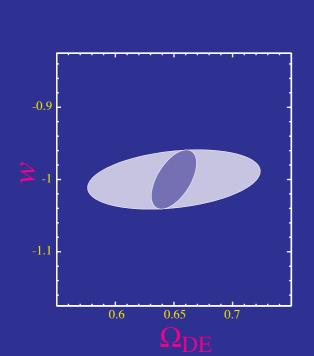
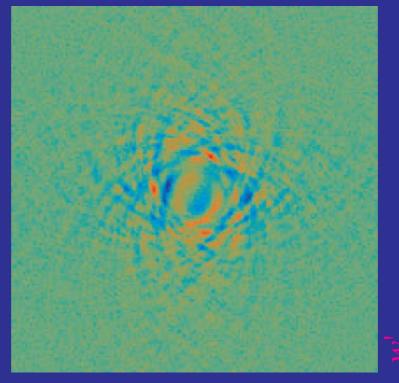
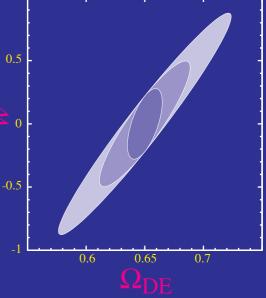
Gravitational Lensing and the Dark Energy





Future Prospects

SLAC, August 2002



Outline

- Standard model of cosmology
- Gravitational lensing
- Lensing probes of dark energy

Outline

- Standard model of cosmology
- Gravitational lensing
- Lensing probes of dark energy

Collaborators

- Charles Keeton
- Takemi Okamoto
- Max Tegmark
- Martin White

Outline

- Standard model of cosmology
- Gravitational lensing
- Lensing probes of dark energy

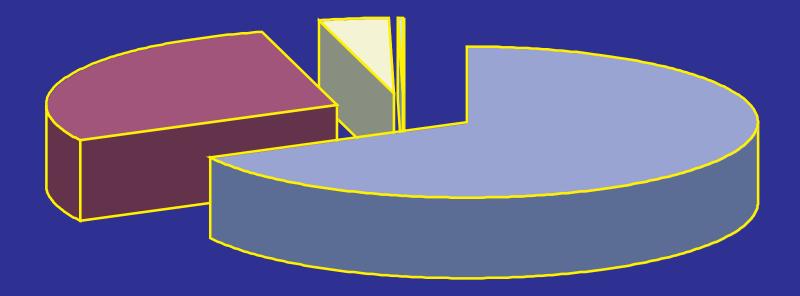
Collaborators

- Charles Keeton
- Takemi Okamoto
- Max Tegmark
- Martin White

http://background.uchicago.edu ("Presentations" in PDF) Dark Energy and the Standard Model of Cosmology

If its not dark, it doesn't matter!

Cosmic matter-energy budget:

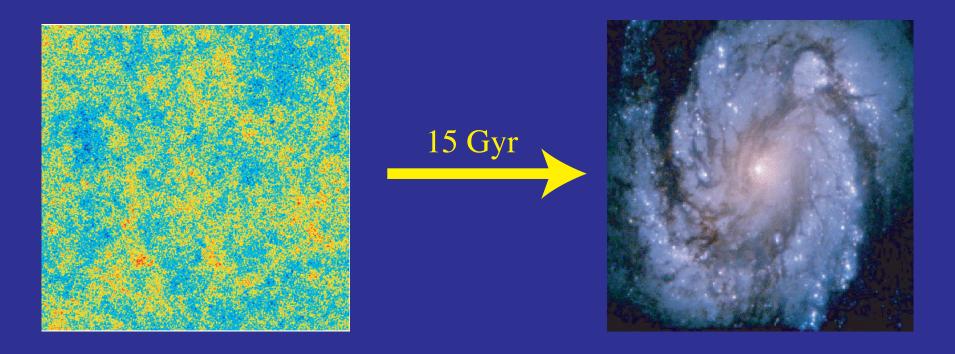


Dark Energy
 Dark Matter
 Dark Baryons

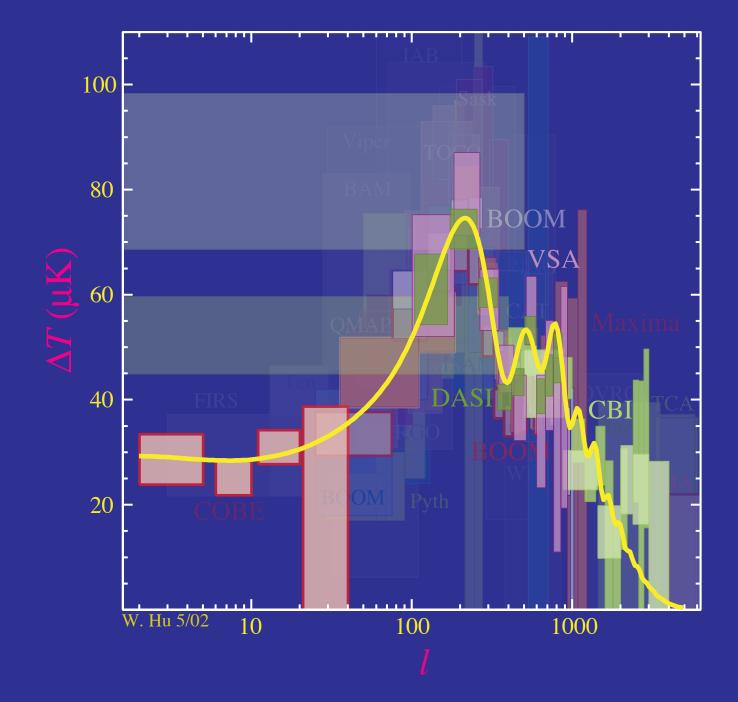
Visible MatterDark Neutrinos

Making Light of the Dark Side

- Visible structures and the processes that form them are our only cosmological probe of the dark components
- In the standard, well-verified, cosmological model, structures grow through gravitational instability from small-fluctuations (perhaps formed during inflation)

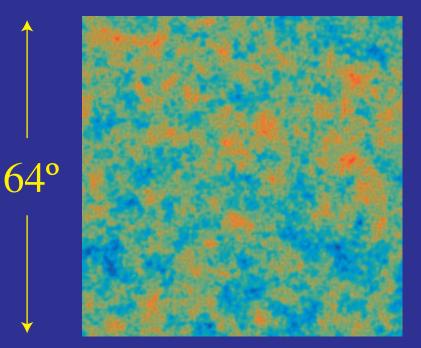


CMB: high redshift anchor



Power Spectra of Maps

Original



Band Filtered

Photon-Baryon Plasma

- Before z~1000 when the CMB was T>3000K, hydrogen ionized
- Free electrons act as "glue" between photons and baryons by Compton scattering and Coulomb interactions
- Nearly perfect fluid

Peak Location

Fundmental physical scale, the distance sound travels, becomes an angular scale by simple projection according to the angular diameter distance D_A

 $\theta_A = \lambda_A / D_A$ $\ell_A = k_A D_A$

Peak Location

Fundmental physical scale, the distance sound travels, becomes an angular scale by simple projection according to the angular diameter distance D_A

$$\theta_A = \lambda_A / D_A$$
$$\ell_A = k_A D_A$$

In a flat universe, the distance is simply D_A= D ≡ η₀ − η_{*} ≈ η₀, the horizon distance, and k_A = π/s_{*} = √3π/η_{*} so

$$\theta_A \approx \frac{\eta_*}{\eta_0}$$

Peak Location

Fundmental physical scale, the distance sound travels, becomes an angular scale by simple projection according to the angular diameter distance D_A

$$\theta_A = \lambda_A / D_A$$
$$\ell_A = k_A D_A$$

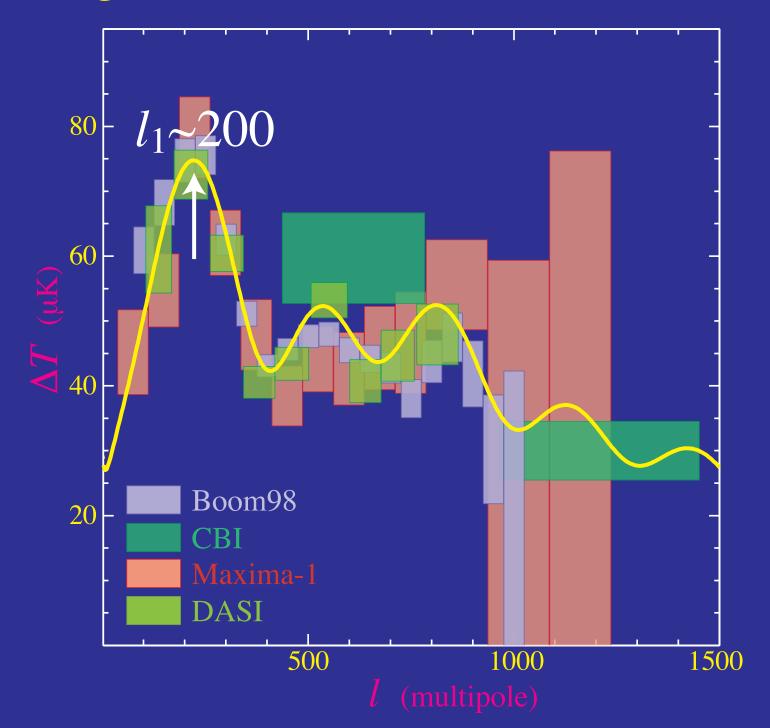
In a flat universe, the distance is simply D_A= D ≡ η₀ − η_{*} ≈ η₀, the horizon distance, and k_A = π/s_{*} = √3π/η_{*} so

$$\theta_A \approx \frac{\eta_*}{\eta_0}$$

• In a matter-dominated universe $\eta \propto a^{1/2}$ so $\theta_A \approx 1/30 \approx 2^\circ$ or

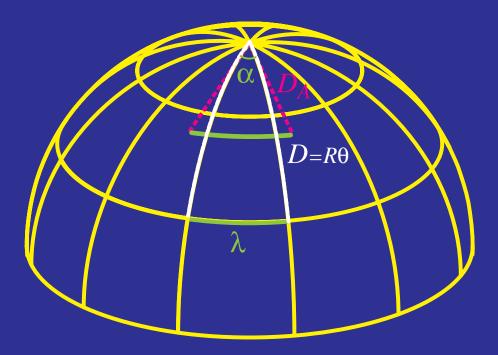
 $\ell_A \approx 200$

Angular Diameter Distance Test



Curvature

• In a curved universe, the apparent or angular diameter distance is no longer the conformal distance $D_A = R \sin(D/R) \neq D$



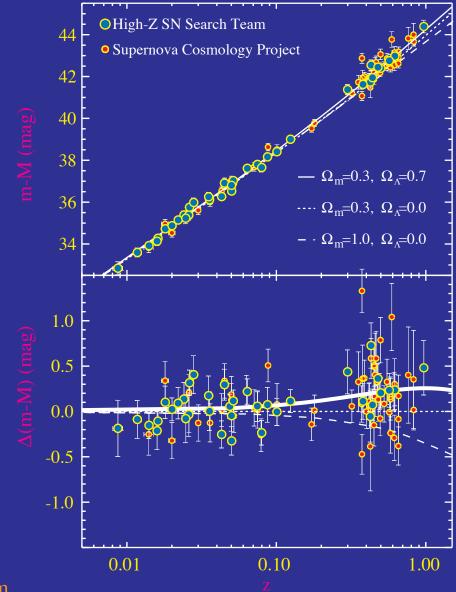
• Objects in a closed universe are further than they appear! gravitational lensing of the background...

