# Cosmological and Solar System Tests of

Cosmic Acceleration Wayne Hu Origins Institute, May 2007

f(R)

## Why Study f(R)?

• Cosmic acceleration, like the cosmological constant, can either be viewed as arising from

Missing, or dark energy, with  $w \equiv \bar{p}/\bar{\rho} < -1/3$ 

Modification of gravity on large scales

• Compelling models for either explanation lacking

## Why Study f(R)?

• Cosmic acceleration, like the cosmological constant, can either be viewed as arising from

Missing, or dark energy, with  $w \equiv \bar{p}/\bar{\rho} < -1/3$ 

Modification of gravity on large scales

- Compelling models for either explanation lacking
- Dark energy parameterized description on small scales: w(z) that completely defines expansion history, sound speed defines structure formation
- Parameterized description of modified gravity acceleration?
- Many ad-hoc attempts violate energy-momentum conservation, Bianchi identities, gauge invariance; others incomplete
- Study DGP braneworld acceleration and *f*(*R*) modified action; learn how to generalize

## AdD/Cf(R) Correspondence

- Necessary to take squared mass of the scalar positive so that high curvature is stable violated in original  $f(R) = -\mu^4/R$  model (stellar structure Dolgov& Kawasaki 2003, expansion history Amendola et al 2006)
- Growth of structure strongly impacted by Compton wavelength of scalar even when expansion history and distances unchanged

## AdD/Cf(R) Correspondence

• Necessary to take squared mass of the scalar positive so that high curvature is stable – violated in original  $f(R) = -\mu^4/R$  model (stellar structure Dolgov& Kawasaki 2003, expansion history Amendola et al 2006)

- Growth of structure strongly impacted by Compton wavelength of scalar even when expansion history and distances unchanged
- Solar system test: controversy stems from two extreme spherical cow approximations: sun + cosmological background (Chiba 2003; Erikchek et al 2006), sun + infinite galaxy (f(R) chameleon)
- Precision of solar system (and laboratory) tests largely irrelevant
- Viability of large deviations rests on galactic structure and evolution
- Small cosmological deviations certainly viable and are not so small in quasilinear regime
- Lessons for a Parameterized Post-Friedmann framework

### Outline

- Basics and f(R) as an Effective Theory
- Linear Theory Predictions and Current Constraints
- Models of f(R) as Complete Theory of Gravity?
- Solar System Tests
- Parameterized Post-Friedmann Framework

### Outline

- Basics and f(R) as an Effective Theory
- Linear Theory Predictions and Current Constraints
- Models of f(R) as Complete Theory of Gravity?
- Solar System Tests
- Parameterized Post-Friedmann Framework

- Collaborators:
  - Hiranya Peiris (Chicago → Cambridge)
  - Iggy Sawicki (Chicago  $\rightarrow$  NYU)
  - Yong-Seon Song (Chicago → Portsmouth)



## Cast of f(R) Characters

- *R*: Ricci scalar or "curvature"
- f(R): modified action (Starobinsky 1980; Carroll et al 2004)

$$S = \int d^4x \sqrt{-g} \left[ \frac{R + f(R)}{16\pi G} + \mathcal{L}_{\rm m} \right]$$

# Cast of f(R) Characters

- *R*: Ricci scalar or "curvature"
- f(R): modified action (Starobinsky 1980; Carroll et al 2004)

$$S = \int d^4x \sqrt{-g} \left[ \frac{R + f(R)}{16\pi G} + \mathcal{L}_{\rm m} \right]$$

- $f_R \equiv df/dR$ : additional propagating scalar degree of freedom (metric variation)
- $f_{RR} \equiv d^2 f/dR^2$ : Compton wavelength of  $f_R$  squared, inverse mass squared
- *B*: Compton wavelength of  $f_R$  squared in units of the Hubble length

$$B \equiv \frac{f_{RR}}{1 + f_R} R' \frac{H}{H'}$$

•  $' \equiv d/d \ln a$ : scale factor as time coordinate

### Modified Einstein Equation

• In the Jordan frame, gravity becomes 4th order but matter remains minimally coupled and separately conserved

$$G_{\alpha\beta} + f_{R}R_{\alpha\beta} - \left(\frac{f}{2} - \Box f_{R}\right)g_{\alpha\beta} - \nabla_{\alpha}\nabla_{\beta}f_{R} = 8\pi G T_{\alpha\beta}$$

• Trace can be interpreted as a scalar field equation for  $f_R$  with a density-dependent effective potential (p = 0)

$$3\Box f_R + f_R R - 2f = R - 8\pi G\rho$$

### Modified Einstein Equation

• In the Jordan frame, gravity becomes 4th order but matter remains minimally coupled and separately conserved

$$G_{\alpha\beta} + f_{R}R_{\alpha\beta} - \left(\frac{f}{2} - \Box f_{R}\right)g_{\alpha\beta} - \nabla_{\alpha}\nabla_{\beta}f_{R} = 8\pi G T_{\alpha\beta}$$

• Trace can be interpreted as a scalar field equation for  $f_R$  with a density-dependent effective potential (p = 0)

$$3\Box f_R + f_R R - 2f = R - 8\pi G\rho$$

• For small deviations,  $|f_R| \ll 1$  and  $|f/R| \ll 1$ ,

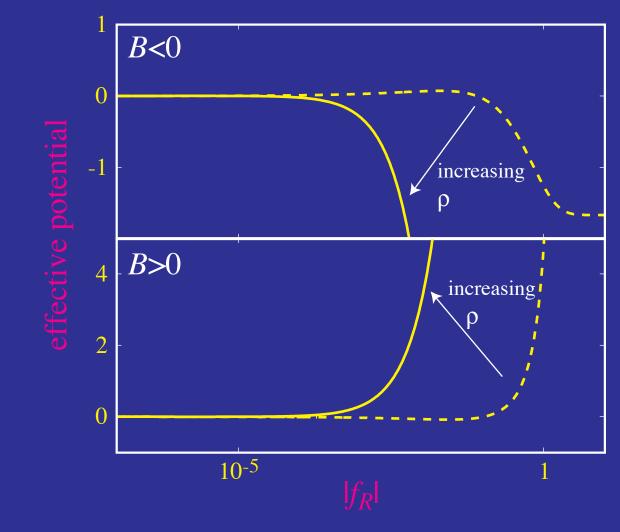
$$\Box f_{R} \approx \frac{1}{3} \left( R - 8\pi G \rho \right)$$

the field is sourced by the deviation from GR relation between curvature and density and has a mass

$$m_{f_R}^2 \approx \frac{1}{3} \frac{\partial R}{\partial f_R} = \frac{1}{3f_{RR}}$$

#### **Effective Potential**

- Scalar  $f_R$  rolls in an effective potential that depends on density
- At high density, extrema is at GR  $R=8\pi G\rho$
- Minimum for B>0, pinning field to  $|f_R| \ll 1$ , maximum for B<0



