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Dark Energy
and the 

Standard Model of Cosmology



If its not dark, it doesn't matter!
•  Cosmic matter-energy budget:

Dark Energy
Dark Matter
Dark Baryons

Visible Matter
Dark Neutrinos



Making Light of the Dark Side
•  Visible structures and the processes that form them are our only
	 cosmological probe of the dark components

•  In the standard, well-verified, cosmological model, structures
	 grow through gravitational instability from small-fluctuations
	 (perhaps formed during inflation)

15 Gyr
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Power Spectra of Maps
•	Original
	

•	Band Filtered	
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Photon-Baryon Plasma
•  Before z~1000 when the CMB was T>3000K, hydrogen ionized

•  Free electrons act as "glue" between photons and baryons
    by Compton scattering and Coulomb interactions
•  Nearly perfect fluid
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Peak Location
• Fundmental physical scale, the distance sound travels, becomes an

angular scaleby simple projection according to the angular
diameter distanceDA

θA = λA/DA

`A = kADA

• In a flat universe, the distance is simply DA= D ≡ η  0− η∗ ≈ η0, the
horizon distance, andkA = π/s∗ =

√
3π/η∗ so

θA ≈
η∗
η0

• In amatter-dominateduniverseη ∝ a1/2 soθA ≈ 1/30 ≈ 2◦ or

`A ≈ 200



Angular Diameter Distance Test
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Curvature
• In acurved universe, the apparent orangular diameter distanceis

no longer the conformal distance DA= R sin(D/R) 6= D

DA

D=Rθ

λ

α

• Objects in aclosed universearefurtherthan they appear!
gravitationallensingof the background...



Curvature in the Power Spectrum
•	Angular location of harmonic peaks

•	Flat = critical density = missing dark energy 



Accelerated Expansion from SNe
•  Missing energy must also accelerate the expansion at low
	 redshift 

compilation from High-z team

Supernova Cosmology Project
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Acceleration Implies Negative Pressure
• Role ofpressurein the background cosmology

• HomogeneousEinstein equationsGµν = 8πGTµν imply the two
Friedman equations(flat universe, or associating curvature
ρK = −3K/8πGa2)(
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so that the total equation of statew ≡ p/ρ < −1/3 for acceleration
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• HomogeneousEinstein equationsGµν = 8πGTµν imply the two
Friedman equations(flat universe, or associating curvature
ρK = −3K/8πGa2)(

1

a

da

dt

)2

=
8πG

3
ρ

1

a

d2a

dt2
= −4πG

3
(ρ+ 3p)

so that the total equation of statew ≡ p/ρ < −1/3 for acceleration

• Conservation equation∇µTµν = 0 implies

ρ̇

ρ
= −3(1 + w)

ȧ

a

• so thatρ must scale more slowly thana−2



Dark Mystery?
•	 Coincidence: given different scalings with a, why are dark
	 matter and energy densities comparable now?
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Dark Mystery?
•	 Coincidence: given different scalings with a, why are dark
	 matter and energy densities comparable now?
•	 Stability: why doesn't negative pressure imply accelerated
	 collapse? or why doesn't the vacuum suck? 

Gravity

Pressure
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Dark Mystery?
•	 Coincidence: given different scalings with a, why are dark
	 matter and energy densities comparable now?
•	 Stability: why doesn't negative pressure imply accelerated
	 collapse? or why doesn't the vacuum suck?
	 pressure gradients, not pressure, establish stability 
•	 Candidates:

	 Cosmological constant w=-1, constant in space and time,
	 but >60 orders of magnitude off vacuum energy prediction

	 Ultralight scalar field, slowly rolling in a potential, 
	 Klein-Gordon equation: sound speed cs2=δp/δρ=1

	 Tangled defects w=-1/3, -2/3 but relativistic sound speed
	 ("solid" dark matter)



Dark Energy Probes
• (Comoving)distance-redshift relation: a = (1 + z)−1
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in a flat universe, e.g.angular diameter distance, luminosity
distance, number counts (volume)...



