Is H_0 Interesting?

- **WMAP** infers that in a flat Λ cosmology $H_0=72\pm5$
- **Key project** measures $H_0=72\pm8$
- Are local H_0 measurements still interesting?
 - **YES!!**
- **CMB** best measures only high-z quantities:
 distance to recombination
 energy densities and hence expansion rate at high z
Is H_0 Interesting?

- **WMAP** infers that in a flat Λ cosmology $H_0 = 72 \pm 5$
- Key project measures $H_0 = 72 \pm 8$
- Are local H_0 measurements still interesting?

- YES!!

- **CMB** best measures only high-z quantities: distance to recombination, energy densities and hence expansion rate at high z

- **CMB** observables then predict H_0 for a given hypothesis about the dark energy (e.g. flat Λ)

- Consistency with measured value is strong evidence for dark energy and in the future can reveal properties such as its equation of state if H_0 can be measured to percent precision