Sawicki & Hu (2007)

f(R) Expansion History

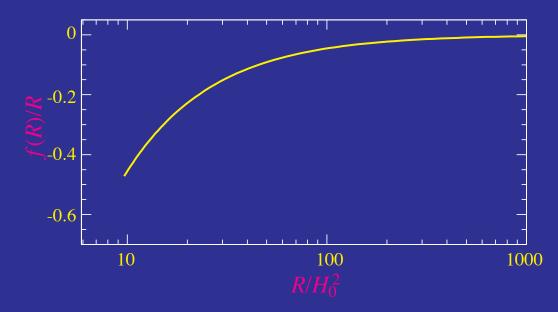
### Modified Friedmann Equation

- Expansion history parameterization: Friedmann equation becomes  $H^2 - f_R(HH' + H^2) + \frac{1}{6}f + H^2 f_{RR}R' = \frac{8\pi G\rho}{3}$
- Reverse engineering f(R) from the expansion history: for any desired H, solve a 2nd order diffeq to find f(R)
- Allows a family of f(R) models, parameterized in terms of the Compton wavelength parameter B

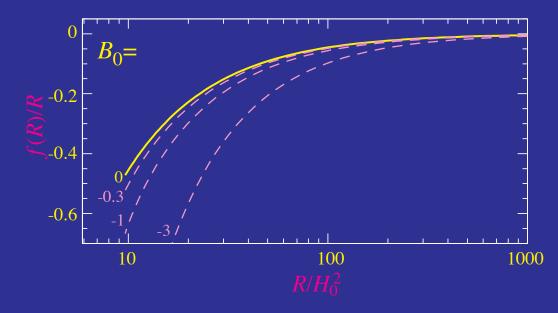
### Modified Friedmann Equation

- Expansion history parameterization: Friedmann equation becomes  $H^2 - f_R(HH' + H^2) + \frac{1}{6}f + H^2 f_{RR}R' = \frac{8\pi G\rho}{3}$
- Reverse engineering f(R) from the expansion history: for any desired H, solve a 2nd order diffeq to find f(R)
- Allows a family of f(R) models, parameterized in terms of the Compton wavelength parameter B
- Formally includes models where B < 0, such as f(R) = -µ<sup>4</sup>/R, leading to confusion as to whether such models provide viable expansion histories
- Answer: no these have short-time scale tachyonic instabilities at high curvature and limit as B → 0 from below is not GR
- B > 0 family has very different implications for structure formation but with identical distance-redshift relations

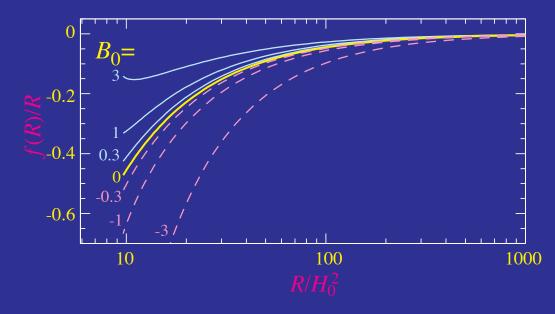
- Each expansion history, matched by dark energy model  $[w(z), \Omega_{DE}, H_0]$  corresponds to a family of f(R) models due to its 4th order nature
- Parameterized by  $B \propto f_{RR} = d^2 f/dR^2$  evaluated at z=0



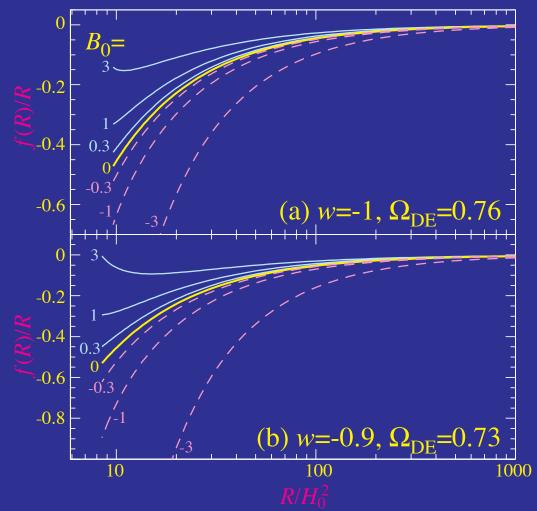
- Each expansion history, matched by dark energy model  $[w(z), \Omega_{DE}, H_0]$  corresponds to a family of f(R) models due to its 4th order nature
- Parameterized by  $B \propto f_{RR} = d^2 f/dR^2$  evaluated at z=0



- Each expansion history, matched by dark energy model  $[w(z), \Omega_{DE}, H_0]$  corresponds to a family of f(R) models due to its 4th order nature
- Parameterized by  $B \propto f_{RR} = d^2 f/dR^2$  evaluated at z=0



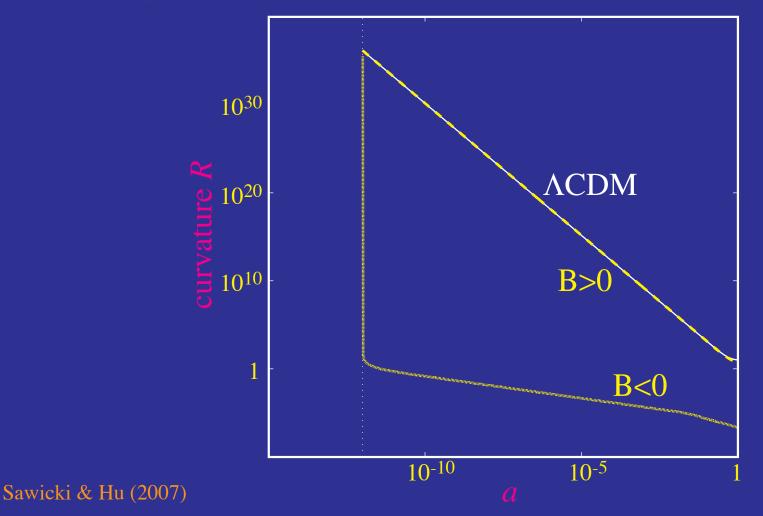
- Each expansion history, matched by dark energy model  $[w(z), \Omega_{DE}, H_0]$  corresponds to a family of f(R) models due to its 4th order nature
- Parameterized by  $B \propto f_{RR} = d^2 f/dR^2$  evaluated at z=0



Song, Hu & Sawicki (2006)

### Instability at High Curvature

- Tachyonic instability for negative mass squared *B*<0 makes high curvature regime increasingly unstable: high density ≠ high curvature
- Linear metric perturbations immediately drop the expansion history to low curvature solution



f(R) Linear Theory

### **PPF** Description

- On superhorizon scales, energy momentum conservation and expansion history constrain the evolution of metric fluctuations (Bertschinger 2006)
- For adiabatic perturbations in a flat universe, conservation of comoving curvature applies  $\zeta' = 0$  where  $' \equiv d/d \ln a$  (Bardeen 1980)

### **Curvature Conservation**

- On superhorizon scales, energy momentum conservation and expansion history constrain the evolution of metric fluctuations (Bertschinger 2006)
- For adiabatic perturbations in a flat universe, conservation of comoving curvature applies  $\zeta' = 0$  where  $' \equiv d/d \ln a$  (Bardeen 1980)
- Gauge transformation to Newtonian gauge

$$ds^{2} = -(1+2\Psi)dt^{2} + a^{2}(1+2\Phi)dx^{2}$$

yields (Hu & Eisenstein 1999)

$$\Phi'' - \Psi' - \frac{H''}{H'}\Phi' - \left(\frac{H'}{H} - \frac{H''}{H'}\right)\Psi = 0$$

Modified gravity theory supplies the closure relationship
 Φ = -γ(ln a)Ψ between and expansion history H = a/a supplies rest.

