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Polarization Anisotropy Spectrum



Damping Tail



Dissipation / Diffusion Damping
• Imperfections in the coupled fluid → mean free path λC in the baryons
• Random walk over diffusion scale: geometric mean of mfp & horizon

 λD ~ λC√N ~ √λCη >> λC

• Overtake wavelength:  λD ~ λ ; second order in λC/λ 

• Viscous damping for R<1;  heat conduction damping for R>1

N=η / λC

λD ~ λC√N
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Dissipation / Diffusion Damping
• Rapid increase at recombination as mfp ↑

• Independent of (robust to changes in) perturbation spectrum

• Robust physical scale for angular diameter distance test (ΩK, ΩΛ)

Po
w

er

0.1

1.0

500 1000 1500
l

perfect fluid

instant decoupling

recombination

Silk (1968); Hu & Sugiyama (1995); Hu & White (1996)

Recombination



Damping
• Tight coupling equations assume a perfect fluid: no viscosity, no

heat conduction

• Fluid imperfections are related to the mean free path of the
photons in the baryons

λC = τ̇−1 where τ̇ = neσTa

is the conformal opacity to Thomson scattering

• Dissipation is related to the diffusion length: random walk
approximation

λD =
√
NλC =

√
η/λC λC =

√
ηλC

the geometric mean between the horizon and mean free path

• λD/η∗ ∼ few %, so expect the peaks :> 3 to be affected by
dissipation



Equations of Motion
• Continuity

Θ̇ = −k
3
vγ − Φ̇ , δ̇b = −kvb − 3Φ̇

where the photon equation remains unchanged and the baryons
follow number conservation with ρb = mbnb

• Euler

v̇γ = k(Θ + Ψ)− k

6
πγ − τ̇(vγ − vb)

v̇b = − ȧ
a
vb + kΨ + τ̇(vγ − vb)/R

where the photons gain an anisotropic stress term πγ from radiation
viscosity and a momentum exchange term with the baryons and
are compensated by the opposite term in the baryon Euler equation



Viscosity
• Viscosity is generated from radiation streaming from hot to cold

regions

• Expect

πγ ∼ vγ
k

τ̇

generated by streaming, suppressed by scattering in a wavelength
of the fluctuation. Radiative transfer says

πγ ≈ 2Avvγ
k

τ̇

where Av = 16/15

v̇γ = k(Θ + Ψ)− k

3
Av
k

τ̇
vγ



Viscosity & Heat Conduction
• Both fluid imperfections are related to the gradient of the velocity

kvγ by opacity τ̇ : slippage of fluids vγ − vb.

• Viscosity is an anisotropic stress or quadrupole moment formed by
radiation streaming from hot to cold regions

m=0

v

hot

hot

cold
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Damping & Viscosity

• Quadrupole moments:

   damp acoustic oscillations from fluid viscosity
   generates polarization from scattering (next lecture)

• Rise in polarization power coincides with fall in
 temperature power – l ~ 1000     
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Oscillator: Penultimate Take
• Adiabatic approximation ( ω � ȧ/a)

Θ̇ ≈ −k
3
vγ

• Oscillator equation contains a Θ̇ damping term

c2
s

d

dη
(c−2
s Θ̇) +

k2c2
s

τ̇
AvΘ̇ + k2c2

sΘ = −k
2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

• Heat conduction term similar in that it is proportional to vγ and is
suppressed by scattering k/τ̇ . Expansion of Euler equations to
leading order in k/τ̇ gives

Ah =
R2

1 +R

since the effects are only significant if the baryons are dynamically
important



Oscillator: Final Take
• Final oscillator equation

c2
s

d

dη
(c−2
s Θ̇) +

k2c2
s

τ̇
[Av + Ah]Θ̇ + k2c2

sΘ = −k
2

3
Ψ− c2

s

d

dη
(c−2
s Φ̇)

• Solve in the adiabatic approximation

Θ ∝ exp(i

∫
ωdη)

−ω2 +
k2c2

s

τ̇
(Av + Ah)iω + k2c2

s = 0



Dispersion Relation
• Solve

ω2 = k2c2
s

[
1 + i

ω

τ̇
(Av + Ah)

]
ω = ±kcs

[
1 +

i

2

ω

τ̇
(Av + Ah)

]
= ±kcs

[
1± i

2

kcs
τ̇

(Av + Ah)

]
• Exponentiate

exp(i

∫
ωdη) = e±iks exp[−k2

∫
dη

1

2

c2
s

τ̇
(Av + Ah)]

= e±iks exp[−(k/kD)2]

• Damping is exponential under the scale kD



Diffusion Scale
• Diffusion wavenumber

k−2
D =

∫
dη

1

τ̇

1

6(1 +R)

(
16

15
+

R2

(1 +R)