Curvature in the Power Spectrum

- Angular location of harmonic peaks
- Flat = critical density = missing dark energy

Accelerated Expansion from SNe

• Missing energy must also accelerate the expansion at low redshift



compilation from High-z team

Acceleration Implies Negative Pressure

- Role of pressure in the background cosmology
- Homogeneous Einstein equations $G_{\mu\nu} = 8\pi G T_{\mu\nu}$ imply the two Friedman equations (flat universe, or associating curvature $\rho_K = -3K/8\pi G a^2$)

$$\left(\frac{1}{a}\frac{da}{dt}\right)^2 = \frac{8\pi G}{3}\rho$$
$$\frac{1}{a}\frac{d^2a}{dt^2} = -\frac{4\pi G}{3}(\rho + 3p)$$

so that the total equation of state $w \equiv p/\rho < -1/3$ for acceleration

Acceleration Implies Negative Pressure

- Role of pressure in the background cosmology
- Homogeneous Einstein equations $G_{\mu\nu} = 8\pi G T_{\mu\nu}$ imply the two Friedman equations (flat universe, or associating curvature $\rho_K = -3K/8\pi G a^2$)

$$\left(\frac{1}{a}\frac{da}{dt}\right)^2 = \frac{8\pi G}{3}\rho$$
$$\frac{1}{a}\frac{d^2a}{dt^2} = -\frac{4\pi G}{3}(\rho + 3p)$$

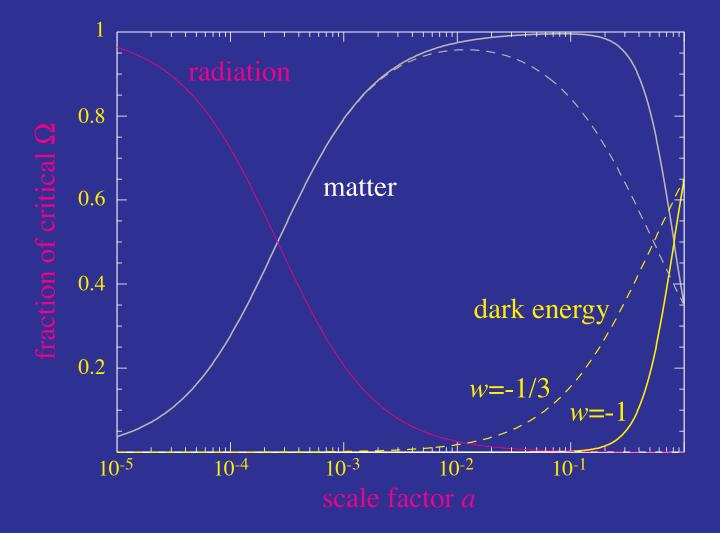
so that the total equation of state $w \equiv p/\rho < -1/3$ for acceleration

• Conservation equation $\nabla^{\mu}T_{\mu\nu} = 0$ implies

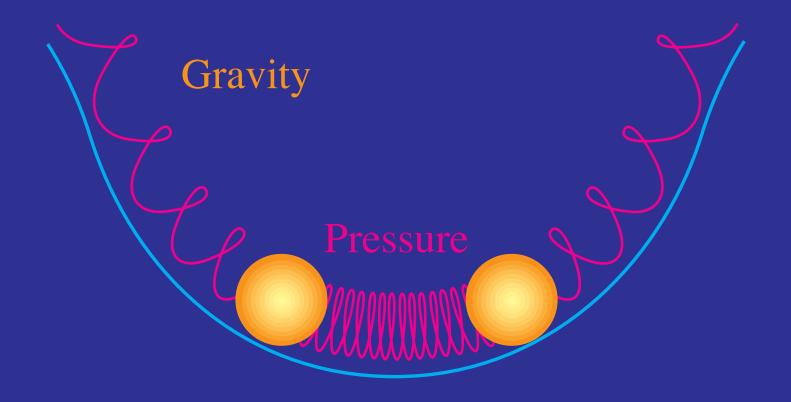
$$\frac{\dot{\rho}}{\rho} = -3(1+w)\frac{\dot{a}}{a}$$

• so that ρ must scale more slowly than a^{-2}

• Coincidence: given different scalings with *a*, why are dark matter and energy densities comparable now?



- Coincidence: given different scalings with *a*, why are dark matter and energy densities comparable now?
- Stability: why doesn't negative pressure imply accelerated collapse? or why doesn't the vacuum suck?



- Coincidence: given different scalings with *a*, why are dark matter and energy densities comparable now?
- Stability: why doesn't negative pressure imply accelerated collapse? or why doesn't the vacuum suck? pressure gradients, not pressure, establish stability

- Coincidence: given different scalings with *a*, why are dark matter and energy densities comparable now?
- Stability: why doesn't negative pressure imply accelerated collapse? or why doesn't the vacuum suck? pressure gradients, not pressure, establish stability
- Candidates:

Cosmological constant w=-1, constant in space and time, but >60 orders of magnitude off vacuum energy prediction

Ultralight scalar field, slowly rolling in a potential, Klein-Gordon equation: sound speed $c_s^2 = \delta p / \delta \rho = 1$

Tangled defects w=-1/3, -2/3 but relativistic sound speed ("solid" dark matter)

Dark Energy Probes

• (Comoving) distance-redshift relation: $a = (1 + z)^{-1}$

$$D = \int_{a}^{1} da \frac{1}{a^{2}H(a)} = \int_{0}^{z} dz \frac{1}{H(a)}$$

$$H^2(a) = \frac{8\pi G}{3} (\rho_m + \rho_{DE})$$

in a flat universe, e.g. angular diameter distance, luminosity distance, number counts (volume)...

Dark Energy Probes

• (Comoving) distance-redshift relation: $a = (1 + z)^{-1}$

$$D = \int_{a}^{1} da \frac{1}{a^{2}H(a)} = \int_{0}^{z} dz \frac{1}{H(a)}$$

$$H^2(a) = \frac{8\pi G}{3} (\rho_m + \rho_{DE})$$

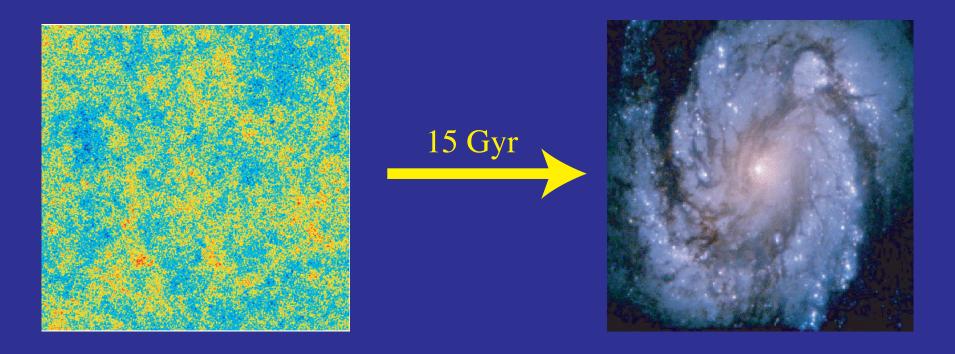
in a flat universe, e.g. angular diameter distance, luminosity distance, number counts (volume)...

• Pressure growth suppression: $\delta \equiv \delta \rho_m / \rho_m \propto a \phi$

 $\frac{d^2\phi}{d\ln a^2} + \left[\frac{5}{2} - \frac{3}{2}w(z)\Omega_{DE}(z)\right]\frac{d\phi}{d\ln a} + \frac{3}{2}[1 - w(z)]\Omega_{DE}(z)\phi = 0,$ where $w \equiv p_{DE}/\rho_{DE}$ and $\Omega_{DE} \equiv \rho_{DE}/(\rho_m + \rho_{DE})$ e.g. galaxy cluster abundance, gravitational lensing... Large-Scale Structure and Gravitational Lensing

Making Light of the Dark Side

- Visible structures and the processes that form them are our only cosmological probe of the dark components
- In the standard, well-verified, cosmological model, structures grow through gravitational instability from small-fluctuations (perhaps formed during inflation)

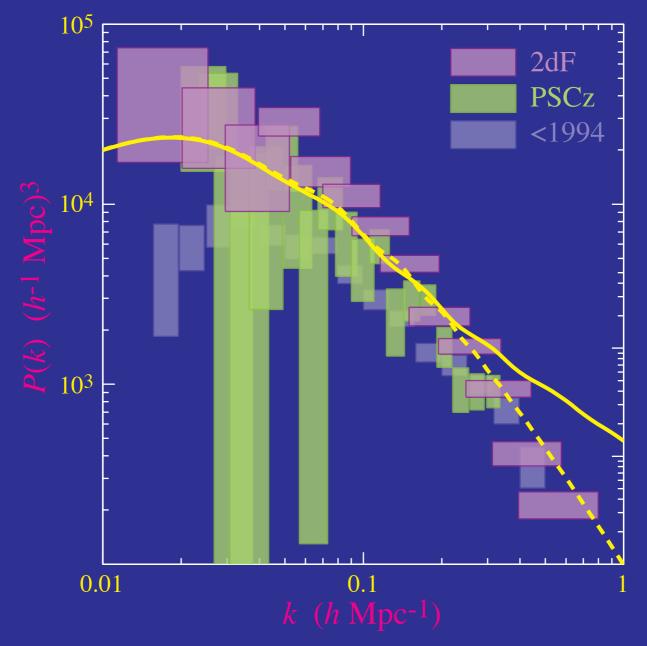


Structure Formation Simulation

• Simulation (by A. Kravstov)