## Linear Theory for f(R)

- In f(R) model, "superhorizon" behavior persists until Compton wavelength smaller than fluctuation wavelength  $B^{1/2}(k/aH) < 1$
- Once Compton wavelength becomes larger than fluctuation

 $B^{1/2}(k/aH) > 1$ 

perturbations are in scalar-tensor regime described by  $\gamma = 1/2$ .

## Linear Theory for f(R)

- In f(R) model, "superhorizon" behavior persists until Compton wavelength smaller than fluctuation wavelength  $B^{1/2}(k/aH) < 1$
- Once Compton wavelength becomes larger than fluctuation

 $B^{1/2}(k/aH) > 1$ 

perturbations are in scalar-tensor regime described by  $\gamma = 1/2$ .

• Small scale density growth enhanced and

 $8\pi G\rho > R$ 

low curvature regime with order unity deviations from GR

- Transitions in the non-linear regime where the Compton wavelength can shrink via chameleon mechanism
- Given  $k_{\rm NL}/aH \gg 1$ , even very small  $f_R$  have scalar-tensor regime

#### **Deviation Parameter**

• Express the 4th order nature of equations as a deviation parameter

$$\Phi'' - \Psi' - \frac{H''}{H'} \Phi' - \left(\frac{H'}{H} - \frac{H''}{H'}\right) \Psi = \left(\frac{k}{aH}\right)^2 B\epsilon$$

• Einstein equation become a second order equation for  $\epsilon$ 

#### **Deviation Parameter**

• Express the 4th order nature of equations as a deviation parameter

$$\Phi'' - \Psi' - \frac{H''}{H'}\Phi' - \left(\frac{H'}{H} - \frac{H''}{H'}\right)\Psi = \left(\frac{k}{aH}\right)^2 B\epsilon$$

• Einstein equation become a second order equation for  $\epsilon$ 

• In high redshift, high curvature R limit this is

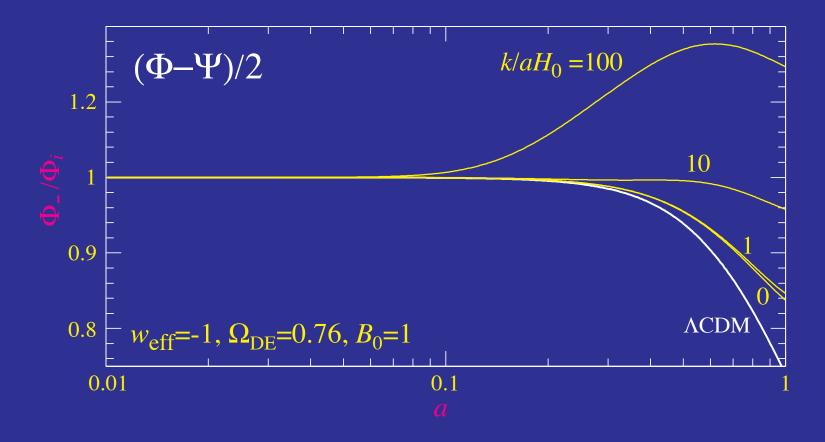
$$\epsilon'' + \left(\frac{7}{2} + 4\frac{B'}{B}\right)\epsilon' + \frac{2}{B}\epsilon = \frac{1}{B} \times \text{ metric sources}$$
$$B = \frac{f_{RR}}{1 + f_R}R'\frac{H}{H'}$$

R→∞, B→ 0 and for B < 0 short time-scale tachyonic instability appears making previous models not cosmologically viable</li>

$$f(R) = -M^{2+2n}/R^n$$

#### Potential Growth

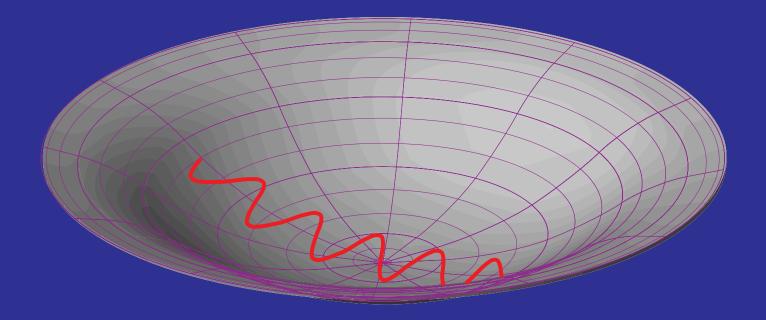
- On the stable *B*>0 branch, potential evolution reverses from decay to growth as wavelength becomes smaller than Compton scale
- Quasistatic equilibrium reached in linear theory with  $\gamma = -\Phi/\Psi = 1/2$ until non-linear effects restore  $\gamma = 1$



Song, Hu & Sawicki (2006)

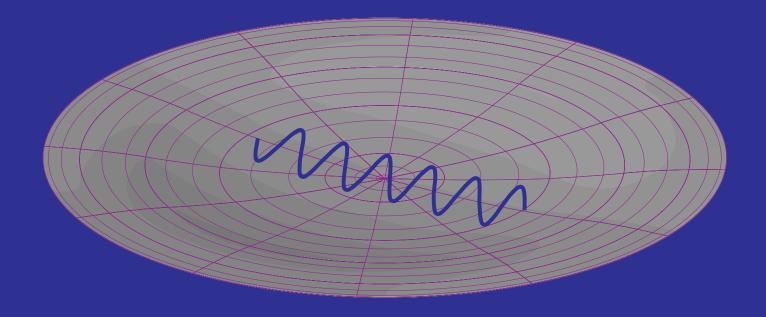
### Integrated Sachs-Wolfe Effect

- CMB photons transit gravitational potentials of large-scale structure
- If potential decays during transit, gravitational blueshift of infall not cancelled by gravitational redshift of exit
- Spatial curvature of gravitational potential leads to additional effect  $\Delta T/T = -\Delta(\Phi \Psi)$



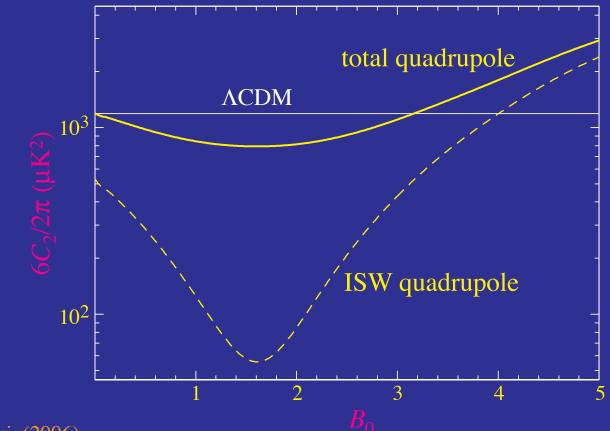
### Integrated Sachs-Wolfe Effect

- CMB photons transit gravitational potentials of large-scale structure
- If potential decays during transit, gravitational blueshift of infall not cancelled by gravitational redshift of exit
- Spatial curvature of gravitational potential leads to additional effect  $\Delta T/T = -\Delta(\Phi \Psi)$