Dark Energy Probes
• (Comoving)distance-redshift relation: a = (1 + z)−1

D =

∫ 1

a

da
1

a2H(a)
=

∫ z

0

dz
1

H(a)

H2(a) =
8πG

3
(ρm + ρDE)

in a flat universe, e.g.angular diameter distance, luminosity
distance, number counts (volume)...

• Pressuregrowth suppression: δ ≡ δρm/ρm ∝ aφ

d2φ

d ln a2
+

[
5

2
− 3

2
w(z)ΩDE(z)

]
dφ

d ln a
+

3

2
[1− w(z)]ΩDE(z)φ = 0 ,

wherew ≡ pDE/ρDE andΩDE ≡ ρDE/(ρm + ρDE)

e.g. galaxycluster abundance, gravitational lensing...
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Making Light of the Dark Side
•  Visible structures and the processes that form them are our only
	 cosmological probe of the dark components

•  In the standard, well-verified, cosmological model, structures
	 grow through gravitational instability from small-fluctuations
	 (perhaps formed during inflation)

15 Gyr



Structure Formation Simulation
•  Simulation (by A. Kravstov)



Galaxy Power Spectrum Data
� Galaxy clustering tracks the dark matter – but bias depends on type• 
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A Fundamental Problem
• All cosmological observables relate to theluminous matter:

photon-baryon plasma, galaxies, clusters of galaxies, supernovae

• Implications for the dark energy or cosmology in general depend
on modelling theformationandevolutionof luminous objects

• Success of CMB anisotropy is in large part based on thesolid
theoretical groundingof its formation and evolution – well
understood linear gravitational physics



A Fundamental Problem
• All cosmological observables relate to theluminous matter:

photon-baryon plasma, galaxies, clusters of galaxies, supernovae

• Implications for the dark energy or cosmology in general depend
on modelling theformationandevolutionof luminous objects

• Success of CMB anisotropy is in large part based on thesolid
theoretical groundingof its formation and evolution – well
understood linear gravitational physics

• Distortion of the images of luminous objects bygravitational
lensing is equally well understood

• Problem: image distortion is typically at %-level – very
demanding for the control ofsystematic errors– but recall CMB is
10-5 level! (Tyson, Wenk & Valdes 1990)



Example of Weak Lensing
•  Toy example of lensing of the CMB primary anisotropies

•  Shearing of the image



Lensing Observables
• Image distortiondescribed byJacobian matrixof the remapping

A =

 1− κ− γ1 −γ2

−γ2 1− κ+ γ1

 ,

whereκ is theconvergence, γ1, γ2 are theshearcomponents



Lensing Observables
• Image distortiondescribed byJacobian matrixof the remapping

A =

 1− κ− γ1 −γ2

−γ2 1− κ+ γ1

 ,

whereκ is theconvergence, γ1, γ2 are theshearcomponents

• related to thegravitational potentialΦ by spatial derivatives

ψij(zs) = 2
∫ zs

0
dz
dD

dz

D(Ds −D)

Ds

Φ,ij ,

ψij = δij − Aij, i.e. viaPoisson equation

κ(zs) =
3

2
H2

0Ωm

∫ zs

0
dz

dD

dz

D(Ds −D)

Ds

δ/a ,



Gravitational Lensing by LSS

• Shearing of galaxy images reliably detected in clusters

• Main systematic effects are instrumental rather than astrophysical

Colley, Turner, & Tyson (1996)

Cluster (Strong) Lensing: 0024+1654 



Instrumental Systematics
•	 Raw data has instrumental systematics (PSF anisotropy) larger than
	 signal, removed by demanding stars be round

Jarvis et al. (2002) 1% ellipticity



Instrumental Systematics
•	 Raw data has instrumental systematics (PSF anisotropy) larger than
	 signal, removed by demanding stars be round

Jarvis et al. (2002) 1% ellipticity



Cosmic Shear Data
•	 Shear variance as a function of smoothing scale

compilation from Bacon et al (2002)



Shear Power Modes

• Alignment of shear and wavevector defines modes 

ε

β



Shear Power Spectrum

• Lensing weighted Limber projection of density power spectrum

• ε−shear power = κ power
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PM Simulations

