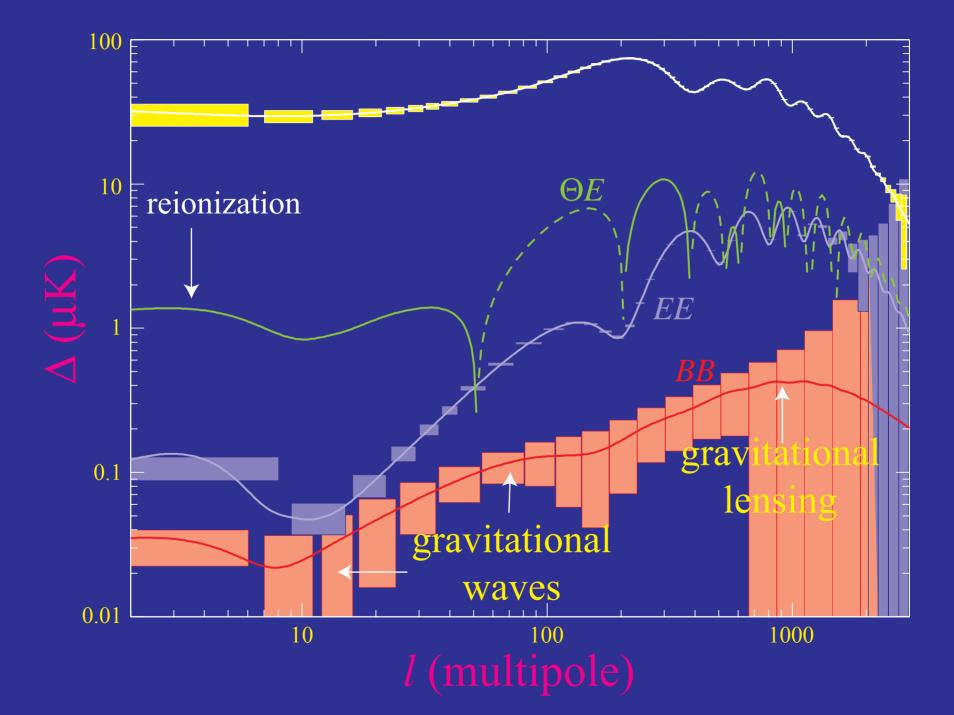
Cross Correlation

• Cross correlation of temperature and polarization

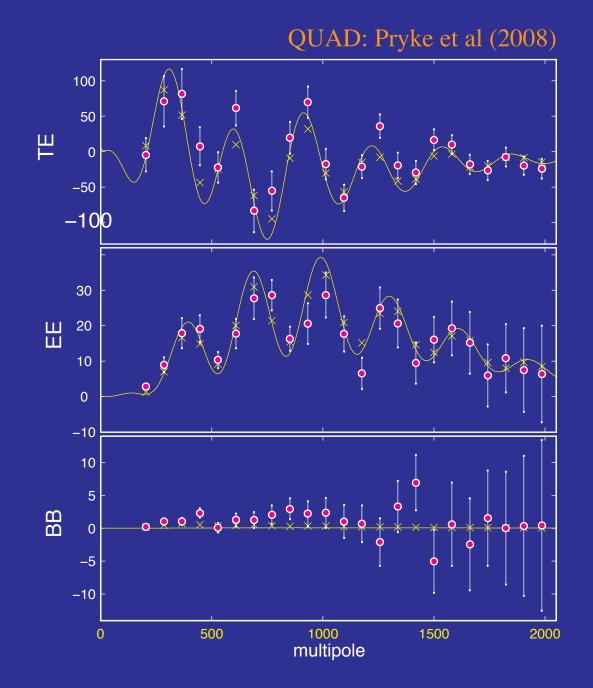
 $(\Theta + \Psi)(v_{\gamma}) \propto \cos(ks) \sin(ks) \propto \sin(2ks)$

- Oscillation at twice the frequency
- Correlation: radial or tangential around hot spots
- Partial correlation: easier to measure if polarization data is noisy, harder to measure if polarization data is high S/N or if bands do not resolve oscillations
- Good check for systematics and foregrounds
- Comparison of temperature and polarization is proof against features in initial conditions mimicking acoustic features

Temperature and Polarization Spectra



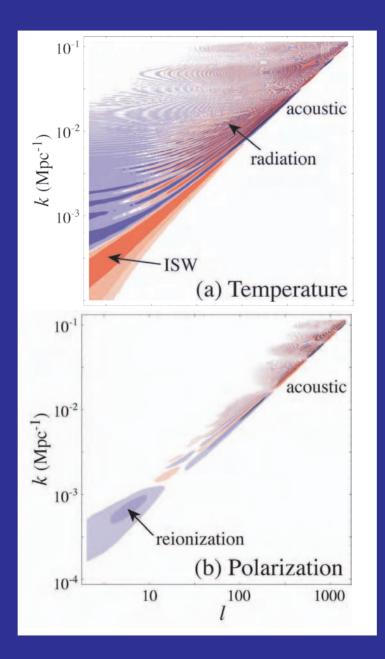
Power Spectrum Present



Why Care?

- In the standard model, acoustic polarization spectra uniquely predicted by same parameters that control temperature spectra
- Validation of standard model
- Improved statistics on cosmological parameters controlling peaks
- Polarization is a complementary and intrinsically more incisive probe of the initial power spectrum and hence inflationary (or alternate) models
- Acoustic polarization is lensed by the large scale structure into B-modes
- Lensing B-modes sensitive to the growth of structure and hence neutrino mass and dark energy
- Contaminate the gravitational wave B-mode signature