)
• Limiting forms

lim
R→0

k−2
D =

1

6

16

15

∫
dη

1

τ̇

lim
R→∞

k−2
D =

1

6

∫
dη

1

τ̇

• Geometric mean between horizon and mean free path as expected
from a random walk

λD =
2π

kD
∼ 2π√

6
(ητ̇−1)1/2
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Power Spectrum Present



Standard Ruler
• Damping length is a fixed physical scale given properties at

recombination

• Gemoetric mean of mean free path and horizon: depends on
baryon-photon ratio and matter-radiation ratio




Standard Rulers
• Calibrating the Standard Rulers

• Sound Horizon

• Damping Scale
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Polarized Landscape
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Recent Data

Ade et al (QUAD, 2007)



Power Spectrum Present

QUAD: Pryke et al (2008)
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Instantaneous Reionization
• WMAP data constrains optical depth for instantaneous models
 of τ=0.087±0.017
• Upper limit on gravitational waves weaker than from temperature



Why is the CMB polarized?



Polarization from Thomson Scattering 

• Differential cross section depends on polarization and angle

dσ
dΩ

=
3

8π
|ε̂′ · ε̂|2σT

dσ
dΩ

=
3

8π
|ε̂′ · ε̂|2σT




Polarization from Thomson Scattering 

• Isotropic radiation scatters into unpolarized radiation




Polarization from Thomson Scattering 

• Quadrupole anisotropies scatter into linear polarization

aligned with
cold lobe




Whence Quadrupoles?
• Temperature inhomogeneities in a medium

• Photons arrive from different regions producing an anisotropy

hot

hot

cold

(Scalar) Temperature Inhomogeneity
Hu & White (1997)



Whence Polarization Anisotropy?
• Observed photons scatter into the line of sight 

• Polarization arises from the projection of the quadrupole on the

 transverse plane




Polarization Multipoles
• Mathematically pattern is described by the tensor (spin-2) spherical 
 harmonics [eigenfunctions of Laplacian on trace-free 2 tensor] 

• Correspondence with scalar spherical harmonics established
 via Clebsch-Gordan coefficients (spin x orbital)

• Amplitude of the coefficients in the spherical harmonic expansion
 are the multipole moments; averaged square is the power

E-tensor harmonic

l=2, m=0



Modulation by Plane Wave

• Amplitude modulated by plane wave → higher multipole moments
• Direction detemined by perturbation type → E-modes
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A Catch-22
• Polarization is generated by scattering of anisotropic radiation

• Scattering isotropizes radiation

• Polarization only arises in optically thin conditions: reionization
 and end of recombination

• Polarization fraction is at best a small fraction of the 10-5 anisotropy:
 ~10-6  or µK in amplitude




Polarization Peaks



Fluid Imperfections
• Perfect fluid: no anisotropic stresses due to scattering

isotropization; baryons and photons move as single fluid

• Fluid imperfections are related to the mean free path of the
photons in the baryons

λC = τ̇−1 where τ̇ = neσT a

is the conformal opacity to Thomson scattering

• Dissipation is related to the diffusion length: random walk
approximation

λD =
√

NλC =
√

η/λC λC =
√

ηλC

the geometric mean between the horizon and mean free path

• λD/η∗ ∼ few %, so expect the peaks >3 to be affected by
dissipation



Viscosity & Heat Conduction
• Both fluid imperfections are related to the gradient of the velocity

kvγ by opacity τ̇ : slippage of fluids vγ − vb.

• Viscosity is an anisotropic stress or quadrupole moment formed by
radiation streaming from hot to cold regions

m=0
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Dimensional Analysis
• Viscosity= quadrupole anisotropy that follows the fluid velocity

πγ ≈
k

τ̇
vγ

• Mean free path related to the damping scale via the random walk
kD = (τ̇ /η∗)

1/2 → τ̇ = k2
Dη∗

• Damping scale at ` ∼ 1000 vs horizon scale at ` ∼ 100 so
kDη∗ ≈ 10

• Polarization amplitude rises to the damping scale to be ∼ 10% of
anisotropy

πγ ≈
k

kD

1

10
vγ ∆P ≈

`

`D

1

10
∆T

• Polarization phase follows fluid velocity



Damping & Polarization

• Quadrupole moments:

   damp acoustic oscillations from fluid viscosity
   generates polarization from scattering

• Rise in polarization power coincides with fall in
 temperature power – l ~ 1000     
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Acoustic Polarization
• Gradient of velocity is along direction of wavevector, so

polarization is pure E-mode

• Velocity is 90◦ out of phase with temperature – turning points of
oscillator are zero points of velocity:

Θ + Ψ ∝ cos(ks); vγ ∝ sin(ks)

• Polarization peaks are at troughs of temperature power



Cross Correlation
• Cross correlation of temperature and polarization

(Θ + Ψ)(vγ) ∝ cos(ks) sin(ks) ∝ sin(2ks)