Galaxy Power Spectrum Data

• Galaxy clustering tracks the dark matter – but bias depends on type



A Fundamental Problem

- All cosmological observables relate to the luminous matter: photon-baryon plasma, galaxies, clusters of galaxies, supernovae
- Implications for the dark energy or cosmology in general depend on modelling the formation and evolution of luminous objects
- Success of CMB anisotropy is in large part based on the solid theoretical grounding of its formation and evolution – well understood linear gravitational physics

A Fundamental Problem

- All cosmological observables relate to the luminous matter: photon-baryon plasma, galaxies, clusters of galaxies, supernovae
- Implications for the dark energy or cosmology in general depend on modelling the formation and evolution of luminous objects
- Success of CMB anisotropy is in large part based on the solid theoretical grounding of its formation and evolution – well understood linear gravitational physics
- Distortion of the images of luminous objects by gravitational lensing is equally well understood
- Problem: image distortion is typically at %-level very demanding for the control of systematic errors – but recall CMB is 10⁻⁵ level! (Tyson, Wenk & Valdes 1990)

Example of Weak Lensing

- Toy example of lensing of the CMB primary anisotropies
- Shearing of the image

Lensing Observables

• Image distortion described by Jacobian matrix of the remapping

$$\mathbf{A} = \begin{pmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 \\ & & \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix},$$

where κ is the convergence, γ_1 , γ_2 are the shear components

Lensing Observables

• Image distortion described by Jacobian matrix of the remapping

$$\mathbf{A} = \begin{pmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix}$$

where κ is the convergence, γ₁, γ₂ are the shear components
related to the gravitational potential Φ by spatial derivatives

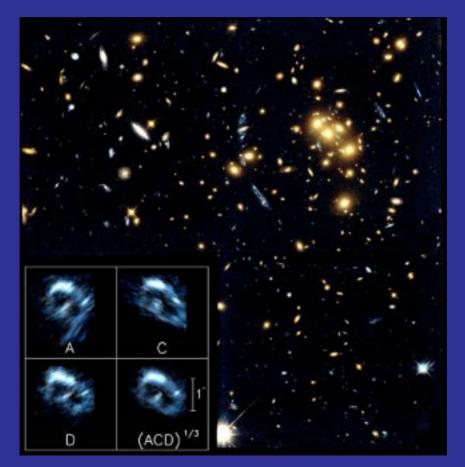
$$\psi_{ij}(z_s) = 2 \int_0^{z_s} dz \frac{dD}{dz} \frac{D(D_s - D)}{D_s} \Phi_{,ij} ,$$

 $\psi_{ij} = \delta_{ij} - A_{ij}$, i.e. via Poisson equation

$$\kappa(z_s) = \frac{3}{2} H_0^2 \Omega_m \int_0^{z_s} dz \, \frac{dD}{dz} \, \frac{D(D_s - D)}{D_s} \, \delta/a \,,$$

Gravitational Lensing by LSS

- Shearing of galaxy images reliably detected in clusters
- Main systematic effects are instrumental rather than astrophysical

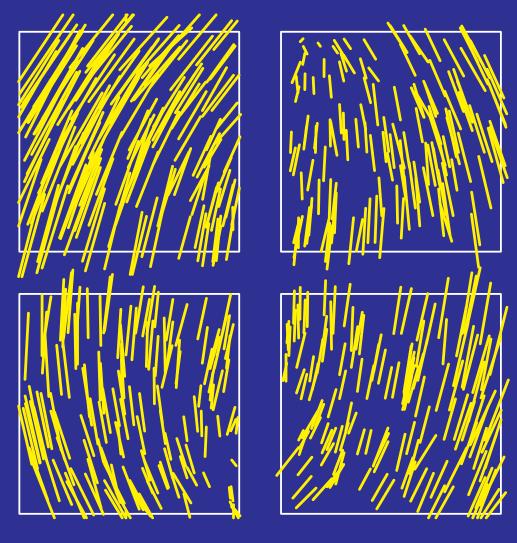


Cluster (Strong) Lensing: 0024+1654

Colley, Turner, & Tyson (1996)

Instrumental Systematics

• Raw data has instrumental systematics (PSF anisotropy) larger than signal, removed by demanding stars be round

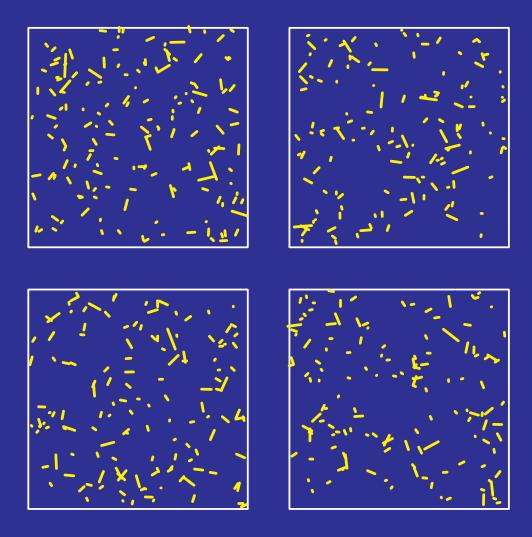


• 1% ellipticity

Jarvis et al. (2002)

Instrumental Systematics

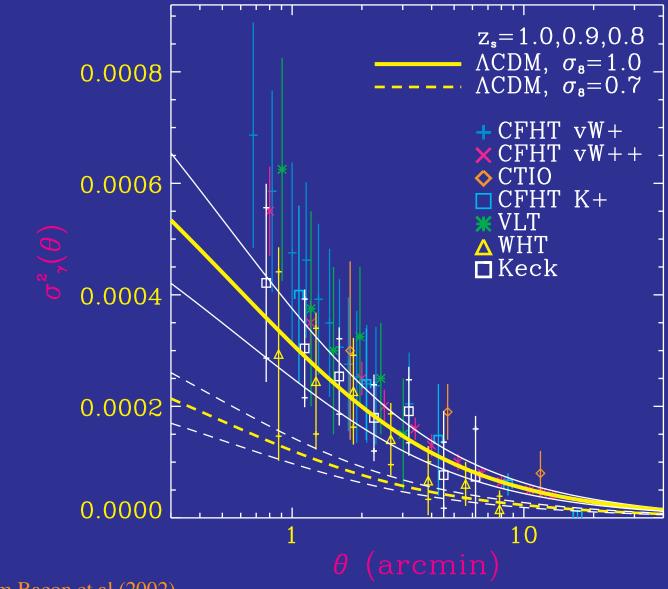
• Raw data has instrumental systematics (PSF anisotropy) larger than signal, removed by demanding stars be round



Jarvis et al. (2002)

Cosmic Shear Data

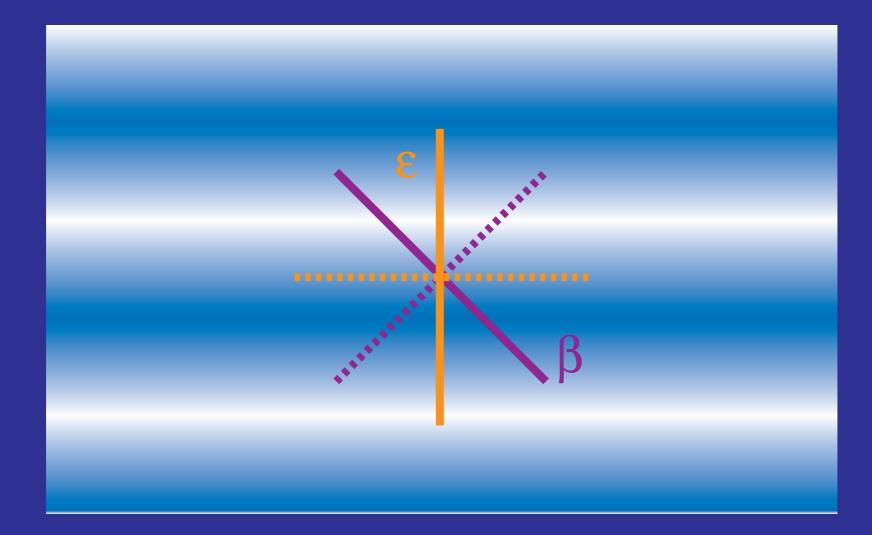
• Shear variance as a function of smoothing scale



compilation from Bacon et al (2002)

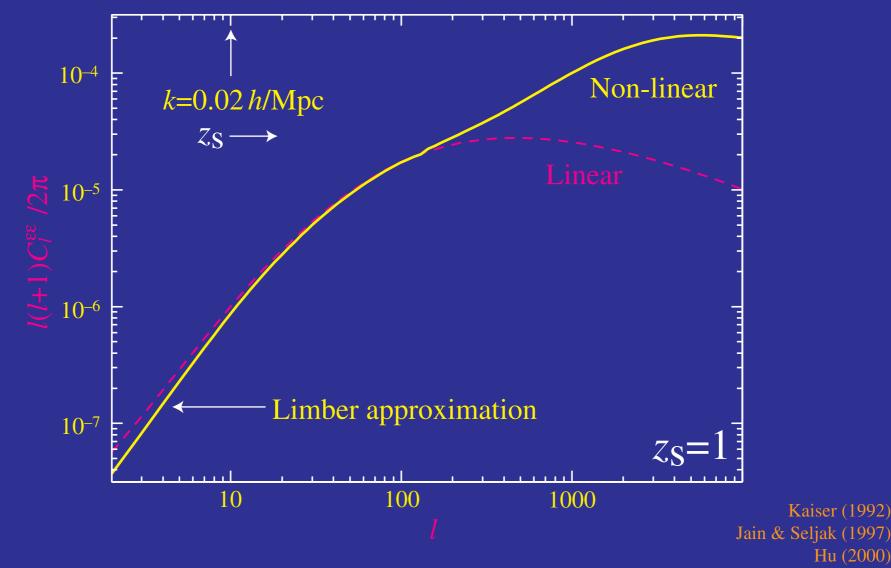
Shear Power Modes

• Alignment of shear and wavevector defines modes



Shear Power Spectrum

- Lensing weighted Limber projection of density power spectrum
- ε -shear power = κ power