Transfer of Initial Power

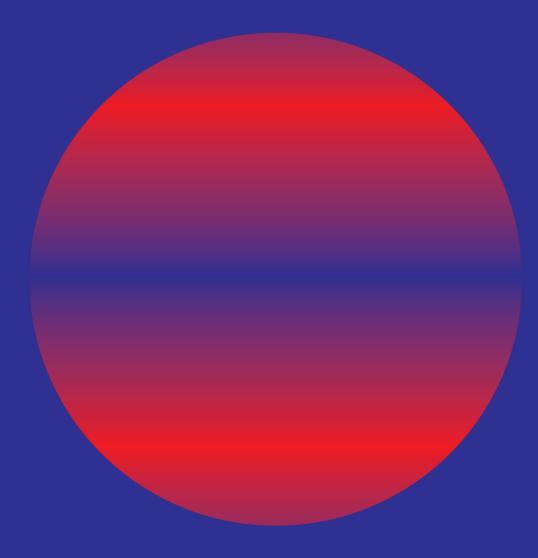


Hu & Okamoto (2003)

Reionization

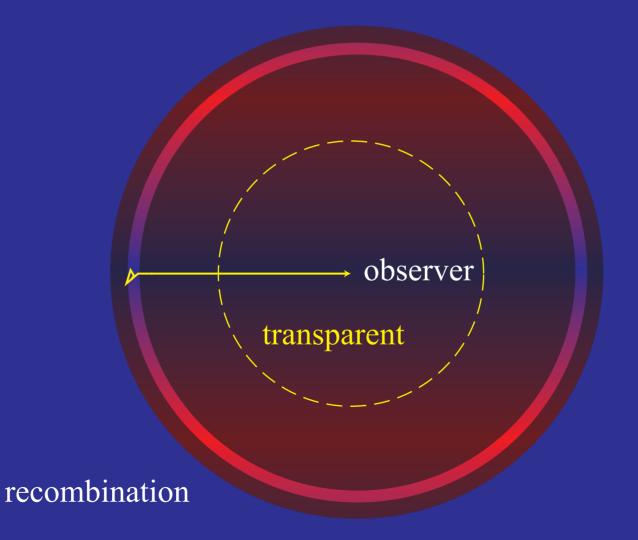
Temperature Inhomogeneity

- Temperature inhomogeneity reflects initial density perturbation on large scales
- Consider a single Fourier moment:



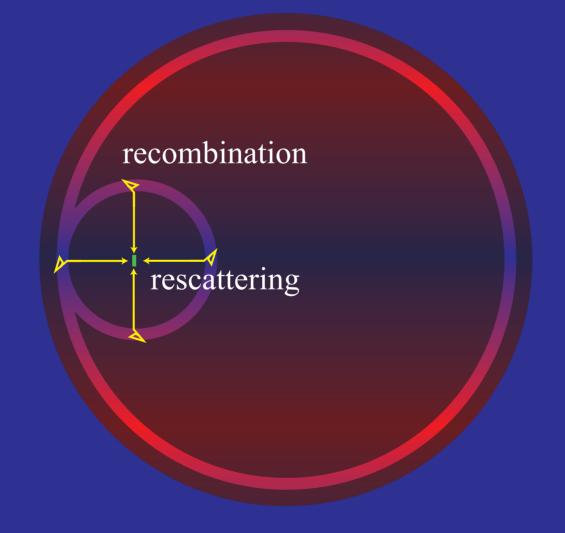
Locally Transparent

• Presently, the matter density is so low that a typical CMB photon will not scatter in a Hubble time (~age of universe)



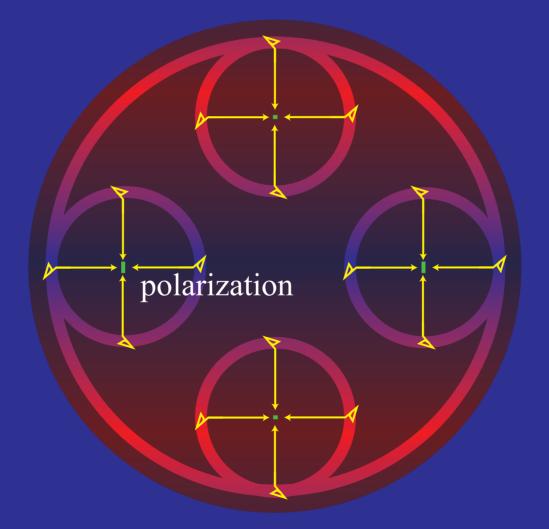
Reversed Expansion

• Free electron density in an ionized medium increases as scale factor *a*-³; when the universe was a tenth of its current size CMB photons have a finite (~10%) chance to scatter



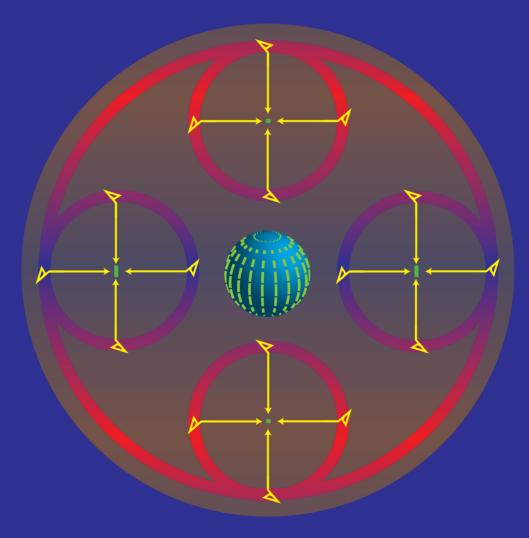
Polarization Anisotropy

• Electron sees the temperature anisotropy on its recombination surface and scatters it into a polarization



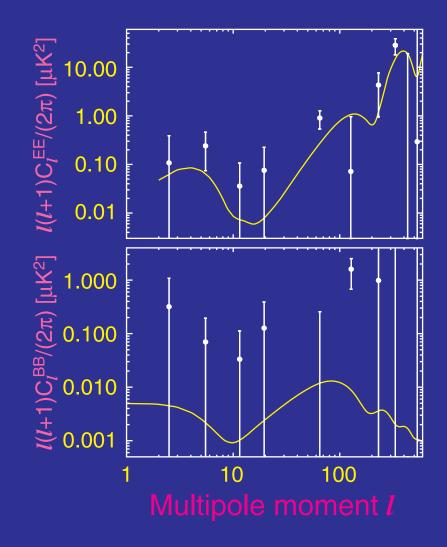
Temperature Correlation

• Pattern correlated with the temperature anisotropy that generates it; here an *m*=0 quadrupole