### ISW Quadrupole

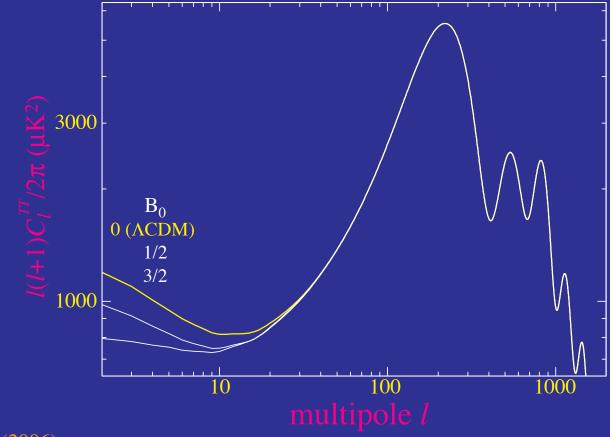
- Reduction of potential decay can eliminate the ISW effect at the quadrupole for  $B_0 \sim 3/2$
- In conjunction with a change in the initial power spectrum can also bring the total quadrupole closer in ensemble average to the observed quadrupole



Song, Hu & Sawicki (2006)

### ISW Quadrupole

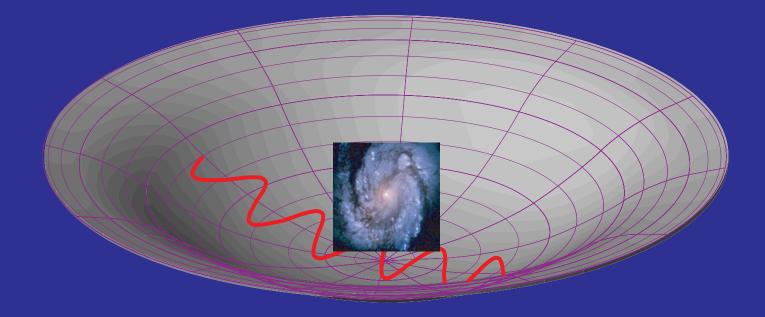
- Reduction of large angle anisotropy for  $B_0 \sim 1$  for same expansion history and distances as  $\Lambda CDM$
- Well-tested small scale anisotropy unchanged



Song, Hu & Sawicki (2006)

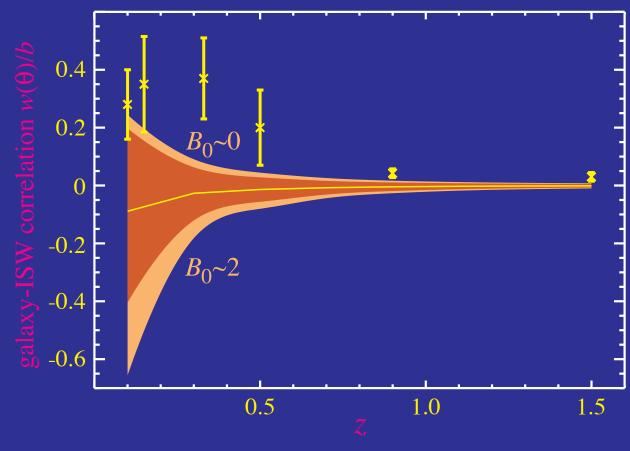
### **ISW-Galaxy** Correlation

- Decaying potential: galaxy positions correlated with CMB
- Growing potential: galaxy positions anticorrelated with CMB
- Observations indicate correlation



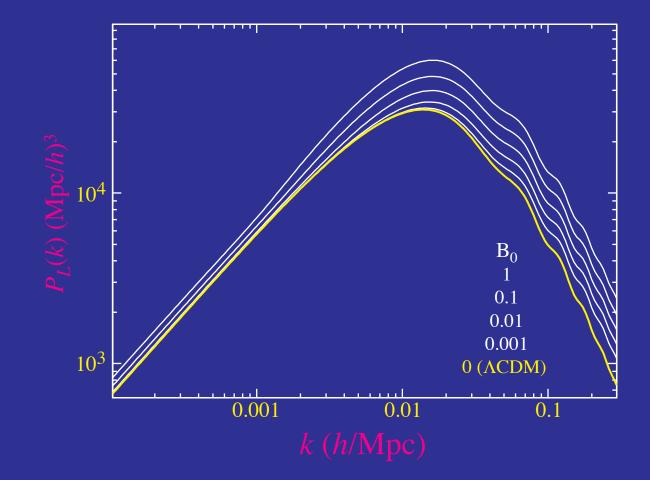
### Galaxy-ISW Anti-Correlation

- Large Compton wavelength *B*<sup>1/2</sup> creates potential growth which can anti-correlate galaxies and the CMB
- In tension with detections of positive correlations across a range of redshifts



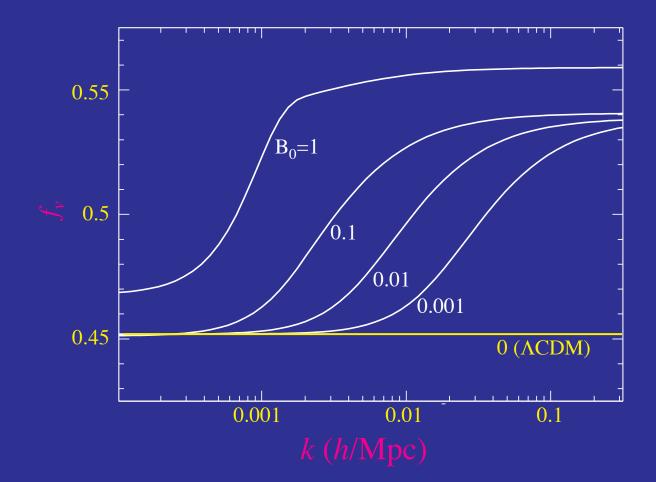
#### Linear Power Spectrum

- Linear real space power spectrum enhanced on small scales
- Degeneracy with galaxy bias and lack of non-linear predictions leave constraints from shape of power spectrum



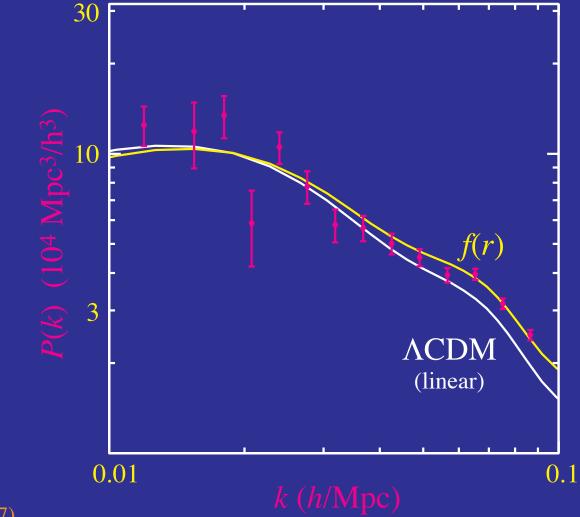
### **Redshift Space Distortion**

- Relationship between velocity and density field given by continuity with modified growth rate
- Redshift space power spectrum further distorted by Kaiser effect