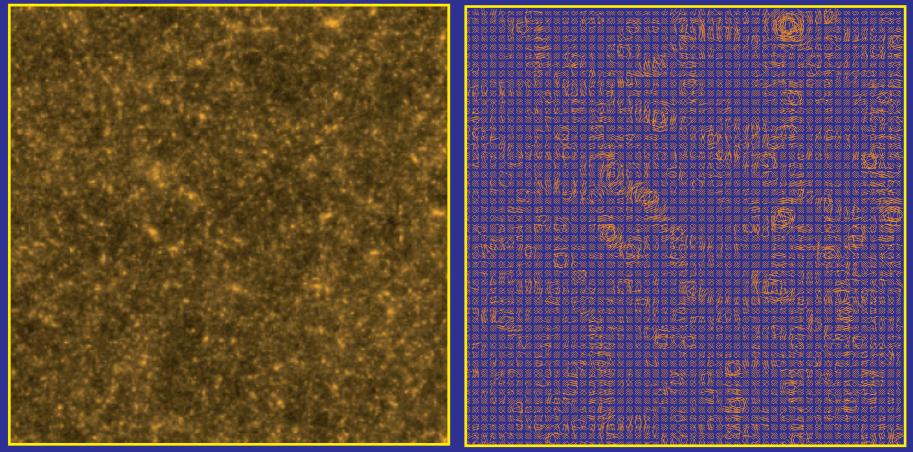


PM Simulations

• Simulating mass distribution is a routine exercise

Convergence

Shear

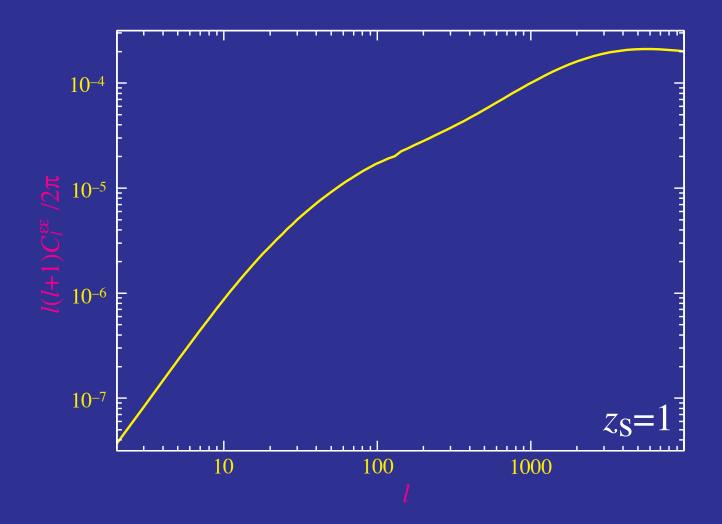


 $6^{\circ} \times 6^{\circ}$ FOV; 2' Res.; 245–75 *h*⁻¹Mpc box; 480–145 *h*⁻¹kpc mesh; 2–70 10⁹ M_{\odot}

White & Hu (1999)

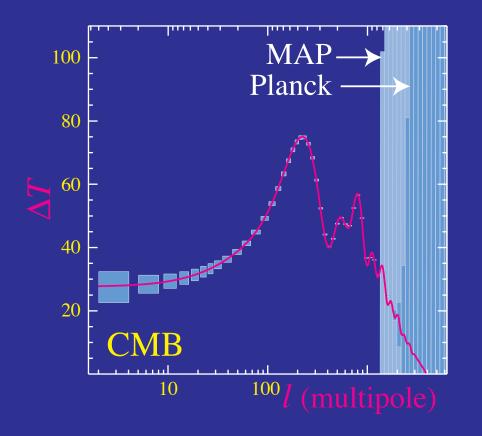
Dark Energy and Gravitational Lensing

- All parameters of initial condition, growth and distance redshift relation D(z) enter
- Nearly featureless power spectrum results in degeneracies



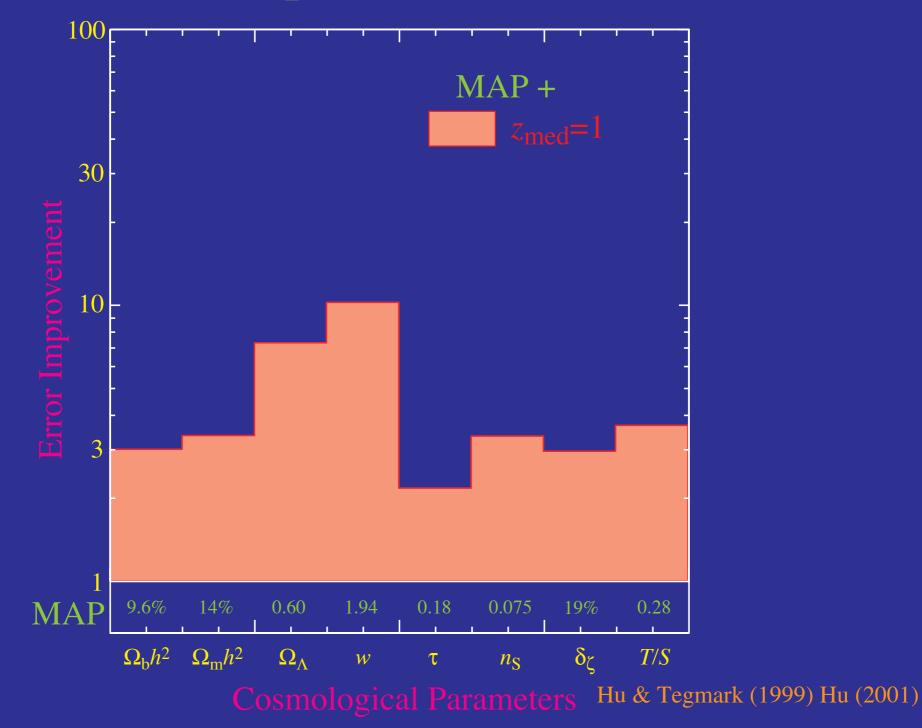
Degeneracies

- All parameters of initial condition, growth and distance redshift relation *D*(*z*) enter
- Nearly featureless power spectrum results in degeneracies



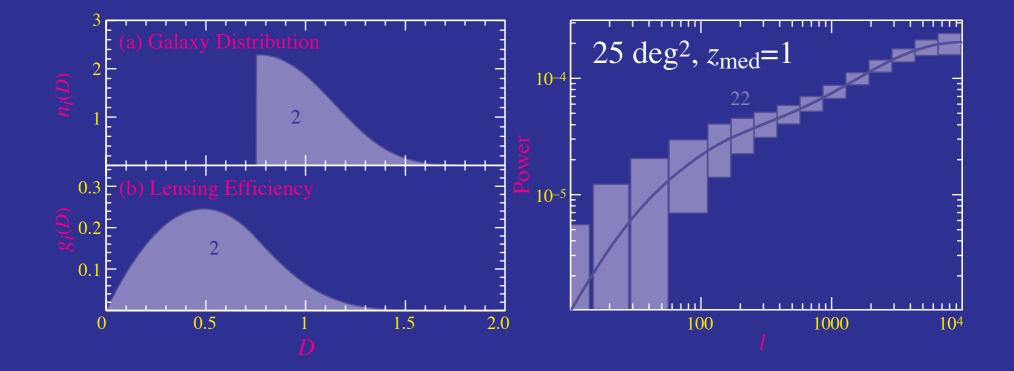
- Combine with information from the CMB: complementarity (Hu & Tegmark 1999)
- Crude tomography with source divisions (Hu 1999; Hu 2001)
- Fine tomography with source redshifts (Hu & Keeton 2002; Hu 2002)

Error Improvement: 1000deg²



Crude Tomography

• Divide sample by photometric redshifts

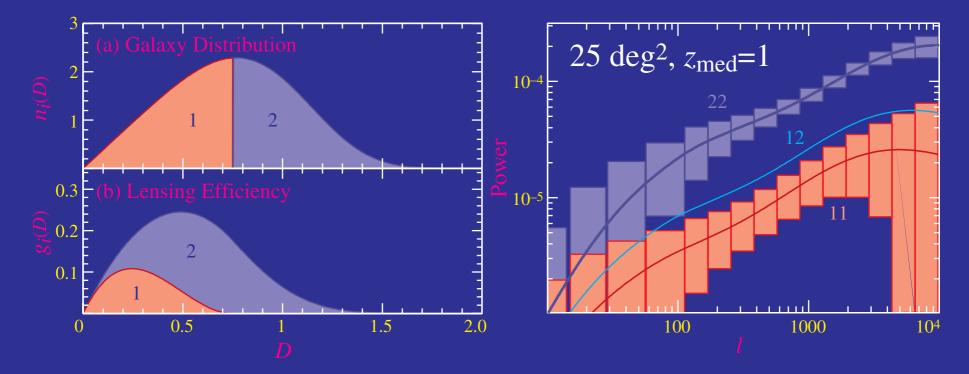


Hu (1999)