Instantaneous Reionization

- WMAP data constrains optical depth for instantaneous models of $\tau=0.087\pm0.017$
- Upper limit on gravitational waves weaker than from temperature

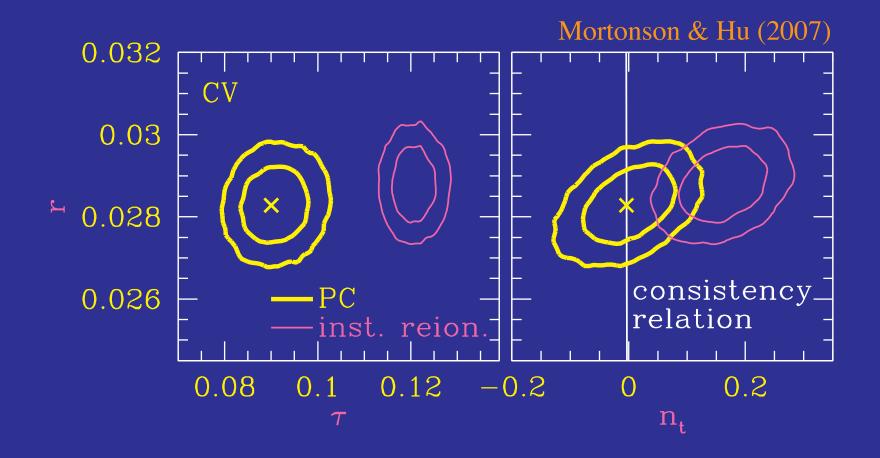


Why Care?

- Early ionization is puzzling if due to ionizing radiation from normal stars; may indicate more exotic physics is involved
- Reionization screens temperature anisotropy on small scales making the true amplitude of initial fluctuations larger by e^τ
- Measuring the growth of fluctuations is one of the best ways of determining the neutrino masses and the dark energy
- Offers an opportunity to study the origin of the low multipole statistical anomalies
- Presents a second, and statistically cleaner, window on gravitational waves from the early universe

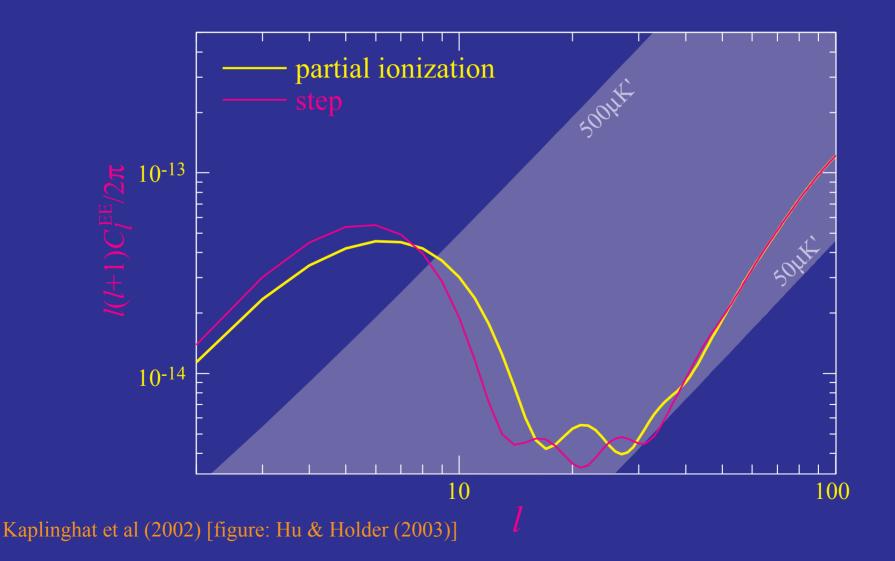
Consistency Relation & Reionization

- By assuming the wrong ionization history can falsely rule out consistency relation
- Principal components eliminate possible biases



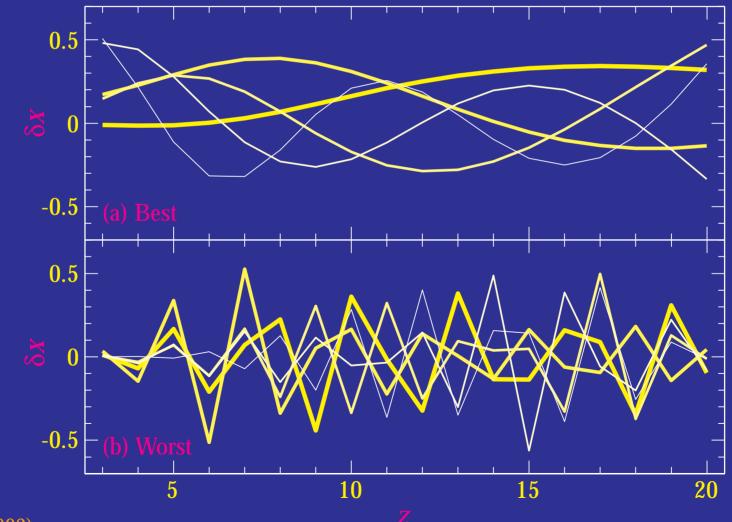
Polarization Power Spectrum

 Most of the information on ionization history is in the polarization (auto) power spectrum - two models with same optical depth but different ionization fraction



Principal Components

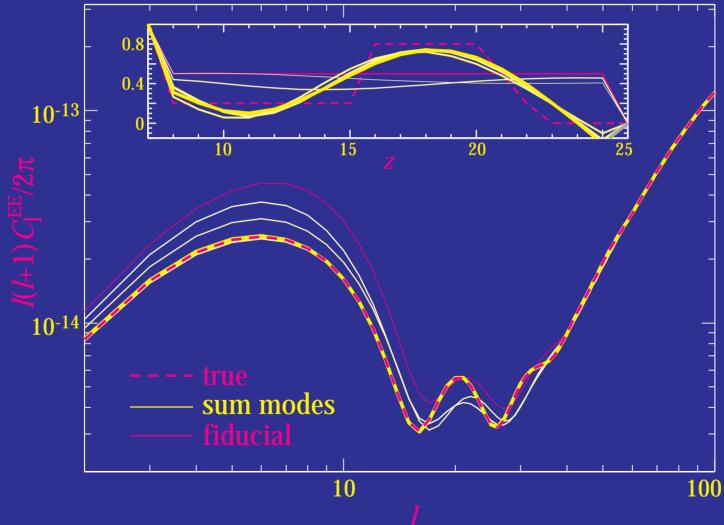
Information on the ionization history is contained in ~5 numbers
 essentially coefficients of first few Fourier modes



