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Why Study f (R)?
• Cosmic acceleration, like the cosmological constant, can either be

viewed as arising from

Missing, or dark energy, with w ≡ p̄/ρ̄ < −1/3

Modification of gravity on large scales

• Compelling models for either explanation lacking



Why Studyf (R)?
• Cosmic acceleration, like the cosmological constant, can either be

viewed as arising from

Missing, ordark energy, with w ≡ p̄/ρ̄ < −1/3

Modification of gravityon large scales

• Compellingmodelsfor either explanationlacking

• Dark energy parameterized description on small scales:w(z) that
completely definesexpansion history, sound speed defines
structure formation

• Parameterized descriptionof modified gravityacceleration?

• Manyad-hoc attemptsviolateenergy-momentum conservation,
Bianchi identities, gauge invariance; others incomplete

• Study DGPbraneworld accelerationandf(R) modified action;
learn how to generalize



AdD/Cf (R) Correspondence
• Necessary to take squared mass of the scalar positive so that high

curvature is stable – violated in original f(R) = −µ4/R model
(stellar structure Dolgov& Kawasaki 2003, expansion history Amendola et al 2006)

• Growth of structure strongly impacted by Compton wavelength of
scalar even when expansion history and distances unchanged



AdD/Cf (R) Correspondence
• Necessary to take squared mass of the scalar positive so that high

curvature is stable – violated in original f(R) = −µ4/R model
(stellar structure Dolgov& Kawasaki 2003, expansion history Amendola et al 2006)

• Growth of structure strongly impacted by Compton wavelength of
scalar even when expansion history and distances unchanged

• Solar system test: controversy stems from two extreme spherical
cow approximations: sun + cosmological background (Chiba 2003; Erikchek et al

2006), sun + infinite galaxy (f(R) chameleon)

• Precision of solar system (and laboratory) tests largely irrelevant

• Viability of large deviations rests on galactic structure and
evolution

• Small cosmological deviations certainly viable and are not so
small in quasilinear regime

• Lessons for a Parameterized Post-Friedmann framework
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• Solar System Tests
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• Collaborators:

• Hiranya Peiris (Chicago → Cambridge)

• Iggy Sawicki (Chicago → NYU)

• Yong-Seon Song (Chicago → Portsmouth)



f (R) Basics



Cast of f (R) Characters
• R: Ricci scalar or “curvature”

• f(R): modified action (Starobinsky 1980; Carroll et al 2004)

S =

∫
d4x

√
−g
[
R + f(R)

16πG
+ Lm

]



Cast of f (R) Characters
• R: Ricci scalar or “curvature”

• f(R): modified action (Starobinsky 1980; Carroll et al 2004)

S =

∫
d4x

√
−g
[
R + f(R)

16πG
+ Lm

]
• fR ≡ df/dR: additional propagating scalar degree of freedom

(metric variation)

• fRR ≡ d2f/dR2: Compton wavelength of fR squared, inverse
mass squared

• B: Compton wavelength of fR squared in units of the Hubble
length

B ≡ fRR

1 + fR

R′ H

H ′

• ′ ≡ d/d ln a: scale factor as time coordinate



Modified Einstein Equation
• In theJordan frame, gravity becomes 4th order but matter remains

minimally coupledand separatelyconserved

Gαβ + fRRαβ −
(

f

2
−�fR

)
gαβ −∇α∇βfR = 8πGTαβ

• Tracecan be interpreted as ascalar field equationfor fR with a
density-dependent effective potential(p = 0)

3�fR + fRR− 2f = R− 8πGρ



Modified Einstein Equation
• In the Jordan frame, gravity becomes 4th order but matter remains

minimally coupled and separately conserved

Gαβ + fRRαβ −
(

f

2
−�fR

)
gαβ −∇α∇βfR = 8πGTαβ

• Trace can be interpreted as a scalar field equation for fR with a
density-dependent effective potential (p = 0)

3�fR + fRR− 2f = R− 8πGρ

• For small deviations, |fR| � 1 and |f/R| � 1,

�fR ≈
1

3
(R− 8πGρ)

the field is sourced by the deviation from GR relation between
curvature and density and has a mass

m2
fR
≈ 1

3

∂R

∂fR

=
1

3fRR



Effective Potential
•	 Scalar fR rolls in an effective potential that depends on density
•	 At high density, extrema is at GR R=8πGρ
•	 Minimum for B>0, pinning field to |fR| <<1 , maximum for B<0