### Power Spectrum Data

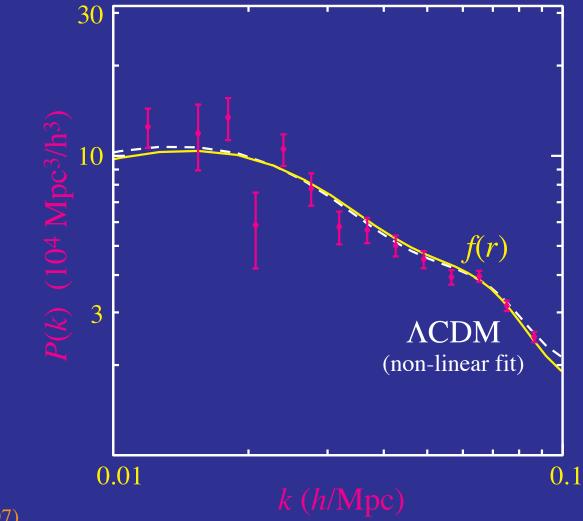
• Linear power spectrum enhancement fits SDSS LRG data better than ACDM but



Song, Peiris & Hu (2007)

## Power Spectrum Data

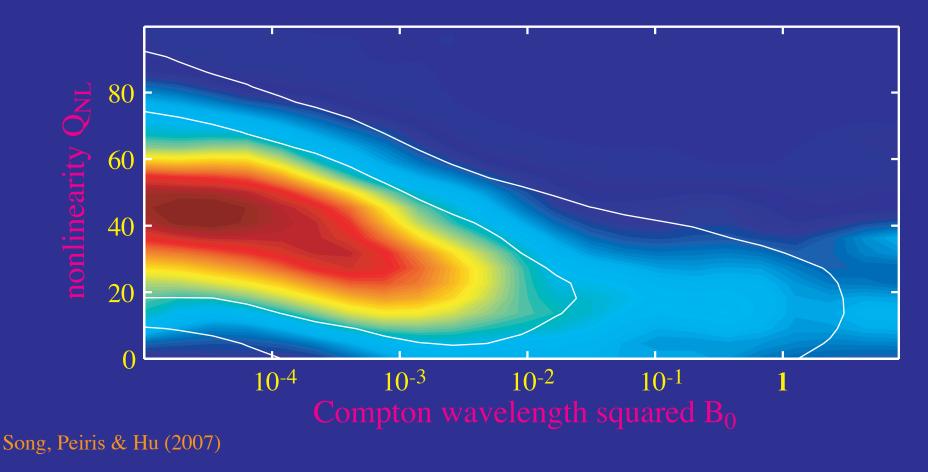
- Linear power spectrum enhancement fits SDSS LRG data better than ACDM but
- Shape expected to be altered by non-linearities



Song, Peiris & Hu (2007)

#### **Current Constraints**

- Likelihood analysis of SDSS LRG P(k), WMAP  $C_l$ , SNIa  $d_L$
- Degeneracy between non-linearity and *f*(*R*) enhancement allows whole range of Compton wavelengths from infinitesimal to horizon sized
- Requires cosmological simulation of f(R) to predict non-linearities



f(R) Models as A Complete Theory of Gravity?

# Engineering f(R) Models

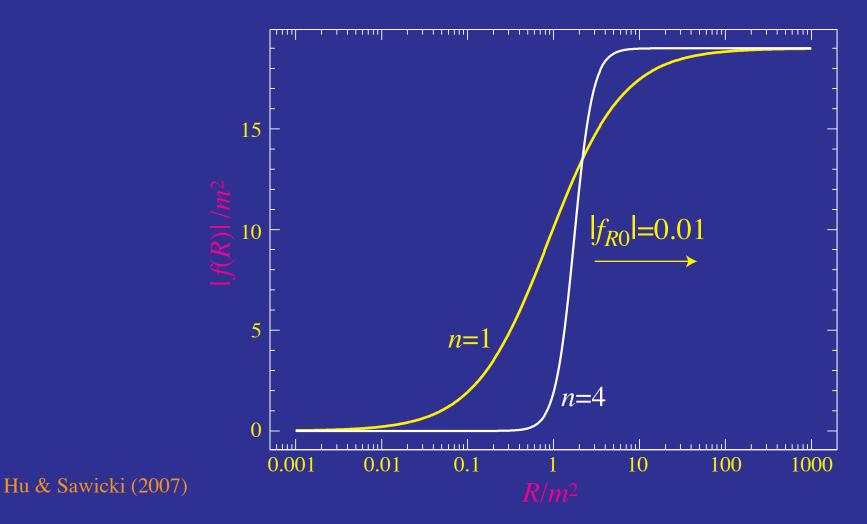
- Mimic ACDM at high redshift
- Accelerate the expansion at low redshift without a cosmological constant
- Sufficient freedom to vary expansion history within observationally allowed range
- Contain the phenomenology of ACDM in both cosmology and solar system tests as a limiting case for the purposes of constraining small deviations
- Suggests

$$f(R) \propto rac{R^n}{R^n + {
m const.}}$$

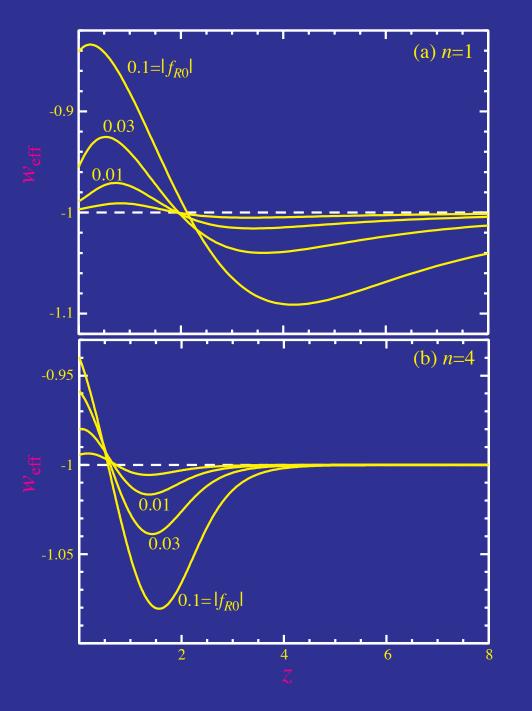
such that modifications vanish as  $R \to 0$  and go to a constant as  $R \to \infty$ 

# Form of f(R) Models

- Transition from zero to constant across an adjustable curvature scale
- Slope *n* controls the rapidity of transition, field amplitude  $f_{R0}$  position
- Background curvature stops declining during acceleration epoch and thereafter behaves like cosmological constant