Hu & Holder (2003)

Representation in Modes

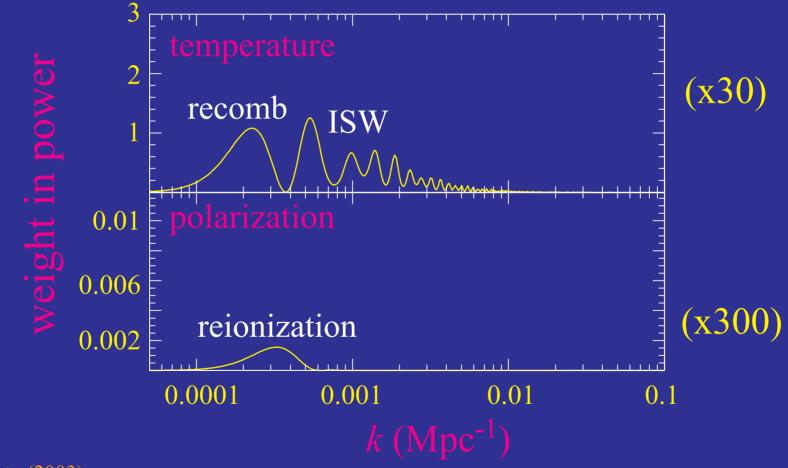
 Reproduces the power spectrum and net optical depth (actual τ=0.1375 vs 0.1377); indicates whether multiple physical mechanisms suggested



Hu & Holder (2003)

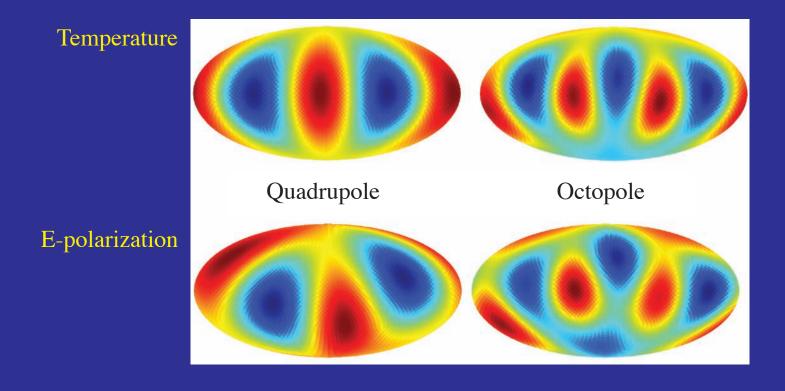
Temperature v. Polarization

- Quadrupole in polarization originates from a tight range of scales around the current horizon
- Quadrupole in temperature gets contributions from 2 decades in scale



Hu & Okamoto (2003)

Alignments



Dvorkin, Peiris, Hu (2007)

Gravitational Waves

Inflation Past

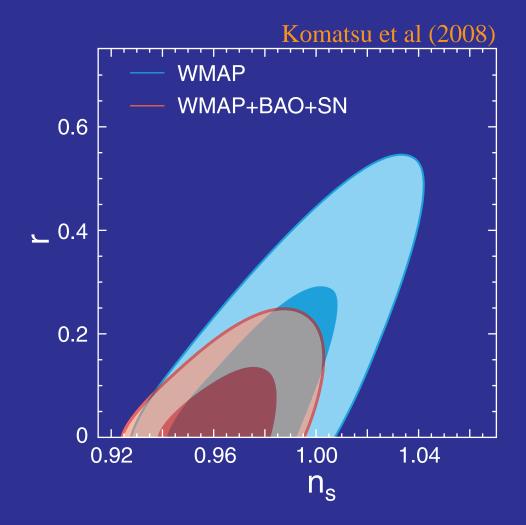
- Superhorizon correlations (acoustic coherence, polarization corr.)
- Spatially flat geometry (angular peak scale)
- Adiabatic fluctuations (peak morphology)
- Nearly scale invariant fluctuations (broadband power, small red tilt favored)
- Gaussian fluctuations
 (but *f*n1>few would rule out single field slow roll)

Inflation Present

- Tilt (or gravitational waves) indicates that one of the slow roll parameters finite (ignoring exotic high-z reionization)
- Constraints in the $r-n_s$ plane test classes of models
- Upper limit on gravity waves put an upper limit on *V'/V* and hence an upper limit on how far the inflaton rolls
- Given functional form of *V*, constraints on the flatness of potential when the horizon left the horizon predict too many (or few) efolds of further inflation
- Non-Gaussian fluctuations at *f*nl~50-100?

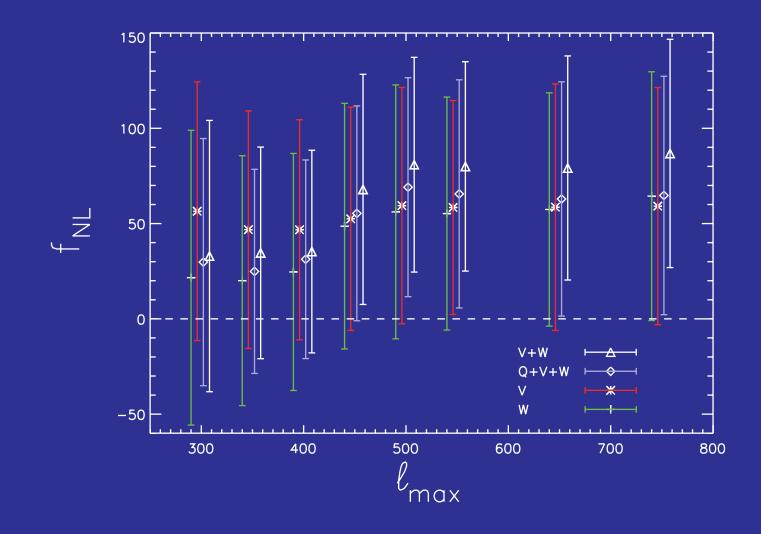
Inflationary Constraints

- Tilt mildly favored over tensors as explaining small scale suppression
- Specific models of inflation relate $r-n_s$ through V', V''
- Small tensors and n_s~1 may make inflation continue for too many efolds