Sawicki & Hu (2007)
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f (R) Expansion History



Modified Friedmann Equation
• Expansion history parameterization: Friedmann equation becomes

H2 − fR(HH ′ +H2) +
1

6
f +H2fRRR

′ =
8πGρ

3
• Reverse engineering f(R) from the expansion history: for any

desired H , solve a 2nd order diffeq to find f(R)

• Allows a family of f(R) models, parameterized in terms of the
Compton wavelength parameter B



Modified Friedmann Equation
• Expansion history parameterization: Friedmann equation becomes

H2 − fR(HH ′ +H2) +
1

6
f +H2fRRR

′ =
8πGρ

3
• Reverse engineering f(R) from the expansion history: for any

desired H , solve a 2nd order diffeq to find f(R)

• Allows a family of f(R) models, parameterized in terms of the
Compton wavelength parameter B

• Formally includes models where B < 0, such as f(R) = −µ4/R,
leading to confusion as to whether such models provide viable
expansion histories

• Answer: no these have short-time scale tachyonic instabilities at
high curvature and limit as B → 0 from below is not GR

• B > 0 family has very different implications for structure
formation but with identical distance-redshift relations



Hu, Huterer & Smith (2006)

Expansion History Family of f(R)
•	 Each expansion history, matched by dark energy model [w(z),ΩDE,H0]
	 corresponds to a family of f(R) models due to its 4th order nature
•	 Parameterized by B ∝  fRR = d2f/dR2 evaluated at z=0 

Song, Hu & Sawicki  (2006)
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Expansion History Family of f(R)
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Expansion History Family of f(R)
•	 Each expansion history, matched by dark energy model [w(z),ΩDE,H0]
	 corresponds to a family of f(R) models due to its 4th order nature
•	 Parameterized by B ∝  fRR = d2f/dR2 evaluated at z=0 
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Instability at High Curvature
•	 Tachyonic instability for negative mass squared B<0 makes high
	 curvature regime increasingly unstable: high density ≠ high curvature
•	 Linear metric perturbations immediately drop the expansion 
	 history to low curvature solution 

Sawicki & Hu (2007)
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f (R) Linear Theory



PPF Description
• On superhorizon scales, energy momentum conservation and

expansion history constrain the evolution of metric fluctuations
(Bertschinger 2006)

• For adiabatic perturbations in a flat universe, conservation of
comoving curvature applies ζ ′ = 0 where ′ ≡ d/d ln a (Bardeen 1980)



Curvature Conservation
• On superhorizon scales, energy momentum conservation and

expansion history constrain the evolution of metric fluctuations
(Bertschinger 2006)

• For adiabatic perturbations in a flat universe, conservation of
comoving curvature applies ζ ′ = 0 where ′ ≡ d/d ln a (Bardeen 1980)

• Gauge transformation to Newtonian gauge

ds2 = −(1 + 2Ψ)dt2 + a2(1 + 2Φ)dx2

yields (Hu & Eisenstein 1999)

Φ′′ −Ψ′ − H ′′

H ′ Φ
′ −
(
H ′

H
− H ′′

H ′

)
Ψ = 0

• Modified gravity theory supplies the closure relationship
Φ = −γ(ln a)Ψ between and expansion history H = ȧ/a supplies
rest.



Linear Theory for f (R)
• In f(R) model, “superhorizon” behavior persists until Compton

wavelength smaller than fluctuation wavelength B1/2(k/aH) < 1

• Once Compton wavelength becomes larger than fluctuation

B1/2(k/aH) > 1

perturbations are in scalar-tensor regime described by γ = 1/2.



Linear Theory for f (R)
• In f(R) model, “superhorizon” behavior persists until Compton

wavelength smaller than fluctuation wavelength B1/2(k/aH) < 1

• Once Compton wavelength becomes larger than fluctuation

B1/2(k/aH) > 1

perturbations are in scalar-tensor regime described by γ = 1/2.