• Simulating mass distribution is a routine exercise

6° × 6° FOV; 2' Res.; 245–75 h–1Mpc box; 480–145 h–1kpc mesh; 2–70 109 M

Convergence Shear

White & Hu (1999)
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Degeneracies
•	 All parameters of initial condition, growth and distance
	 redshift relation D(z) enter
•	 Nearly featureless power spectrum results in degeneracies
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Degeneracies
•	 All parameters of initial condition, growth and distance
	 redshift relation D(z) enter
•	 Nearly featureless power spectrum results in degeneracies

•	 Combine with information
	 from the CMB: complementarity
	 (Hu & Tegmark 1999)

•	 Crude tomography with source
	 divisions	 (Hu 1999; Hu 2001)

•	 Fine tomography with source
	 redshifts (Hu & Keeton 2002; Hu 2002)
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Error Improvement: 1000deg2
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Crude Tomography

• Divide sample by photometric redshifts
 

Hu (1999)
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Crude Tomography

• Divide sample by photometric redshifts

• Cross correlate samples

• Order of magnitude increase in precision even after CMB breaks 
 degeneracies

Hu (1999)
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Dark Energy & Tomography

• Both CMB and tomography help lensing provide interesting 
 constraints on dark energy
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Dark Energy & Tomography

• Both CMB and tomography help lensing provide interesting 
 constraints on dark energy
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Hidden Dark Energy Information
• Most of the information on thedark energyis hidden in the

temporalor radialdimension

• Evolution ofgrowth rate(dark energy pressure slows growth)

• Evolution ofdistance-redshiftrelation



Hidden Dark Energy Information
• Most of the information on thedark energyis hidden in the

temporalor radialdimension

• Evolution ofgrowth rate(dark energy pressure slows growth)

• Evolution ofdistance-redshiftrelation

• Lensing is inherentlytwo dimensional: all mass along the line of
sight lenses

• Tomography implicitly or explicitlyreconstructs radial dimension
with source redshifts

• Photometric redshift errors currently∆z < 0.1 out toz ~ 1 and
allow for ”fine” tomography



Fine Tomography
• Convergence– projection of∆ = δ/a for eachzs

κ(zs) =
3

2
H2

0Ωm

∫ zs

0

dz
dD

dz

D(Ds −D)

Ds

∆ ,



Fine Tomography
• Convergence– projection of∆ = δ/a for eachzs

κ(zs) =
3

2
H2

0Ωm

∫ zs

0

dz
dD

dz

D(Ds −D)

Ds

∆ ,

• Data islinear combinationof signal + noise

dκ = Pκ∆s∆ + nκ ,

[Pκ∆]ij =

{
3
2
H2

0ΩmδDj
(Di+1−Dj)Dj

Di+1
Di+1 > Dj ,

0 Di+1 ≤ Dj ,



Fine Tomography
• Convergence– projection of∆ = δ/a for eachzs

κ(zs) =
3

2
H2

0Ωm

∫ zs

0

dz
dD

dz

D(Ds −D)

Ds

∆ ,

• Data islinear combinationof signal + noise

dκ = Pκ∆s∆ + nκ ,

[Pκ∆]ij =

{
3
2
H2

0ΩmδDj
(Di+1−Dj)Dj

Di+1
Di+1 > Dj ,

0 Di+1 ≤ Dj ,

• Well-posed (Taylor 2002) but noisy inversion (Hu & Keeton 2002)

• Noise properties differ from signal properties→ optimal filters



Hidden in Noise
• Derivatives of noisy convergence isolate radial structures

 

Hu & Keeton (2001)
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Fine Tomography
•  Tomography can produce direct 3D dark matter maps, but 
	 realistically only broad features     (Hu & Keeton 2002)
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Fine Tomography
•  Tomography can produce direct 3D dark matter maps, but 
	 realistically only broad features     (Hu & Keeton 2002)

Radial density field
Wiener reconstruction

1

0.5

0

–0.5

–1

0 0.5 1 1.5
z



Growth Function
•	 Localized constraints (fixed distance-redshift relation)

4000 sq. deg
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Dark Energy Density
•	 Localized constraints (with cold dark matter)

Hu (2002)
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Dark Energy Parameters
•	 Three parameter dark energy model (ΩDE, w, dw/dz=w')

Hu (2002)
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ISW Effect

• Gravitational blueshift on infall does not cancel redshift 
on climbing out

• Contraction of spatial metric doubles the effect: ∆T/T=2∆Φ

• Effect from potential hills and wells cancel on small scales
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ISW Effect and Dark Energy

• Raising equation of state increases redshift of dark energy
domination and raises the ISW effect

• Lowering the sound speed increases clustering and reduces
ISW effect at large angles
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Direct Detection of Dark Energy?