Primordial Non-Gaussianity f_{nl}

- Local second order non-Gaussianity: $\Phi_{nl}=\Phi+f_{nl}(\Phi^2-\langle\Phi^2\rangle)$
- WMAP3 Kp0+: 27<*f*_{nl}<147 (95% CL) (Yadav & Wandelt 2007)
- WMAP5 KQ75: $-5 < f_{nl} < 111 (95\% CL)$ (Komatsu et al 2008)

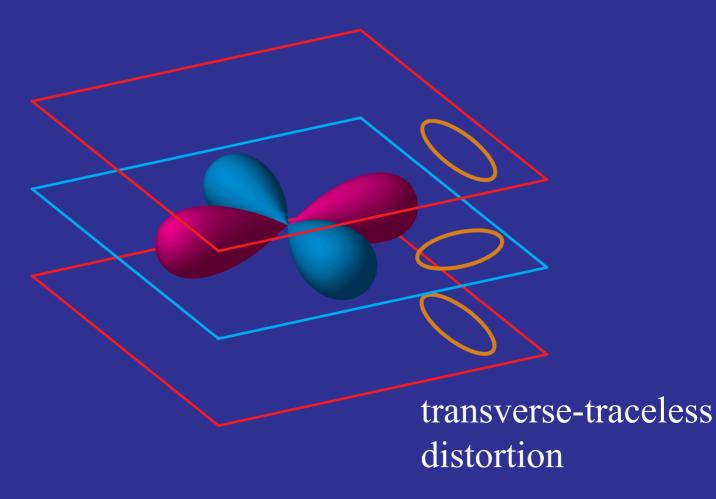


Inflation Future

- Planck can test Gaussianity down to *f*nl~few
- Gravitational wave power proportional to energy scale to 4th power
- B-modes potentially observable for $V^{1/4}>3 \ge 10^{15}$ GeV with removal of lensing B-modes and foregrounds
- Measuring both the reionization bump and recombination peak tests slow roll consistency relation by constraining tensor tilt
- Requires measurement and model-independent interpretation of reionization E-modes

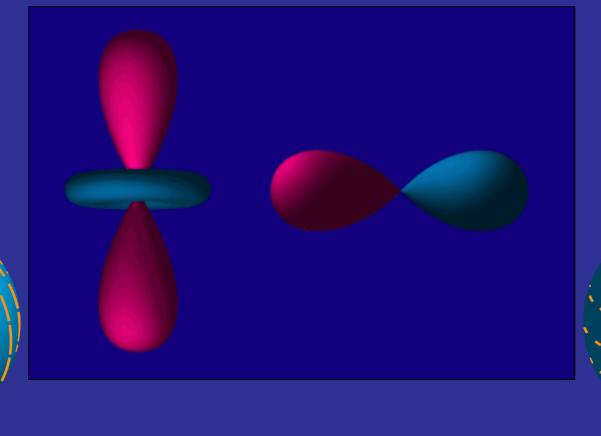
Gravitational Waves

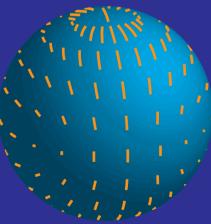
- Inflation predicts near scale invariant spectrum of gravitational waves
- Amplitude proportional to the square of the $E_i = V^{1/4}$ energy scale
- If inflation is associated with the grand unification $E_i \sim 10^{16} \text{ GeV}$ and potentially observable



Gravitational Wave Pattern

- Projection of the quadrupole anisotropy gives polarization pattern
- Transverse polarization of gravitational waves breaks azimuthal symmetry



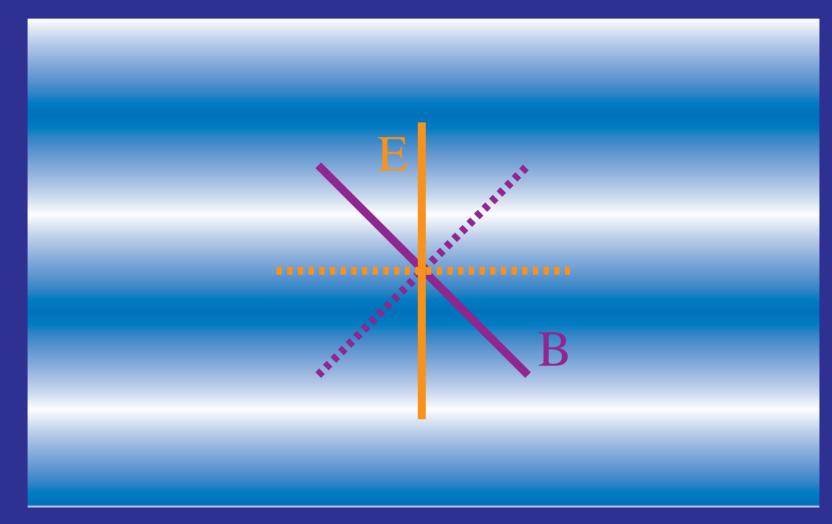


density perturbation gravitational wave

Electric & Magnetic Polarization

(a.k.a. gradient & curl)