Crude Tomography

• Divide sample by photometric redshifts

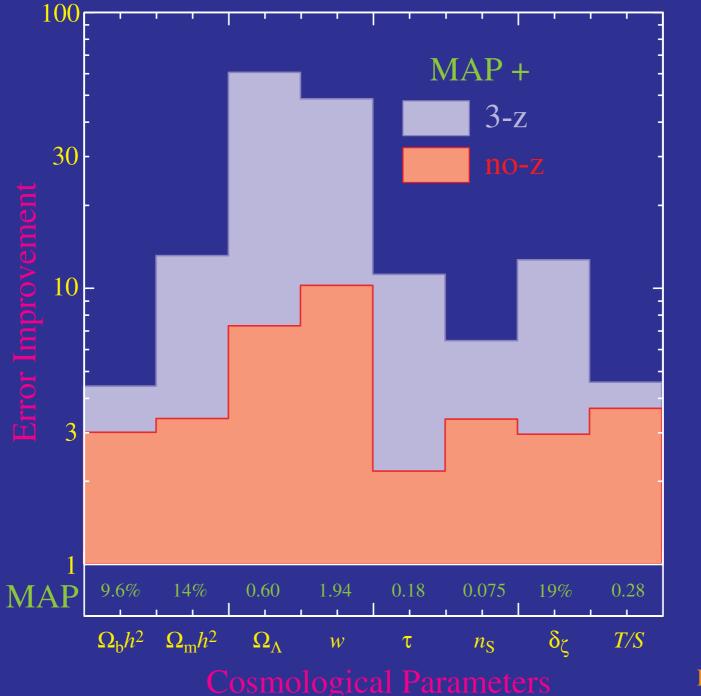
• Cross correlate samples



 Order of magnitude increase in precision even after CMB breaks degeneracies

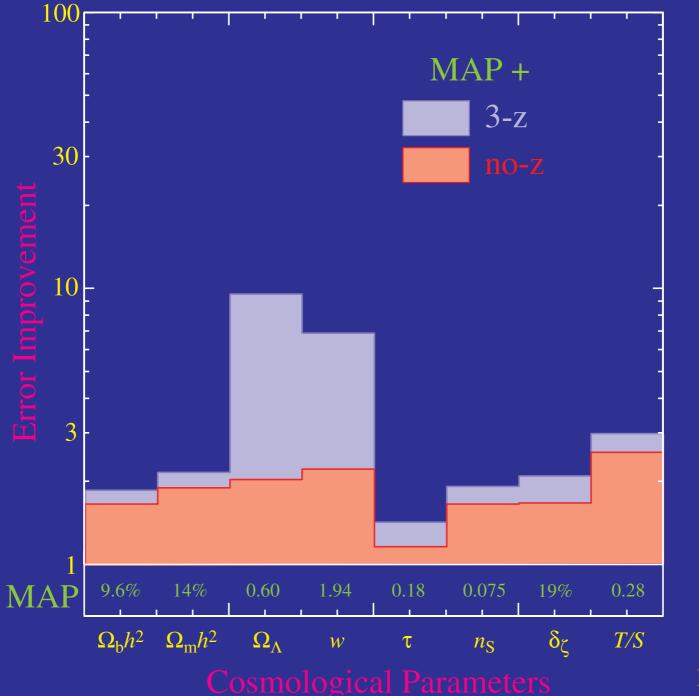
Hu (1999)

Error Improvement: 1000deg²



Hu (1999; 2001)

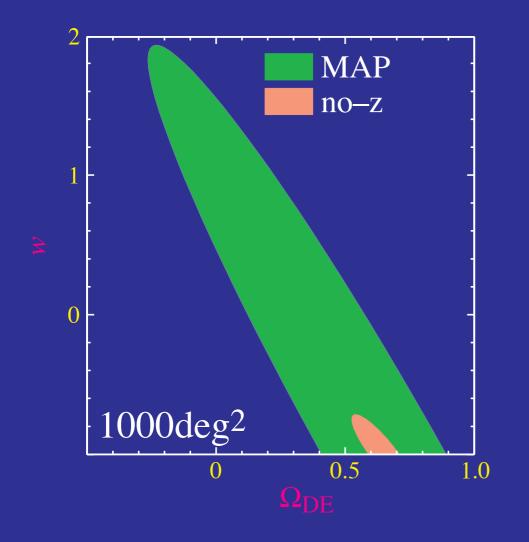
Error Improvement: 25deg²



Hu (1999; 2001)

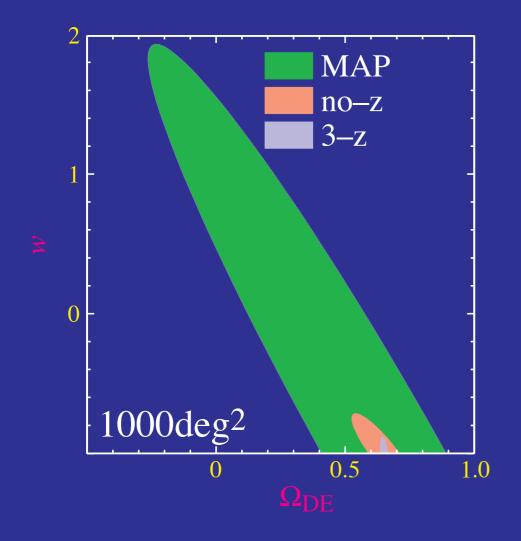
Dark Energy & Tomography

 Both CMB and tomography help lensing provide interesting constraints on dark energy



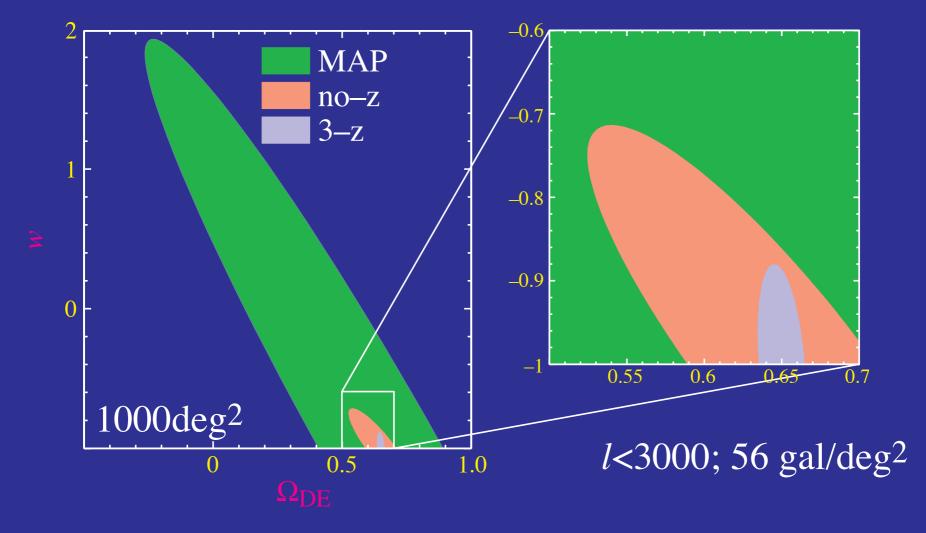
Dark Energy & Tomography

 Both CMB and tomography help lensing provide interesting constraints on dark energy



Dark Energy & Tomography

 Both CMB and tomography help lensing provide interesting constraints on dark energy



Hidden Dark Energy Information

- Most of the information on the dark energy is hidden in the temporal or radial dimension
- Evolution of growth rate (dark energy pressure slows growth)
- Evolution of distance-redshift relation

Hidden Dark Energy Information

- Most of the information on the dark energy is hidden in the temporal or radial dimension
- Evolution of growth rate (dark energy pressure slows growth)
- Evolution of distance-redshift relation

- Lensing is inherently two dimensional: all mass along the line of sight lenses
- Tomography implicitly or explicitly reconstructs radial dimension with source redshifts
- Photometric redshift errors currently $\Delta z < 0.1$ out to $z \sim 1$ and allow for "fine" tomography

• Convergence – projection of $\Delta = \delta/a$ for each z_s

$$\kappa(z_s) = \frac{3}{2} H_0^2 \Omega_m \int_0^{z_s} dz \, \frac{dD}{dz} \, \frac{D(D_s - D)}{D_s} \, \Delta \,,$$

• Convergence – projection of $\Delta = \delta/a$ for each z_s

$$\kappa(z_s) = \frac{3}{2} H_0^2 \Omega_m \int_0^{z_s} dz \, \frac{dD}{dz} \, \frac{D(D_s - D)}{D_s} \Delta \,,$$

• Data is linear combination of signal + noise

$$\mathbf{d}_{\kappa} = \mathbf{P}_{\kappa\Delta} \mathbf{s}_{\Delta} + \mathbf{n}_{\kappa} ,$$

$$[\mathbf{P}_{\kappa\Delta}]_{ij} = \begin{cases} \frac{3}{2} H_0^2 \Omega_m \delta D_j \frac{(D_{i+1} - D_j) D_j}{D_{i+1}} & D_{i+1} > D_j , \\ 0 & D_{i+1} \le D_j , \end{cases}$$

• Convergence – projection of $\Delta = \delta/a$ for each z_s

$$\kappa(z_s) = \frac{3}{2} H_0^2 \Omega_m \int_0^{z_s} dz \, \frac{dD}{dz} \, \frac{D(D_s - D)}{D_s} \Delta \,,$$

• Data is linear combination of signal + noise

$$\mathbf{d}_{\kappa} = \mathbf{P}_{\kappa\Delta} \mathbf{s}_{\Delta} + \mathbf{n}_{\kappa}\,,$$

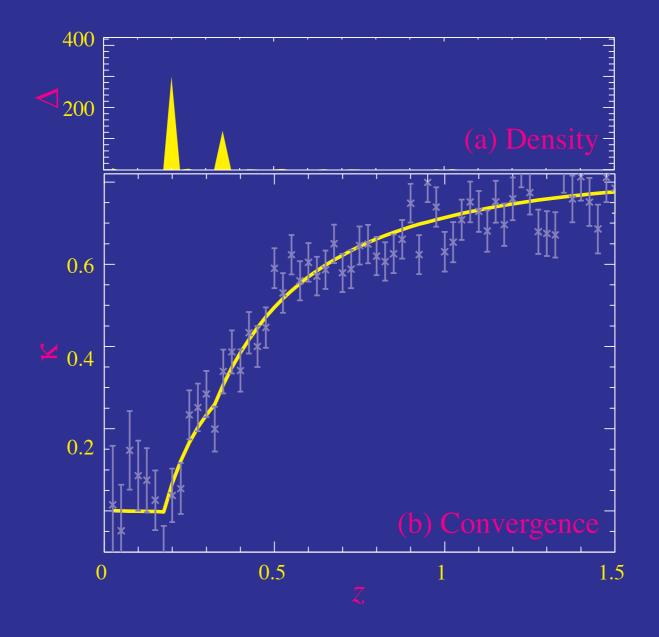
$$[\mathbf{P}_{\kappa\Delta}]_{ij} = \begin{cases} \frac{3}{2} H_0^2 \Omega_m \delta D_j \frac{(D_{i+1} - D_j) D_j}{D_{i+1}} & D_{i+1} > D_j \\ 0 & D_{i+1} \le D_j \\ \end{cases},$$