• In the presence of dark energy, shear is correlated with CMB 

temperature via ISW effect
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Lensing of a Gaussian Random Field
• CMB temperature and polarization anisotropies are Gaussian

random fields – unlike galaxy weak lensing

• Average over many noisy images – like galaxy weak lensing



Lensing by a Gaussian Random Field
• Mass distribution at large angles and high redshift in

in the linear regime 

• Projected mass distribution (low pass filtered reflecting
deflection angles): 1000 sq. deg

rms deflection
2.6'

deflection coherence
10°



Lensing in the Power Spectrum
• Lensing smooths the power spectrum with a width ∆l~60

• Convolution with specific kernel: higher order correlations 
between multipole moments – not apparent in power
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Seljak (1996); Hu (2000)



Reconstruction from the CMB
• Correlation betweenFourier momentsreflectlensing potential
κ = ∇2φ

〈x(l)x′(l′)〉CMB = fα(l, l′)φ(l + l′) ,

wherex ∈ temperature, polarization fieldsandfα is a fixed weight
that reflects geometry

• Each pair forms anoisy estimateof the potential or projected mass
- just like a pair of galaxy shears

• Minimum variance weightall pairs to form an estimator of the
lensing mass



Quadratic Reconstruction
• Matched filter (minimum variance) averaging over pairs of 

multipole moments

• Real space: divergence of a temperature-weighted gradient

Hu (2001)

original
potential map (1000sq. deg)

reconstructed
1.5' beam; 27µK-arcmin noise



Ultimate (Cosmic Variance) Limit
• Cosmic variance of CMB fields sets ultimate limit

• Polarization allows mapping to finer scales (~10')

Hu & Okamoto (2001)

100 sq. deg; 4' beam; 1µK-arcmin

mass temp. reconstruction EB pol. reconstruction



Matter Power Spectrum
• Measuring projected matter power spectrum to cosmic vari-

ance limit across whole linear regime 0.002< k < 0.2 h/Mpc

Hu & Okamoto (2001)
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Matter Power Spectrum
• Measuring projected matter power spectrum to cosmic vari-

ance limit across whole linear regime 0.002< k < 0.2 h/Mpc

Hu & Okamoto (2001)
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Cross Correlation with Temperature

• Any correlation is a direct detection of a smooth energy 
density component through the ISW effect

• 5 nearly independent measures in temperature & polarization

Hu (2001); Hu & Okamoto (2001)
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Cross Correlation with Temperature

• Any correlation is a direct detection of a smooth energy 
density component through the ISW effect

• Show dark energy smooth >5-6 Gpc scale, test quintesence

Hu (2001); Hu & Okamoto (2001)
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Summary
•	 Standard model of cosmology well-established
•	 Dark energy indicated, a mystery

	

	

	

	



Summary
•	 Standard model of cosmology well-established
•	 Dark energy indicated, a mystery

•	 Dark matter distribution and its dependence on dark energy
	 well-understood
•	 Luminous tracers (supernovae/galaxies/clusters) require 
	 modelling of formation/evolution
•	 Gravitational lensing avoids ambiguity, utilizes luminous 
	 objects only as background image 

	



Summary
•	 Standard model of cosmology well-established
•	 Dark energy indicated, a mystery

•	 Dark matter distribution and its dependence on dark energy
	 well-understood
•	 Luminous tracers (supernovae/galaxies/clusters) require 
	 modelling of formation/evolution
•	 Gravitational lensing avoids ambiguity, utilizes luminous 
	 objects only as background image 

•	 Evolution of dark energy can be extracted tomographically
•	 Clustering of dark energy (test of scalar field paradigm) 
	 extractable from wide-field CMB lensing
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