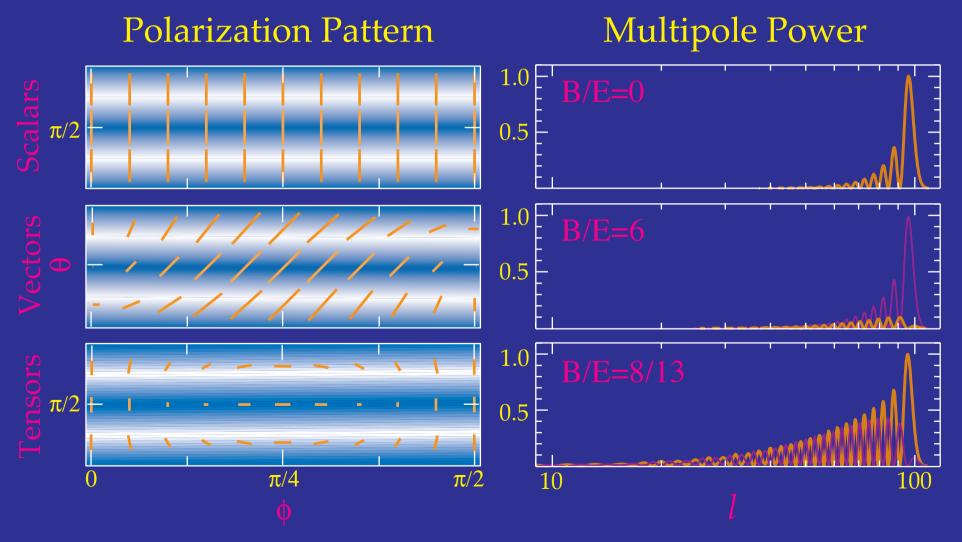
• Alignment of principal vs polarization axes (curvature matrix vs polarization direction)



Kamionkowski, Kosowsky, Stebbins (1997) Zaldarriaga & Seljak (1997)

Patterns and Perturbation Types

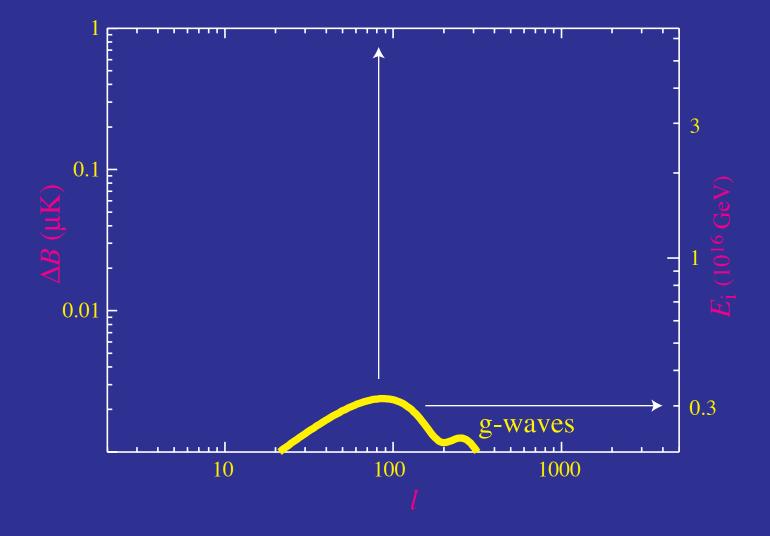
- Amplitude modulated by plane wave \rightarrow Principal axis
- Direction detemined by perturbation type \rightarrow Polarization axis



Kamionkowski, Kosowski, Stebbins (1997); Zaldarriaga & Seljak (1997); Hu & White (1997)

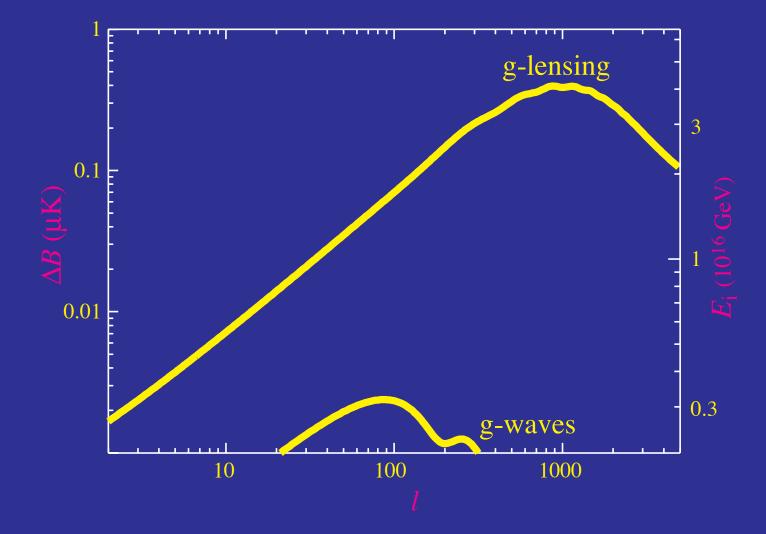
Scaling with Inflationary Energy Scale

• RMS B-mode signal scales with inflationary energy scale squared E_i^2



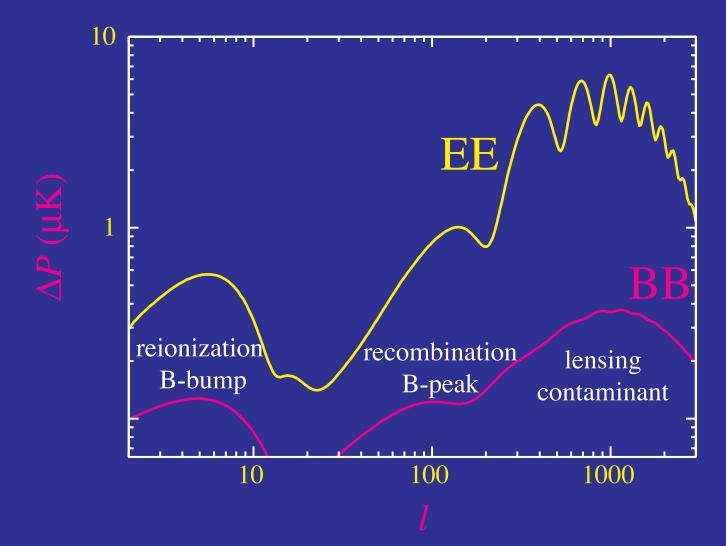
Contamination for Gravitational Waves

 Gravitational lensing contamination of B-modes from gravitational waves cleaned to *E*_i~0.3 x 10¹⁶ GeV Hu & Okamoto (2002) limits by Knox & Song (2002); Cooray, Kedsen, Kamionkowski (2002)