• Well-posed (Taylor 2002) but noisy inversion (Hu & Keeton 2002)

• Noise properties differ from signal properties \rightarrow optimal filters

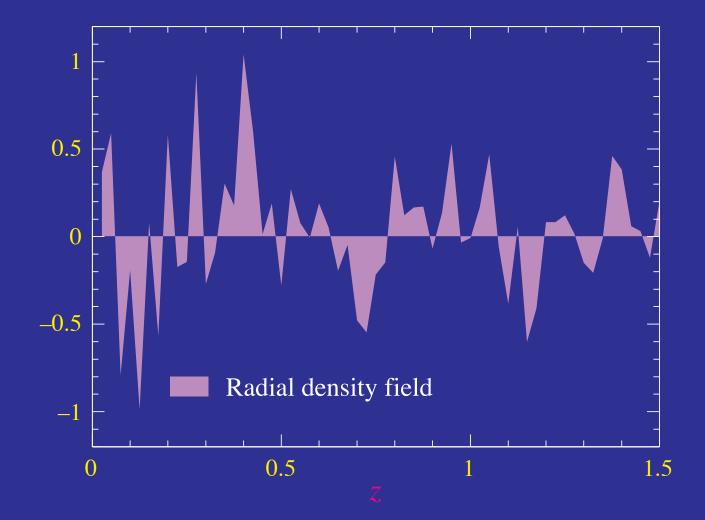
Hidden in Noise

• Derivatives of noisy convergence isolate radial structures

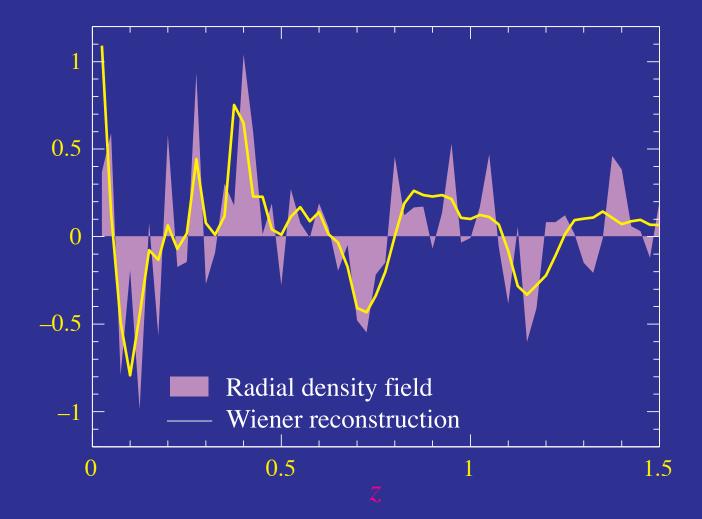


Hu & Keeton (2001)

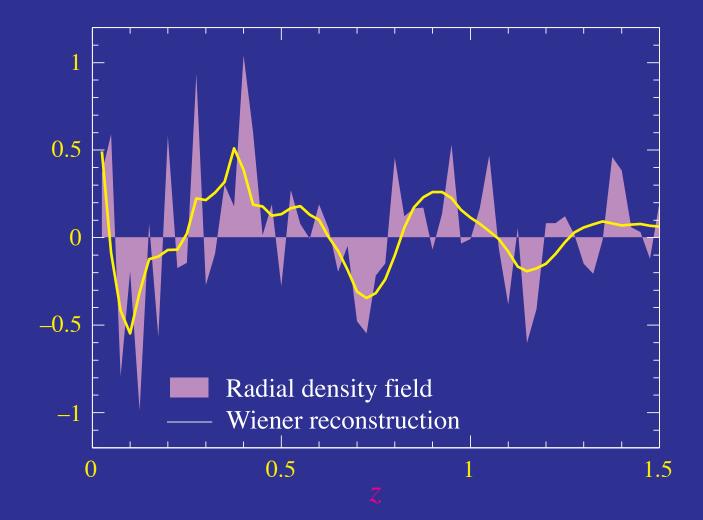
• Tomography can produce direct 3D dark matter maps, but realistically only broad features (Hu & Keeton 2002)



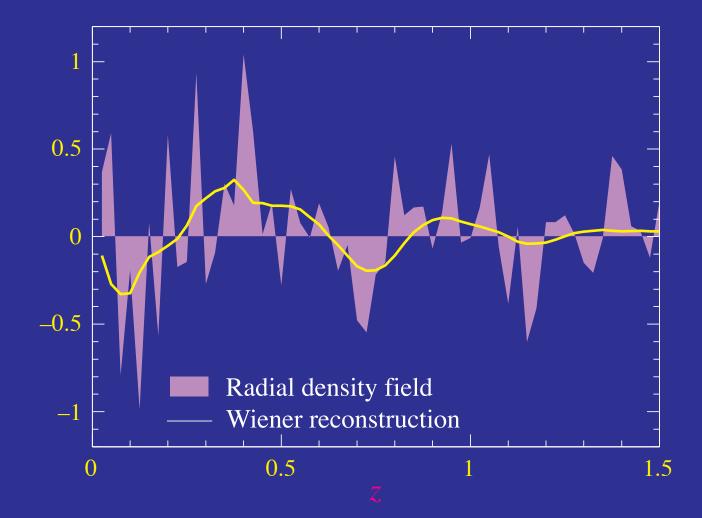
• Tomography can produce direct 3D dark matter maps, but realistically only broad features (Taylor 2002; Hu & Keeton 2002)



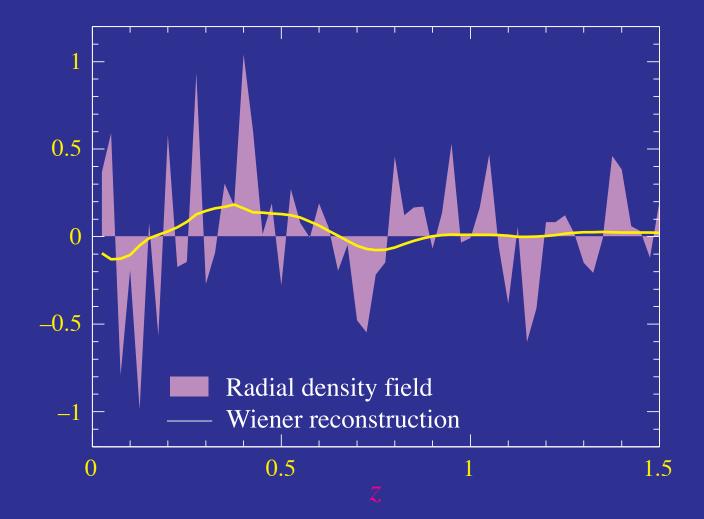
• Tomography can produce direct 3D dark matter maps, but realistically only broad features (Taylor 2002; Hu & Keeton 2002)



• Tomography can produce direct 3D dark matter maps, but realistically only broad features (Hu & Keeton 2002)

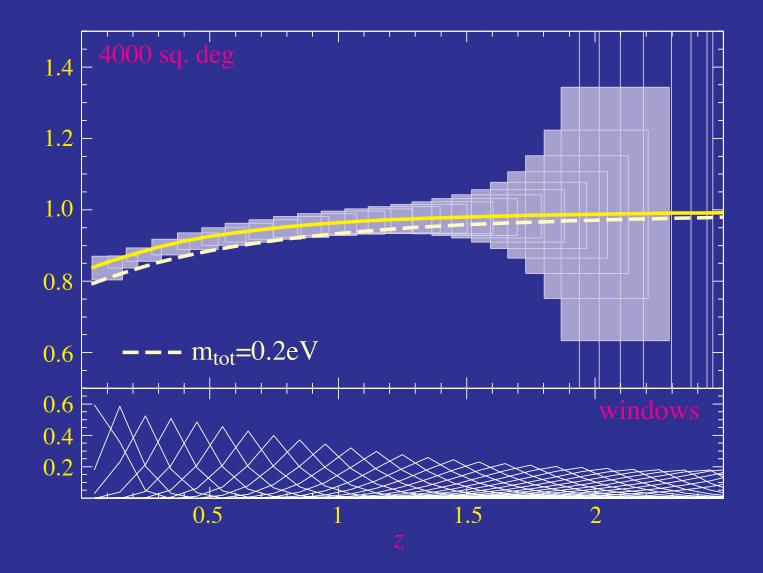


• Tomography can produce direct 3D dark matter maps, but realistically only broad features (Hu & Keeton 2002)



Growth Function

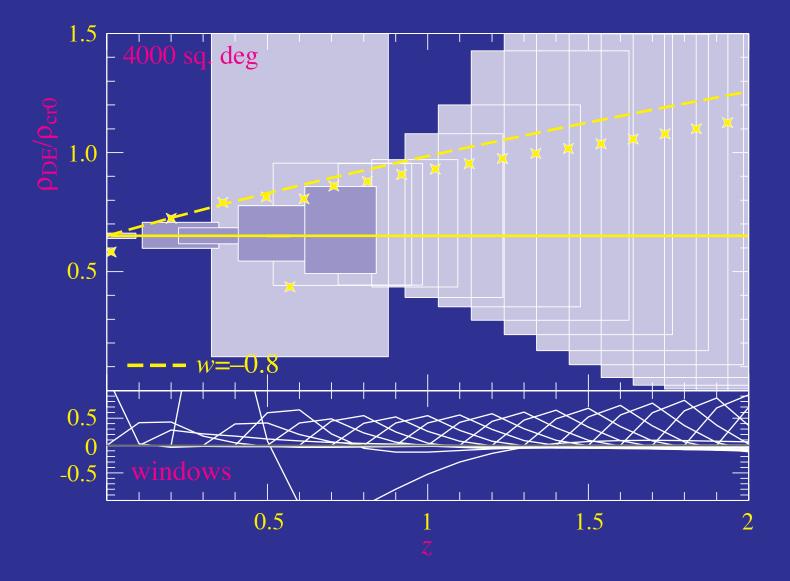
• Localized constraints (fixed distance-redshift relation)