• Oscillation at twice the frequency

• Correlation: radial or tangential around hot spots

• Partial correlation: easier to measure if polarization data is noisy,
harder to measure if polarization data is high S/N or if bands do
not resolve oscillations

• Good check for systematics and foregrounds

• Comparison of temperature and polarization is proof against
features in initial conditions mimicking acoustic features



Temperature and Polarization Spectra
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Power Spectrum Present

QUAD: Pryke et al (2008)
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Why Care?
• In the standard model, acoustic polarization spectra uniquely 
 predicted by same parameters that control temperature spectra

• Validation of standard model

• Improved statistics on cosmological parameters controlling peaks

• Polarization is a complementary and intrinsically more incisive
 probe of the initial power spectrum and hence inflationary (or
 alternate) models

• Acoustic polarization is lensed by the large scale structure into 
 B-modes

• Lensing B-modes sensitive to the growth of structure and hence 
 neutrino mass and dark energy

• Contaminate the gravitational wave B-mode signature



Transfer of Initial Power

Hu & Okamoto (2003)



Reionization



Temperature Inhomogeneity
• Temperature inhomogeneity reflects initial density perturbation
 on large scales
• Consider a single Fourier moment:



Locally Transparent
• Presently, the matter density is so low that a typical CMB photon 
 will not scatter in a Hubble time (~age of universe)

recombination

observer

transparent



Reversed Expansion
• Free electron density in an ionized medium increases as scale factor 
 a-3; when the universe was a tenth of its current size CMB photons
 have a finite (~10%) chance to scatter

recombination

rescattering



Polarization Anisotropy
• Electron sees the temperature anisotropy on its recombination 
 surface and scatters it into a polarization

recombination

polarization



Temperature Correlation
• Pattern correlated with the temperature anisotropy that generates
 it; here an m=0 quadrupole



Instantaneous Reionization
• WMAP data constrains optical depth for instantaneous models
 of τ=0.087±0.017
• Upper limit on gravitational waves weaker than from temperature



Why Care?
• Early ionization is puzzling if due to ionizing radiation from normal
 stars; may indicate more exotic physics is involved

• Reionization screens temperature anisotropy on small scales
 making the true amplitude of initial fluctuations larger by eτ

• Measuring the growth of fluctuations is one of the best ways of 
 determining the neutrino masses and the dark energy

• Offers an opportunity to study the origin of the low multipole
 statistical anomalies

• Presents a second, and statistically cleaner, window on 
 gravitational waves from the early universe



Consistency Relation & Reionization
• By assuming the wrong ionization history can falsely rule out
 consistency relation
• Principal components eliminate possible biases

Mortonson & Hu (2007)



Polarization Power Spectrum
• Most of the information on ionization history is in the polarization
 (auto) power spectrum - two models with same optical depth
 but different ionization fraction

Kaplinghat et al (2002) [figure: Hu & Holder (2003)]
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Principal Components
•	 Information on the ionization history is contained in ~5 numbers
	 - essentially coefficients of first few Fourier modes

Hu & Holder (2003) z
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Representation in Modes
•	 Reproduces the power spectrum and net optical depth
	 (actual τ=0.1375 vs 0.1377); indicates whether multiple 
	 physical mechanisms suggested

Hu & Holder (2003)
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• Quadrupole in polarization originates from a tight range of
 scales around the current horizon 
• Quadrupole in temperature gets contributions from 2 decades
 in scale

Hu & Okamoto (2003)
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Alignments

Dvorkin, Peiris, Hu (2007)

Quadrupole Octopole

Temperature

E-polarization



Gravitational Waves



Inflation Past
• Superhorizon correlations 
 (acoustic coherence, polarization corr.)
• Spatially flat geometry 
 (angular peak scale)
• Adiabatic fluctuations 
 (peak morphology)
• Nearly scale invariant fluctuations 
 (broadband power, small red tilt favored)
• Gaussian fluctuations 
 (but fnl>few would rule out single field slow roll)



Inflation Present
• Tilt (or gravitational waves) indicates that one of the slow roll
 parameters finite (ignoring exotic high-z reionization)
• Constraints in the r-ns plane test classes of models
• Upper limit on gravity waves put an upper limit on V’/V
 and hence an upper limit on how far the inflaton rolls
• Given functional form of V, constraints on the flatness of
 potential when the horizon left the horizon predict too many
 (or few) efolds of further inflation

• Non-Gaussian fluctuations at fnl~50-100?