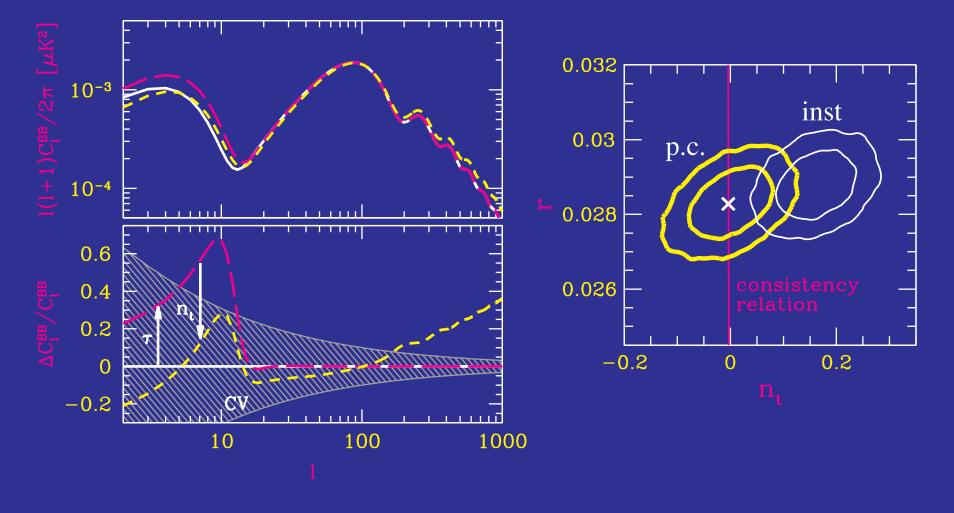
The B-Bump

- Rescattering of gravitational wave anisotropy generates the B-bump
- Potentially the most sensitive probe of inflationary energy scale
- Potentially enables test of consistency relation (slow roll)

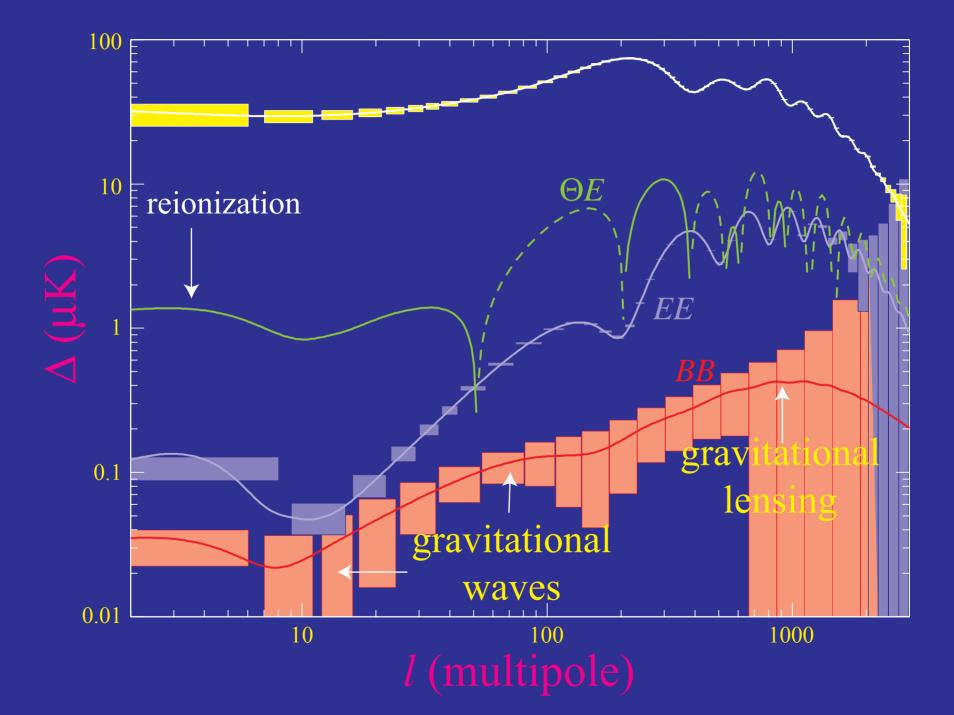


Slow Roll Consistency Relation

- Consistency relation between tensor-scalar ratio and tensor tilt $r = -8n_t$ tested by reionization
- Reionization uncertainties controlled by a complete p.c. analysis