## **Expansion History**

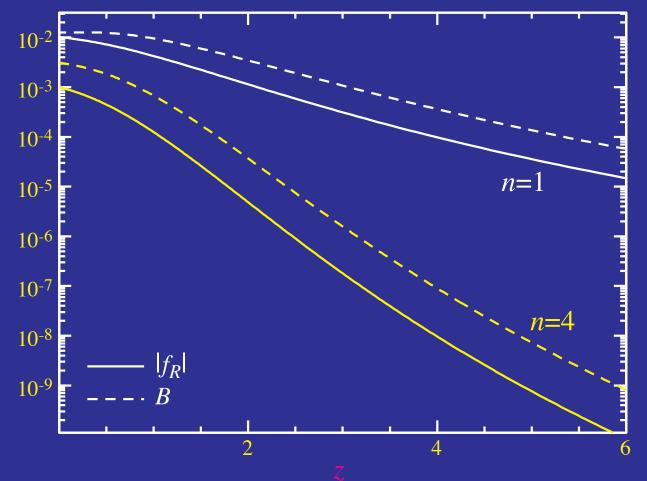


- Effective equation of state  $w_{\text{eff}}$  scales with field amplitude  $f_{R0}$
- Crosses the phantom divide at a redshift that decreases with *n*
- Signature of degrees of freedom
  in dark energy beyond standard
  kinetic and potential energy of
  k-essence or quintessence
  or modified gravity

Hu & Sawicki (2007)

# **Rapid Evolution During Acceleration**

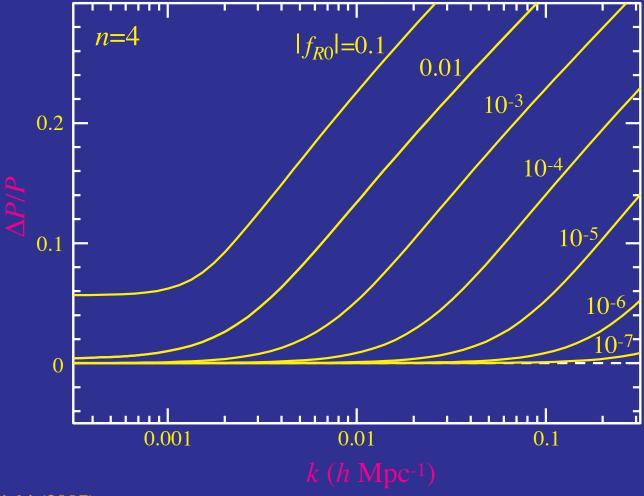
- Cosmological deviations evolve rapidly and are only significant at z<1</li>
- Dark matter halos like the Galaxy formed during the high curvature GR epoch



Hu & Sawicki (2007)

#### **Power Spectrum Deviations**

- Compton wavelength parameter *B* approximately field amplitude  $f_{R0}$
- Deviations persist until  $B \sim 10^{-7} 10^{-6}$



Hu & Sawicki (2007)

f(R) Solar System Tests

• Very naive wrong statement: deviations are suppressed at high curvature, high density = high curvature – not in f(R) gravity

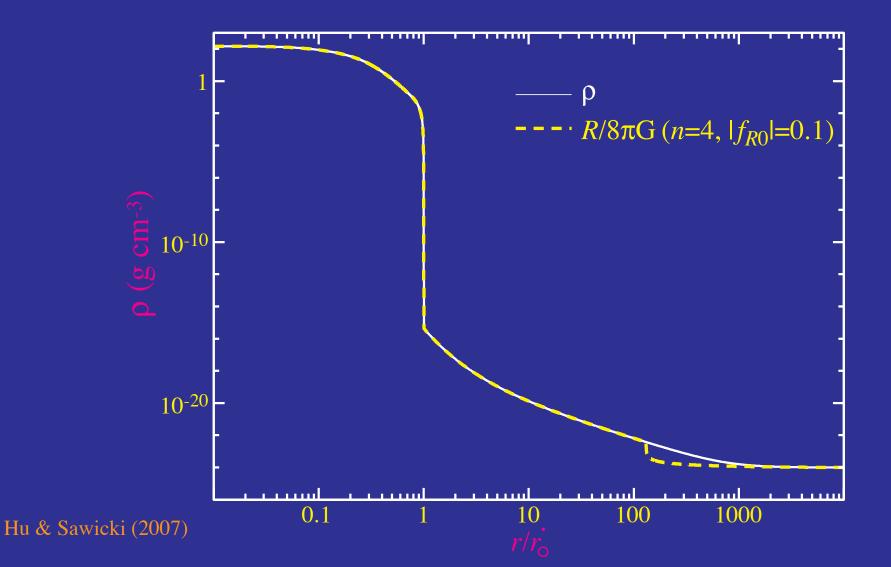
- Very naive wrong statement: deviations are suppressed at high curvature, high density = high curvature not in f(R) gravity
- Naive wrong statement: R = 8πGρ is the minimum of the effective potential for B > 0 and hence deviations are suppressed *field gradients carry kinetic energy cost*

- Very naive wrong statement: deviations are suppressed at high curvature, high density = high curvature not in f(R) gravity
- Naive wrong statement: R = 8πGρ is the minimum of the effective potential for B > 0 and hence deviations are suppressed *field gradients carry kinetic energy cost*
- Less wrong statement: the chameleon mechanism suppresses deviations so long as the curvature scaling is sufficiently steep – making Compton wavelength at high density sufficiently small – gradient price paid somewhere, exterior boundary eventually must hit cosmological values

- Very naive wrong statement: deviations are suppressed at high curvature, high density = high curvature not in f(R) gravity
- Naive wrong statement: R = 8πGρ is the minimum of the effective potential for B > 0 and hence deviations are suppressed *field gradients carry kinetic energy cost*
- Less wrong statement: the chameleon mechanism suppresses deviations so long as the curvature scaling is sufficiently steep – making Compton wavelength at high density sufficiently small – gradient price paid somewhere, exterior boundary eventually must hit cosmological values
- Overaggressive interpretation: difference between required solar system and desired cosmological field values combined with the shallow depth of solar potential rules out all f(R) models galaxy intervenes and it determines constraint

#### Solar Profile

- Density profile of Sun is not a constant density sphere interior photosphere, chromosphere, corona
- Density drops by ~25 orders of magnitude does curvature follow?