Inflationary Constraints
• Tilt mildly favored over tensors as explaining small scale suppression
• Specific models of inflation relate r-ns through V’, V’’
• Small tensors and ns~1 may make inflation continue for too many 
 efolds

Komatsu et al (2008)



Primordial Non-Gaussianity fnl

• Local second order non-Gaussianity: Φnl=Φ+fnl(Φ2-<Φ2>)
• WMAP3 Kp0+:  27<fnl<147 (95% CL) (Yadav & Wandelt 2007)  

• WMAP5 KQ75: -5<fnl<111 (95% CL)  (Komatsu et al 2008) 



Inflation Future
• Planck can test Gaussianity down to fnl~few

• Gravitational wave power proportional to energy scale to 4th power
• B-modes potentially observable for V1/4>3 x 1015 GeV with 
 removal of lensing B-modes and foregrounds

• Measuring both the reionization bump and recombination peak
 tests slow roll consistency relation by constraining tensor tilt 
• Requires measurement and model-independent interpretation of
 reionization E-modes



Gravitational Waves
• Inflation predicts near scale invariant spectrum of gravitational waves

• Amplitude proportional to the square of the Ei=V1/4 energy scale

• If inflation is associated with the grand unification Ei~1016 GeV
 and potentially observable

 

transverse-traceless
distortion



Gravitational Wave Pattern
• Projection of the quadrupole anisotropy gives polarization pattern

• Transverse polarization of gravitational waves breaks azimuthal

 symmetry 

density 

perturbation

gravitational

wave




Electric & Magnetic Polarization
(a.k.a. gradient & curl)

Kamionkowski, Kosowsky, Stebbins (1997)
Zaldarriaga & Seljak (1997)

• Alignment of principal vs polarization axes 
(curvature matrix vs polarization direction)

E

B



Patterns and Perturbation Types

Kamionkowski, Kosowski, Stebbins (1997); Zaldarriaga & Seljak (1997); Hu & White (1997)

• Amplitude modulated by plane wave → Principal axis
• Direction detemined by perturbation type → Polarization axis
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Scaling with Inflationary Energy Scale
•	 RMS B-mode signal scales with inflationary energy scale
	 squared Ei2
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Contamination for Gravitational Waves
•	 Gravitational lensing contamination of B-modes from
	 gravitational waves cleaned to Ei~0.3 x 1016 GeV

Hu & Okamoto (2002) limits by Knox & Song (2002); Cooray, Kedsen, Kamionkowski (2002)

1

10 100 1000

0.1

0.01

∆B
 (µ

K
)

l

g-lensing

1

3

0.3

E i
 (1

01
6  G

eV
)

g-waves



The B-Bump
•	 Rescattering of gravitational wave anisotropy generates the B-bump

•	 Potentially the most sensitive probe of inflationary energy scale

•	 Potentially enables test of consistency relation (slow roll)
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Slow Roll Consistency Relation

Mortonson & Hu (2007)

• Consistency relation between tensor-scalar ratio and tensor tilt
 r = -8nt tested by reionization 
• Reionization uncertainties controlled by a complete p.c. analysis

inst
p.c.



Temperature and Polarization Spectra
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Gravitational Lensing



Gravitational Lensing
• Gravitational lensing by large scale structure distorts the observed
 temperature and polarization fields

• Exaggerated example for the temperature

Original Lensed



Polarization Lensing



Polarization Lensing
• Since E and B denote the relationship between the polarization
 amplitude and direction, warping due to lensing creates B-modes

Original Lensed BLensed E

Zaldarriaga & Seljak (1998) [figure: Hu & Okamoto (2001)]



Reconstruction from Polarization
• Lensing B-modes correlated to the orignal E-modes in a specific
 way

• Correlation of E and B allows for a reconstruction of the lens

• Reference experiment of  4' beam, 1µK' noise and 100 deg2

Original Mass Map Reconstructed Mass Map
Hu & Okamoto (2001) [iterative improvement Hirata & Seljak (2003)]



Why Care
• Gravitational lensing sensitive to amount and hence growth of

structure

• Examples: massive neutrinos - d lnCBB
` /dmν ≈ −1/3eV, dark

energy - d lnCBB
` /dw ≈ −1/8

• Mass reconstruction measures the large scale structure on large
scales and the mass profile of objects on small scales

• Examples: large scale decontamination of the gravitational wave B
modes; lensing by SZ clusters combined with optical weak lensing
can make a distance ratio test of the acceleration



Lecture II: Summary
• Polarization by Thomson scattering of quadrupole anisotropy

• Quadrupole anisotropy only sustained in optically thin conditions
of reionization and the end of recombination

• Reionization generates E-modes at low multipoles from and
correlated to the Sachs-Wolfe anisotropy

• Reionization polarization enables study of ionization history, low
multipole anomalies, gravitational waves

• Dissipation of acoustic waves during recombination generates
quadrupoles and correlated polarization peaks

• Recombination polarization provides consistency checks, features
in power spectrum, source of graviational lensing B modes

• Gravitational waves B-mode polarization sensitive to inflation
energy scale and tests slow roll consistency relation
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