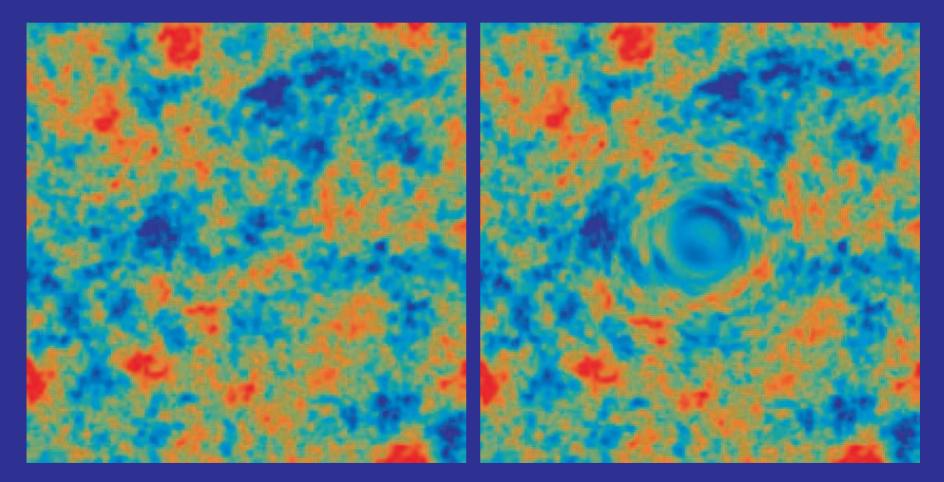
Temperature and Polarization Spectra



Gravitational Lensing

Gravitational Lensing

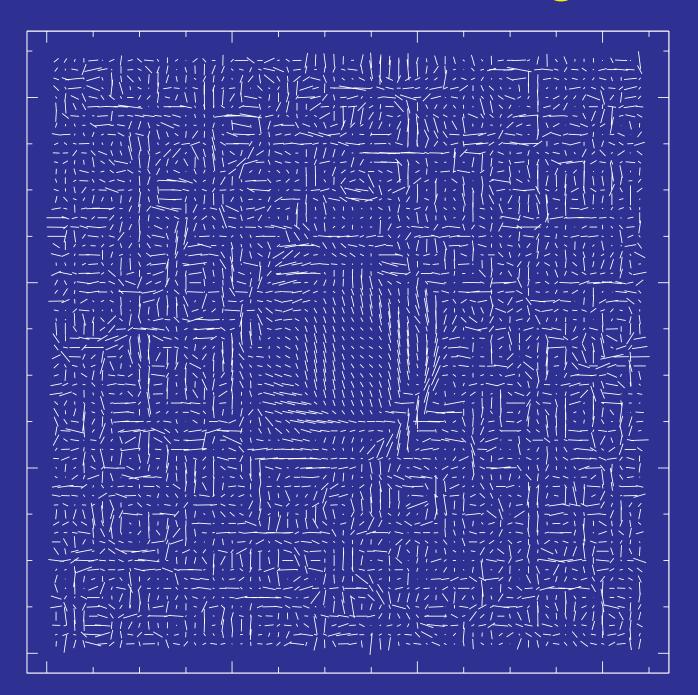
- Gravitational lensing by large scale structure distorts the observed temperature and polarization fields
- Exaggerated example for the temperature



Original

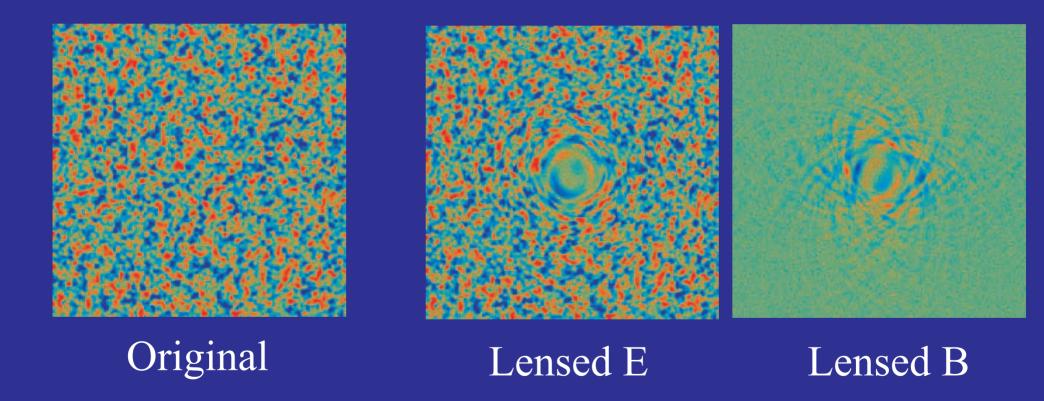
Lensed

Polarization Lensing



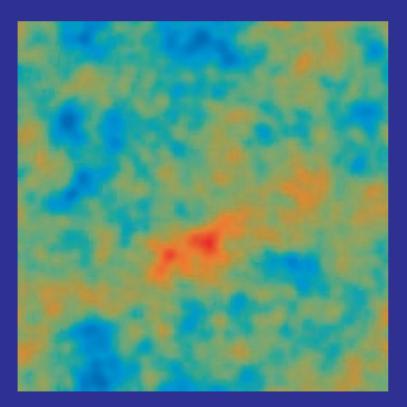
Polarization Lensing

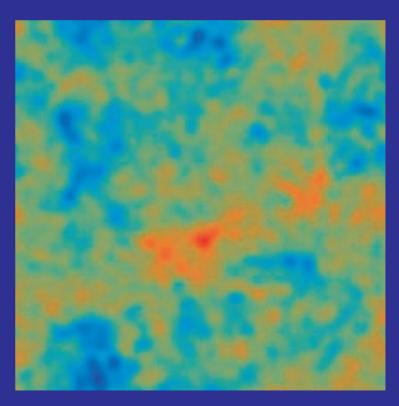
• Since E and B denote the relationship between the polarization amplitude and direction, warping due to lensing creates B-modes



Reconstruction from Polarization

- Lensing B-modes correlated to the orignal E-modes in a specific way
- Correlation of E and B allows for a reconstruction of the lens
- Reference experiment of 4' beam, 1µK' noise and 100 deg²





Original Mass Map Reconstructed Mass Map Hu & Okamoto (2001) [iterative improvement Hirata & Seljak (2003)]

Why Care

- Gravitational lensing sensitive to amount and hence growth of structure
- Examples: massive neutrinos $d \ln C_{\ell}^{BB}/dm_{\nu} \approx -1/3$ eV, dark energy - $d \ln C_{\ell}^{BB}/dw \approx -1/8$
- Mass reconstruction measures the large scale structure on large scales and the mass profile of objects on small scales
- Examples: large scale decontamination of the gravitational wave *B* modes; lensing by SZ clusters combined with optical weak lensing can make a distance ratio test of the acceleration

Lecture II: Summary

- Polarization by Thomson scattering of quadrupole anisotropy
- Quadrupole anisotropy only sustained in optically thin conditions of reionization and the end of recombination
- Reionization generates *E*-modes at low multipoles from and correlated to the Sachs-Wolfe anisotropy
- Reionization polarization enables study of ionization history, low multipole anomalies, gravitational waves
- Dissipation of acoustic waves during recombination generates quadrupoles and correlated polarization peaks
- Recombination polarization provides consistency checks, features in power spectrum, source of graviational lensing *B* modes
- Gravitational waves *B*-mode polarization sensitive to inflation energy scale and tests slow roll consistency relation