# f(R) Chameleon

• Scalar f(R) takes on a chameleon form – mass increases with density at minimum of effective potential (Khoury & Weltman 2004)

$$\nabla^2 f_R \approx \frac{1}{3} (R - 8\pi G \rho)$$

• Solutions either high curvature  $R \approx 8\pi G\rho$  and small field gradient, or low curvature  $R \ll 8\pi G\rho$  and large field gradient  $\nabla^2 f_R \approx -8\pi G\rho/3$  depending on Compton scale vs size of object

# f(R) Chameleon

• Scalar f(R) takes on a chameleon form – mass increases with density at minimum of effective potential (Khoury & Weltman 2004)

$$\nabla^2 f_R \approx \frac{1}{3} (R - 8\pi G \rho)$$

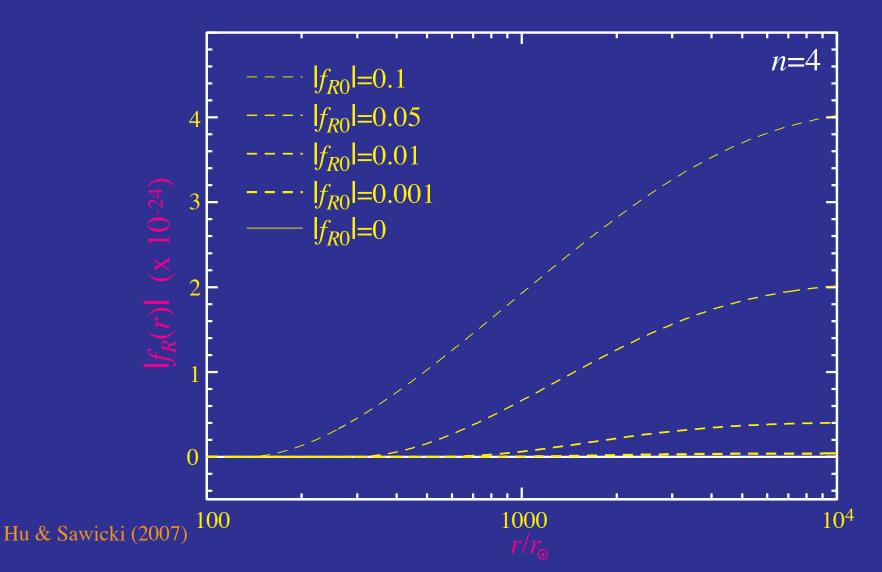
- Solutions either high curvature  $R \approx 8\pi G\rho$  and small field gradient, or low curvature  $R \ll 8\pi G\rho$  and large field gradient  $\nabla^2 f_R \approx -8\pi G\rho/3$  depending on Compton scale vs size of object
- Low curvature solution places a maximum for change in the field that is related to the gravitational potential  $\Phi$

$$\Delta f_R \le \frac{2}{3} \Phi \,,$$

• If required  $|\Delta f_R| \ll \Phi$  the interior must be at high curvature to suppress the changes and hence the source  $R - 8\pi G\rho \approx 0$  comes only from a thin shell of mass

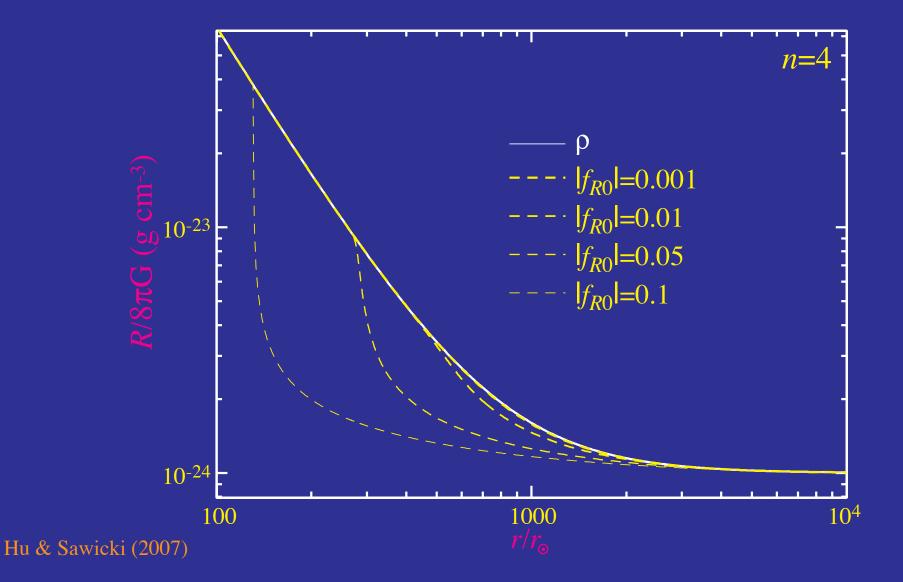
### Field Solution

- Field solution smoothly relaxes from exterior value to high curvature interior value  $f_R \sim 0$ , minimizing potential + kinetic
- Juncture is where thin-shell criterion is satisfied  $|\Delta f_R| \sim \Delta \Phi$



#### Solar Curvature

- Curvature drops suddenly as field moves slightly from zero
- Enters into low curvature regime where  $R < 8\pi G\rho$



# f(R) Chameleon

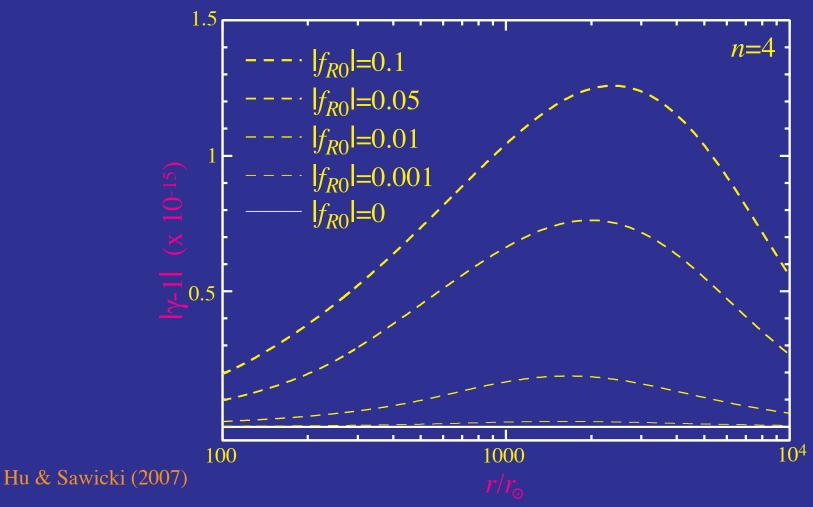
- The field f<sub>R</sub> does not then sit at the potential minimum everywhere but instead minimizes the cost of potential and kinetic gradient energy
- A solution for f<sub>R</sub> is a solution for R and the metric is fixed to be consistent with the curvature

$$\gamma - 1 \approx \frac{|\Delta f_R(r)|}{\Phi(r)}$$

- Constraints on  $|\gamma 1|$  place constraints on the change in the field amplitude from the interior of the sun to the exterior of the solar system
- A second transition occurs from the field changes from in the galaxy to cosmology

