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Angular Diameter Distance

Temperature (and polarization) patterns shift in and out
In angular scale with the angular

diameter distance to recom-
bination

fixed plasma conditions
baryon-photon ratio: Qph?
matter-radiation ratio: Qh?
(expansion rate)

fixed recombination



Location of the Peaks

Peaks shift to lower multipoles as the dark energy density
INCreases
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L ocation of the Peaks
But raising the equation of state w=p/p has the same effect
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Degeneracy of the Peak Locations
But raising the equation of state w=p/p has the same effect
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Degeneracy of the Peak Locations

Contours of angular diameter distance HoDa at constant
Qph2, Qmh2 (peak locations and morphology)




Degeneracy of the Peak Locations
Fisher (local) approximation to statistical errors

I width depends
1 on Qph?, Qh?
constrants




Degeneracy of the Peak Locations
Polarization adds info on Qph2, Qmh2 (and T, T/S)
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Degeneracy of the Peak Locations
External information, especially Hg (or acceleration) helps
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Hu et al. (1998); Hu (2001)



|nadequacy of the Fisher Approximation

At higher w, degeneracy is broken by the ISW effect

Hu et al. (1998)
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Integrated Sachs-Wolfe
Eftect



Smooth Energy Density & Potential Decay

Regardless of the equation of state an energy component
that clusters preserves an approximately constant
gravitational potential (formally Bardeen curvature ()

A smooth component contributes
density p to the expansion
but not
density fluctuation op to the Poisson equation

|mbal ance causes potential to decay once smooth
component dominates the expansion

Scalar field dark energy (quintessence) is smooth out to
the horizon scale (sound speed cs=1)

Potential decay measures the clustering properties and
hence the particle properties of the dark energy



|SW Effect

Gravitational blueshift on infall does not cancel redshift
on climbing out

Contraction of spatial metric doubles the effect: AT/T=2Ad

Effect from potential hills and wells cancel on small scales




|ISW Effect

Gravitational blueshift on infall does not cancel redshift
on climbing out

Contraction of spatial metric doubles the effect: AT/T=2Ad

Effect from potential hills and wells cancel on small scales




|SW Effect and Dark Energy

Raising equation of state increases redshift of dark energy
domination and raises the | SW effect

L owering the sound speed increases clustering and reduces
|SW effect at large angles
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Cosmic Variance Problem
Power spectrum sampling errors = [(I+1/2)fgcy ]2

Low multipole effects severely cosmic variance limited
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Solution?

Cross correlation with other tracers of gravitational potential

Requires:;

Large fraction of sky fgy> few percent

Redshift sensitivity when dark energy dominates. z~0.5-1
Possibilities:

X-ray surveys

Radio surveys

(issues of bias, evolution)  critendenet al.

Cosmic shear surveys
(intrinsically small shear signals above degree scale)
Hu (2001)

CMB Lensing Goldberg & Spergel (1999): Zaldarriaga & Seljak (1999)
Hu (2001)
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Lensing of a Gaussian Random Field

CMB temperature and polarization anisotropies are Gaussian
random fields — unlike galaxy weak lensing

Average over many noisy images — like galaxy weak lensing




Temperature & Polarization
Mass distribution at large angles and high redshift in
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L ensing by a Gaussian Random Field

Mass distribution at large angles and high redshift in
In the linear regime

Projected mass distribution (low pass filtered reflecting
deflection angles): 1000 sg. deg

rms deflection
2.6

deflection coherence
10°




Lensing in the Power Spectrum

L ensing smooths the power spectrum with a width Al~60

Convolution with specific kernel: higher order correlations
between multipole moments — not apparent in power
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Quadratic Reconstruction

Matched filter (minimum variance) averaging over pairs of
multipole moments

Real space: divergence of atemperature-weighted gradient

original reconstructed
Hu(2001)  potential map (1000sg. deg) 1.5' beam; 27uK-arcmin noise



Ultimate (Cosmic Variance) Limit

Cosmic variance of CMB fields sets ultimate limit

Polarization allows mapping to finer scales (~10')

temp. reconstruction EB pol. reconstruction

100 sg. deg; 4' beam; 1pK-arcmin

Hu & Okamoto (2001)



Matter Power Spectrum

Measuring projected matter power spectrum to cosmic vari-
ance limit across whole linear regime 0.002< k < 0.2 h/Mpc
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Tomography & Growth Rate

Cross correlation with cosmic shear — mass tomography
anchor in the decelerating regime
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Cross Correlation with Temperature

Any correlation isadirect detection of a smooth energy
density component through the |SW effect

5 nearly independent measures in temperature & polarization

"Perfect"
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Cross Correlation with Temperature

Any correlation isadirect detection of a smooth energy
density component through the |SW effect

Show dark energy smooth >5-6 Gpc scale, test quintesence

"Perfect"
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Summary

Peaks measure the angular diameter distance to
recombination, photon-baryon ratio, matter-radiation ratio

| eaves a degenerate combination of dark energy density
and equation of state in aflat universe

Degeneracy is broken by Hg, acceleration, Qm,
|SW effect — strongly for high w

|SW effect fundamentally measures dark energy smoothness
Severely cosmic variance limited near w=—1

Measure by cross correlation

CMB lensing to reconstruct projected potential

Can show that dark energy I1s smooth out to 5-6 Gpc
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