Hu (2002)

Dark Energy Density

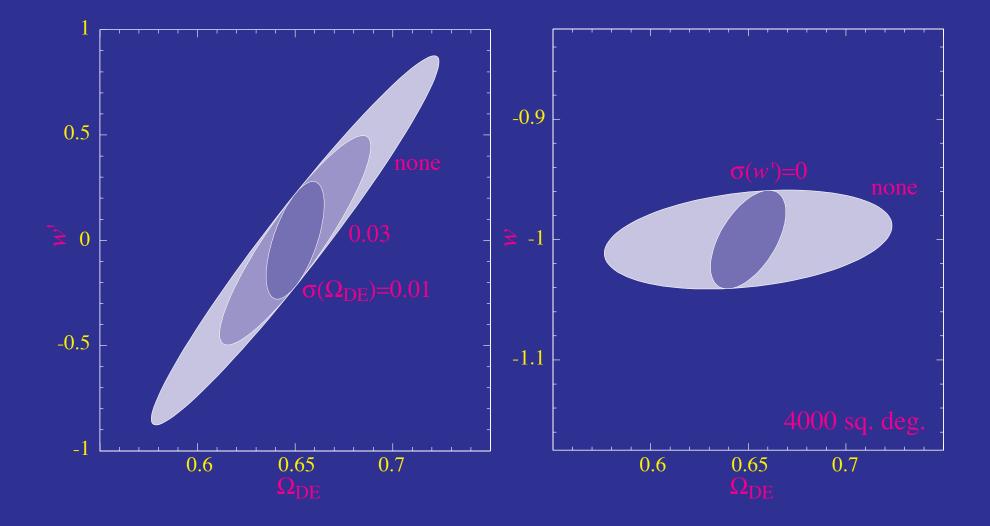
• Localized constraints (with cold dark matter)



Hu (2002)

Dark Energy Parameters

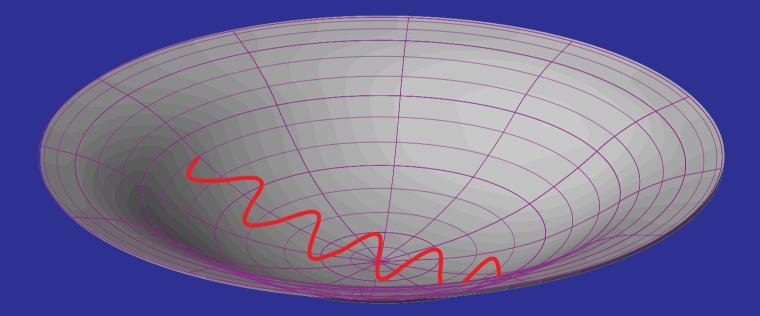
• Three parameter dark energy model (Ω_{DE} , w, dw/dz=w')



Hu (2002)

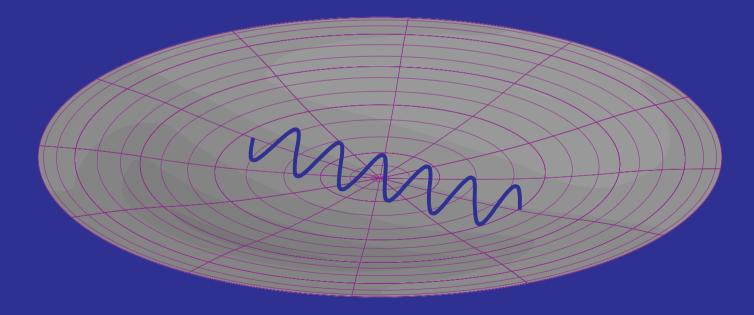
ISW Effect

- Gravitational blueshift on infall does not cancel redshift on climbing out
- Contraction of spatial metric doubles the effect: $\Delta T/T = 2\Delta \Phi$
- Effect from potential hills and wells cancel on small scales



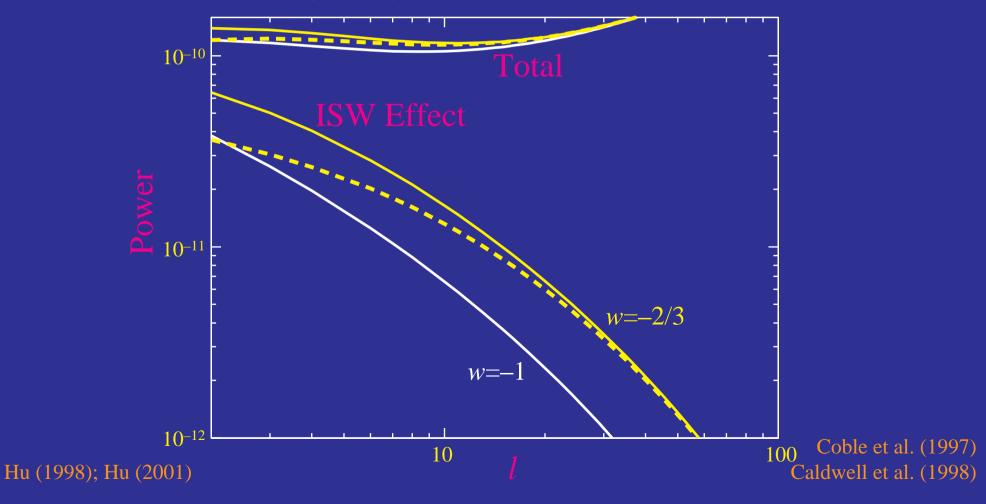
ISW Effect

- Gravitational blueshift on infall does not cancel redshift on climbing out
- Contraction of spatial metric doubles the effect: $\Delta T/T = 2\Delta \Phi$
- Effect from potential hills and wells cancel on small scales



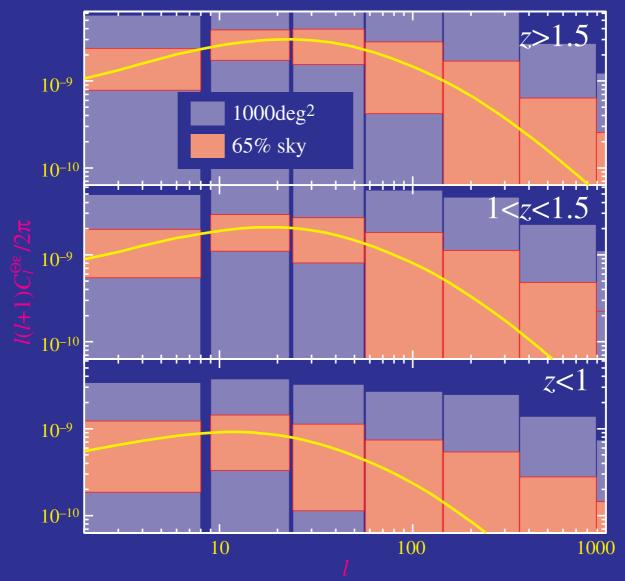
ISW Effect and Dark Energy

- Raising equation of state increases redshift of dark energy domination and raises the ISW effect
- Lowering the sound speed increases clustering and reduces ISW effect at large angles



Direct Detection of Dark Energy?

 In the presence of dark energy, shear is correlated with CMB temperature via ISW effect

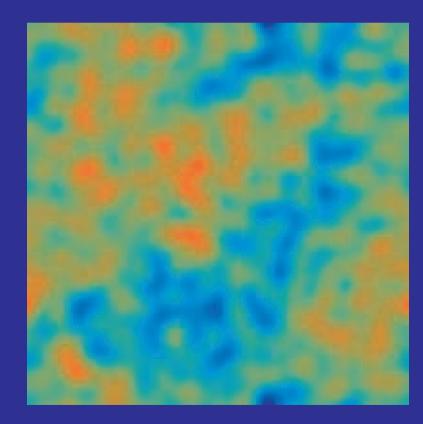


Lensing of a Gaussian Random Field

- CMB temperature and polarization anisotropies are Gaussian random fields – unlike galaxy weak lensing
- Average over many noisy images like galaxy weak lensing

Lensing by a Gaussian Random Field

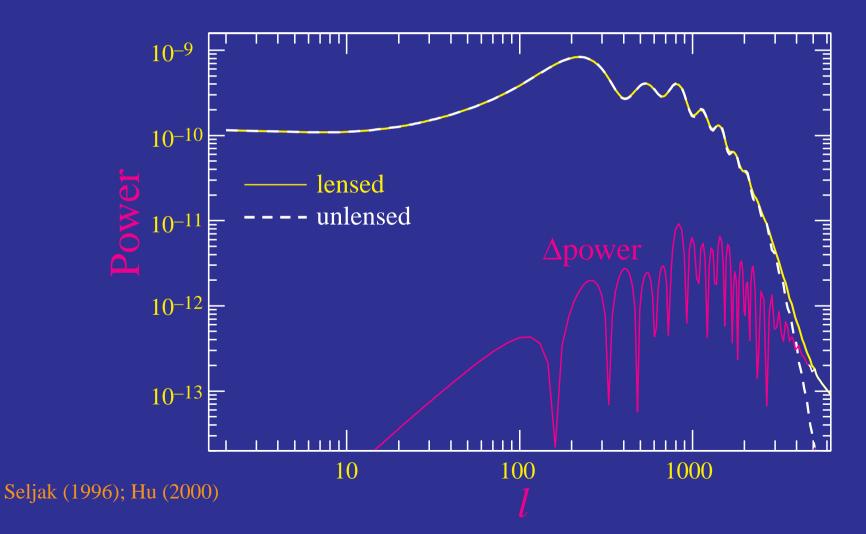
- Mass distribution at large angles and high redshift in in the linear regime
- Projected mass distribution (low pass filtered reflecting deflection angles): 1000 sq. deg



rms deflection 2.6' deflection coherence 10°

Lensing in the Power Spectrum

- Lensing smooths the power spectrum with a width $\Delta l \sim 60$
- Convolution with specific kernel: higher order correlations between multipole moments – not apparent in power



Reconstruction from the CMB

- Correlation between Fourier moments reflect lensing potential $\kappa = \nabla^2 \phi$

