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• Angular Diameter Distance
Location of peaks
Degeneracy

• Integrated Sachs-Wolfe (ISW) Effect
Breaks degeneracy
Measures dark energy smoothness
Cosmic variance

• CMB lensing
Reconstruct large-scale potential
Cross correlate with CMB
Test dark energy particle properties
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Angular Diameter Distance

• Temperature (and polarization) patterns shift in and out
in angular scale with the angular
diameter distance to recom-
bination
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Location of the Peaks

• Peaks shift to lower multipoles as the dark energy density
increases
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Location of the Peaks

• But raising the equation of state w=p/ρ has the same effect
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Degeneracy of the Peak Locations

• But raising the equation of state w=p/ρ has the same effect
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Degeneracy of the Peak Locations

• Contours of angular diameter distance H0DA at constant 
Ωbh2, Ωmh2 (peak locations and morphology) 
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Degeneracy of the Peak Locations

• Fisher (local) approximation to statistical errors
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Degeneracy of the Peak Locations

• Polarization adds info on Ωbh2, Ωmh2  (and τ, T/S) 
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Degeneracy of the Peak Locations

• External information, especially H0 (or acceleration) helps
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Inadequacy of the Fisher Approximation

• At higher w, degeneracy is broken by the ISW effect
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Integrated Sachs-Wolfe
Effect



Smooth Energy Density & Potential Decay

• Regardless of the equation of state an energy component
that clusters preserves an approximately constant 
gravitational potential (formally Bardeen curvature ζ)

• A smooth component contributes
density ρ to the expansion

but not
density fluctuation δρ to the Poisson equation

• Imbalance causes potential to decay once smooth 
component dominates the expansion

• Scalar field dark energy (quintessence) is smooth out to
the horizon scale (sound speed cs=1)

• Potential decay measures the clustering  properties and 
hence the particle properties of the dark energy



ISW Effect

• Gravitational blueshift on infall does not cancel redshift 
on climbing out

• Contraction of spatial metric doubles the effect: ∆T/T=2∆Φ

• Effect from potential hills and wells cancel on small scales
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ISW Effect and Dark Energy

• Raising equation of state increases redshift of dark energy
domination and raises the ISW effect

• Lowering the sound speed increases clustering and reduces
ISW effect at large angles
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Cosmic Variance Problem

• Power spectrum sampling errors = [(l+1/2)fsky]–1/2

• Low multipole effects severely cosmic variance limited
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Solution?

• Cross correlation with other tracers of gravitational potential

• Requires:
Large fraction of sky fsky> few percent
Redshift sensitivity when dark energy dominates: z~0.5-1

• Possibilities:
X-ray surveys
Radio surveys
(issues of bias, evolution) Crittenden et al. 

Cosmic shear surveys
(intrinsically small shear signals above degree scale)

Hu (2001)

CMB Lensing Goldberg & Spergel (1999); Zaldarriaga & Seljak (1999)
Hu (2001)



CMB
Temperature & Polarization

Lensing



Lensing of a Gaussian Random Field

• CMB temperature and polarization anisotropies are Gaussian
random fields – unlike galaxy weak lensing

• Average over many noisy images – like galaxy weak lensing



Temperature & Polarization

• Mass distribution at large angles and high redshift in
in the linear regime (100 sq. deg.) 

Hu & Okamoto (2001)
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Lensing by a Gaussian Random Field

• Mass distribution at large angles and high redshift in
in the linear regime 

• Projected mass distribution (low pass filtered reflecting
deflection angles): 1000 sq. deg

rms deflection
2.6'

deflection coherence
10°



Lensing in the Power Spectrum

• Lensing smooths the power spectrum with a width ∆l~60

• Convolution with specific kernel: higher order correlations 
between multipole moments – not apparent in power
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Quadratic Reconstruction

• Matched filter (minimum variance) averaging over pairs of 
multipole moments

• Real space: divergence of a temperature-weighted gradient

Hu (2001)

original
potential map (1000sq. deg)

reconstructed
1.5' beam; 27µK-arcmin noise



Ultimate (Cosmic Variance) Limit

• Cosmic variance of CMB fields sets ultimate limit

• Polarization allows mapping to finer scales (~10')

Hu & Okamoto (2001)

100 sq. deg; 4' beam; 1µK-arcmin

mass temp. reconstruction EB pol. reconstruction



Matter Power Spectrum

• Measuring projected matter power spectrum to cosmic vari-
ance limit across whole linear regime 0.002< k < 0.2 h/Mpc

Hu & Okamoto (2001)
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Tomography & Growth Rate

• Cross correlation with cosmic shear – mass tomography
anchor in the decelerating regime

Hu (2001); Hu & Okamoto (2001)
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Cross Correlation with Temperature

• Any correlation is a direct detection of a smooth energy 
density component through the ISW effect

• 5 nearly independent measures in temperature & polarization

Hu (2001); Hu & Okamoto (2001)
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Cross Correlation with Temperature

• Any correlation is a direct detection of a smooth energy 
density component through the ISW effect

• Show dark energy smooth >5-6 Gpc scale, test quintesence

Hu (2001); Hu & Okamoto (2001)
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Summary

• Peaks measure the angular diameter distance to 
recombination, photon-baryon ratio, matter-radiation ratio

• Leaves a degenerate combination of dark energy density
and equation of state in a flat universe

• Degeneracy is broken by H0, acceleration, Ωm

ISW effect – strongly for high w

• ISW effect fundamentally measures dark energy smoothness

• Severely cosmic variance limited near w=–1

• Measure by cross correlation

• CMB lensing to reconstruct projected potential

• Can show that dark energy is smooth out to 5-6 Gpc
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