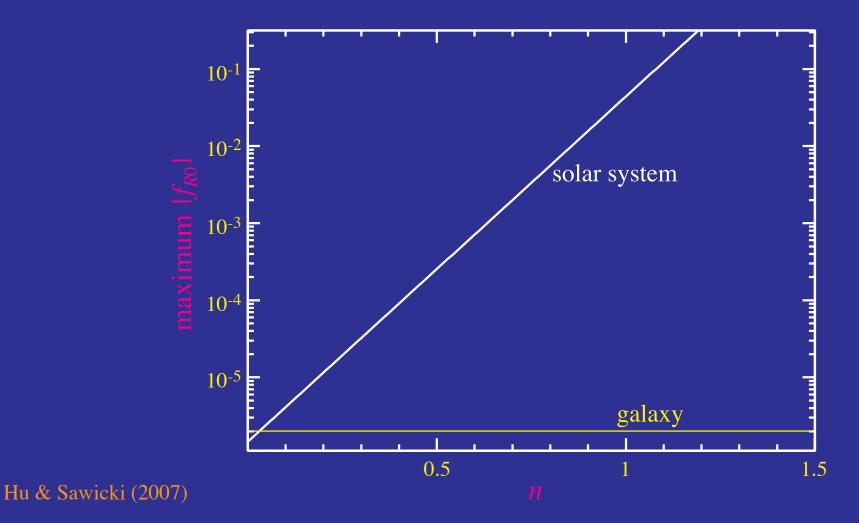
### Solar System Constraint

- Cassini constraint on PPN |γ-1|<2.3x10-5
- Easily satisfied if galactic field is at potential minimum  $|f_{Rg}| < 4.9 \times 10^{-11}$
- Allows even order unity cosmological fields



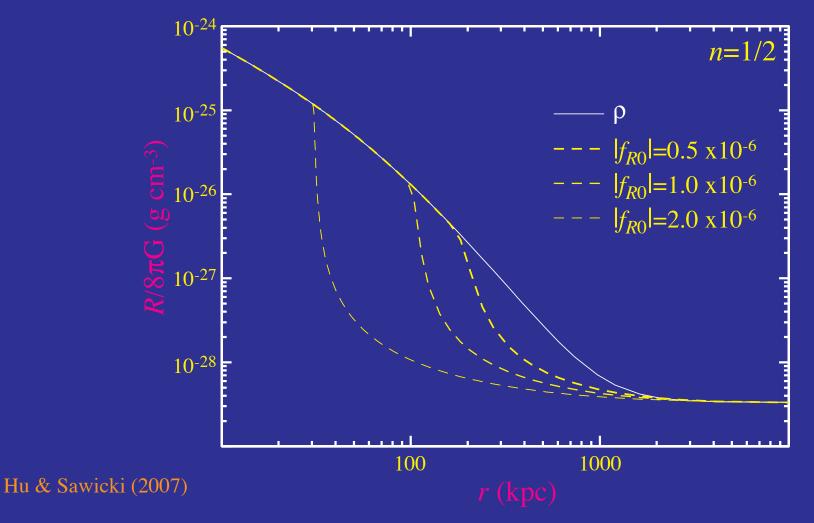
### Solar System Constraint

- Solar system constraint on cosmological field weakens as *n* increases
- Controls the strength of scaling between cosmological and galactic density



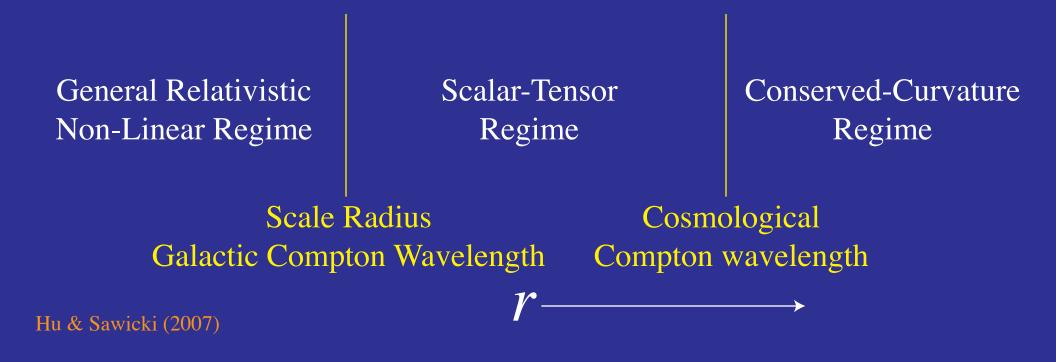
### Galactic Thin Shell

- Galaxy must have a thin shell for interior to remain at high curvature
- Rotation curve  $v/c \sim 10^{-3}$ ,  $\Phi \sim 10^{-6} \sim |\Delta f_R|$  limits cosmological field
- Has the low cosmological curvature propagated through local group and galactic exterior?



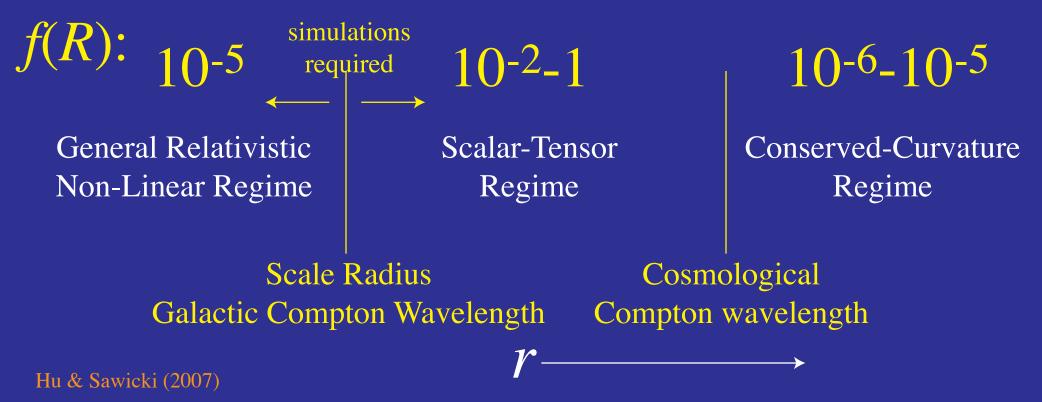
### Three Regimes

- Three regimes defined by  $\gamma = -\Phi/\Psi$
- Same division of scales as DGP braneworld acceleration
- Parameterized Post-Friedmann description of additional scalar gravitational degrees of freedom
- Challenge for theorists: sufficiently strong non-linearity to send  $\gamma=1$  in the solar vicinity and interior of halos



### Three Regimes

- Three regimes defined by  $\gamma = -\Phi/\Psi$
- Same division of scales as DGP braneworld acceleration
- Parameterized Post-Friedmann description of additional scalar gravitational degrees of freedom
- Challenge for theorists: sufficiently strong non-linearity to send  $\gamma=1$  in the solar vicinity and interior of halos



## Summary

- Model building 101: take models where the mass squared is positive and large at high curvature with a small amplitude cosmological field
- Cosmological tests at very different range of curvature than local tests and worthwhile even in absence of viable full theory
- Solar system test alone easy to evade but not in combination with finite galaxy
- Requires cosmological simulations to study structure and evolution of dark matter halos
- Strongest deviations at intermediate scales where Compton wavelength large compared with structures, e.g. linear regime and outskirts of large halos or in small isolated halos

## Summary

- Current constraints from P(k) limited by theory and not observations – lack of knowledge of transition regime to 1-halo non-linear structure
- Requires cosmological simulations
- Strongest current constraint is from galaxy-ISW correlations in linear regime - lack of anti-correlation rules out order unity cosmological effects
- Lessons from f(R) and DGP braneworld examples:

Parameterized Post-Friedmann framework: 3 regimes – conservation dominated, scalar-tensor, non-linear or GR – parameterized by  $\gamma$  and strength of gravity