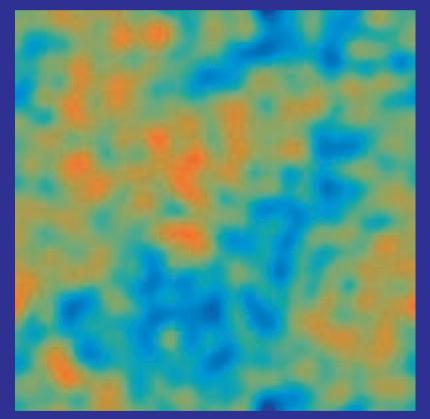
 $\langle x(\mathbf{l})x'(\mathbf{l}')\rangle_{\text{CMB}} = f_{\alpha}(\mathbf{l},\mathbf{l}')\phi(\mathbf{l}+\mathbf{l}'),$

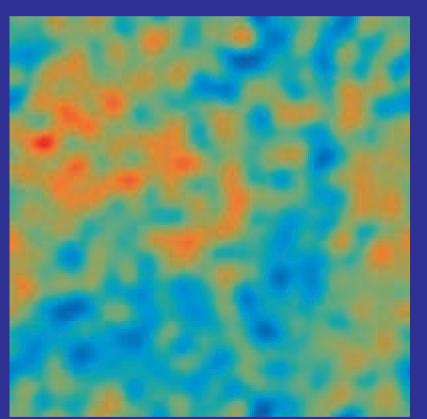
where $x \in$ temperature, polarization fields and f_{α} is a fixed weight that reflects geometry

- Each pair forms a noisy estimate of the potential or projected mass
 just like a pair of galaxy shears
- Minimum variance weight all pairs to form an estimator of the lensing mass

Quadratic Reconstruction

- Matched filter (minimum variance) averaging over pairs of multipole moments
- Real space: divergence of a temperature-weighted gradient

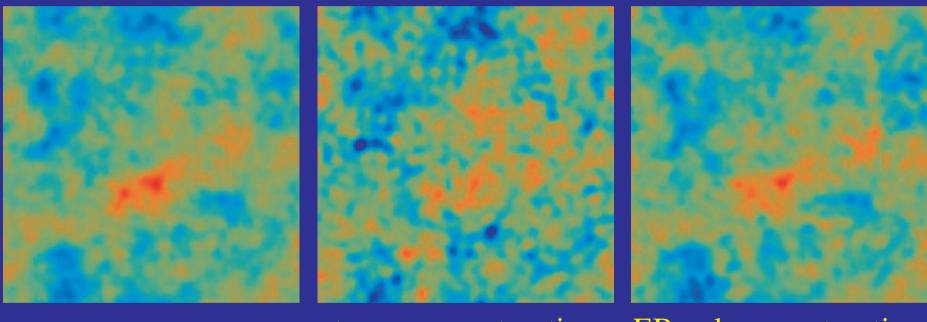




original Hu (2001) potential map (1000sq. deg) reconstructed 1.5' beam; 27µK-arcmin noise

Ultimate (Cosmic Variance) Limit

- Cosmic variance of CMB fields sets ultimate limit
- Polarization allows mapping to finer scales (~10')



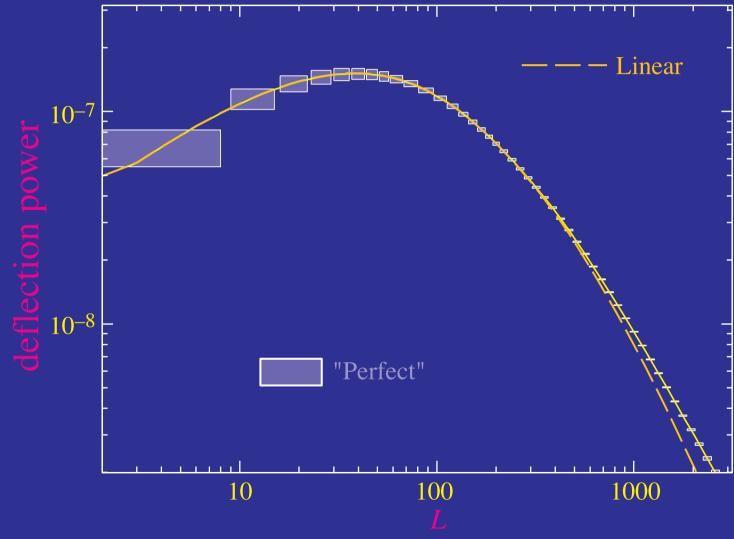
mass

temp. reconstruction EB pol. reconstruction 100 sq. deg; 4' beam; 1µK-arcmin

Hu & Okamoto (2001)

Matter Power Spectrum

 Measuring projected matter power spectrum to cosmic variance limit across whole linear regime 0.002< k < 0.2 h/Mpc

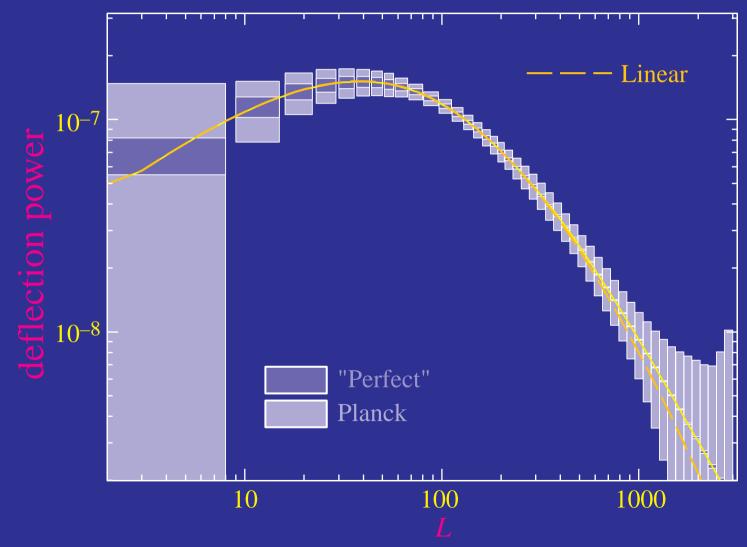


Hu & Okamoto (2001)

 $\sigma(w) \sim 0.06$

Matter Power Spectrum

 Measuring projected matter power spectrum to cosmic variance limit across whole linear regime 0.002< k < 0.2 h/Mpc

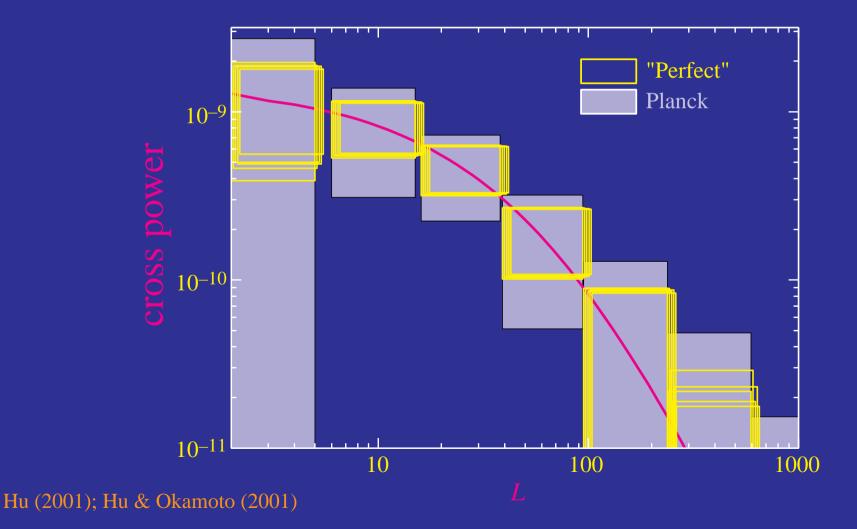


Hu & Okamoto (2001)

 $\sigma(w) \sim 0.06; 0.14$

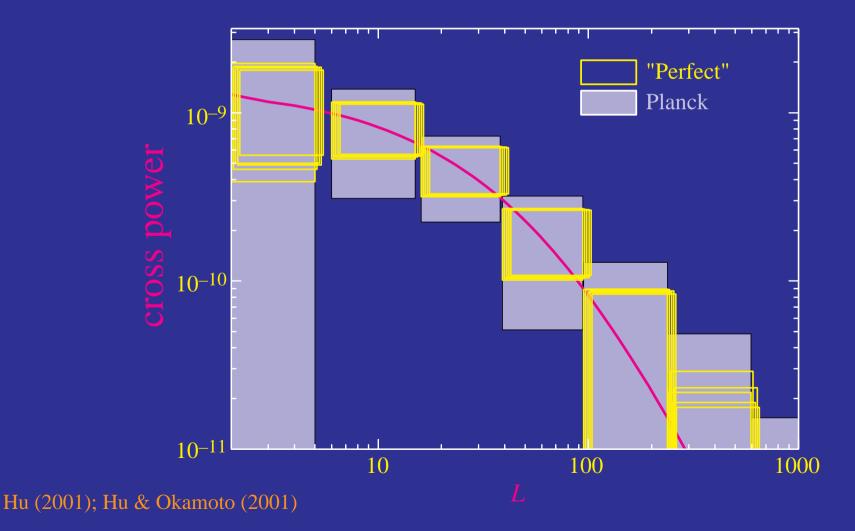
Cross Correlation with Temperature

- Any correlation is a direct detection of a smooth energy density component through the ISW effect
- 5 nearly independent measures in temperature & polarization



Cross Correlation with Temperature

- Any correlation is a direct detection of a smooth energy density component through the ISW effect
- Show dark energy smooth >5-6 Gpc scale, test quintesence



- Standard model of cosmology well-established
- Dark energy indicated, a mystery

Summary

- Standard model of cosmology well-established
- Dark energy indicated, a mystery
- Dark matter distribution and its dependence on dark energy well-understood
- Luminous tracers (supernovae/galaxies/clusters) require modelling of formation/evolution
- Gravitational lensing avoids ambiguity, utilizes luminous objects only as background image

Summary

- Standard model of cosmology well-established
- Dark energy indicated, a mystery
- Dark matter distribution and its dependence on dark energy well-understood
- Luminous tracers (supernovae/galaxies/clusters) require modelling of formation/evolution
- Gravitational lensing avoids ambiguity, utilizes luminous objects only as background image
- Evolution of dark energy can be extracted tomographically
- Clustering of dark energy (test of scalar field paradigm) extractable from wide-field CMB lensing