• Small scale density growth enhanced and

8πGρ > R

low curvature regime with order unity deviations from GR

• Transitions in the non-linear regime where the Compton
wavelength can shrink via chameleon mechanism

• Given kNL/aH � 1, even very small fR have scalar-tensor regime



Deviation Parameter
• Express the 4th order nature of equations as a deviation parameter

Φ′′ −Ψ′ − H ′′

H ′ Φ
′ −
(
H ′

H
− H ′′

H ′

)
Ψ =

(
k

aH

)2

Bε

• Einstein equation become a second order equation for ε

f(R) = −M2+2n/Rn



Deviation Parameter
• Express the 4th order nature of equations as a deviation parameter

Φ′′ −Ψ′ − H ′′

H ′ Φ
′ −
(
H ′

H
− H ′′

H ′

)
Ψ =

(
k

aH

)2

Bε

• Einstein equation become a second order equation for ε

• In high redshift, high curvature R limit this is

ε′′ +

(
7

2
+ 4

B′

B

)
ε′ +

2

B
ε =

1

B
× metric sources

B =
fRR

1 + fR

R′ H

H ′

• R→∞, B → 0 and for B < 0 short time-scale tachyonic
instability appears making previous models not cosmologically
viable

f(R) = −M2+2n/Rn



Hu, Huterer & Smith (2006)

Potential Growth
•	 On the stable B>0 branch, potential evolution reverses from decay
	 to growth as wavelength becomes smaller than Compton scale
•	 Quasistatic equilibrium reached in linear theory with γ=−Φ/Ψ=1/2
	 until non-linear effects restore γ=1

Song, Hu & Sawicki  (2006)
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Integrated Sachs-Wolfe Effect
•	 CMB photons transit gravitational potentials of large-scale structure
•	 If potential decays during transit, gravitational blueshift of infall
	 not cancelled by gravitational redshift of exit
•	 Spatial curvature of gravitational potential leads to additional
	 effect  ∆T/T = −∆(Φ−Ψ)
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•	 Spatial curvature of gravitational potential leads to additional
	 effect  ∆T/T = −∆(Φ−Ψ)



Hu, Huterer & Smith (2006)

ISW Quadrupole
•	 Reduction of potential decay can eliminate the ISW effect at the
	 quadrupole for B0~3/2
•	 In conjunction with a change in the initial power spectrum can
	 also bring the total quadrupole closer in ensemble average to
	 the observed quadrupole

Song, Hu & Sawicki  (2006)
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ISW Quadrupole
•	 Reduction of large angle anisotropy for B0~1 for same expansion 
	 history and distances as ΛCDM
•	 Well-tested small scale anisotropy unchanged 
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ISW-Galaxy Correlation
•	 Decaying potential: galaxy positions correlated with CMB

•	 Growing potential: galaxy positions anticorrelated with CMB

•	 Observations  indicate correlation 



Hu, Huterer & Smith (2006)

Galaxy-ISW Anti-Correlation
•	 Large Compton wavelength B1/2 creates potential growth which can
	 anti-correlate galaxies and the CMB
•	 In tension with detections of positive correlations across a range
	 of redshifts

Song, Peiris & Hu (2007)
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Linear Power Spectrum
•	 Linear real space power spectrum enhanced on small scales
•	 Degeneracy with galaxy bias and lack of non-linear predictions
	 leave constraints from shape of power spectrum 
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Redshift Space Distortion
•	 Relationship between velocity and density field given by continuity
	 with modified growth rate
•	 Redshift space power spectrum further distorted by Kaiser effect
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Hu, Huterer & Smith (2006)

Power Spectrum Data
•	 Linear power spectrum enhancement fits SDSS LRG data better
	 than ΛCDM but

Song, Peiris & Hu (2007)
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Power Spectrum Data
•	 Linear power spectrum enhancement fits SDSS LRG data better
	 than ΛCDM but
•	 Shape expected to be altered by non-linearities 

Song, Peiris & Hu (2007)
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Hu, Huterer & Smith (2006)

Current Constraints
•	 Likelihood analysis of SDSS LRG P(k), WMAP Cl, SNIa dL

•	 Degeneracy between non-linearity and f(R) enhancement allows
	 whole range of Compton wavelengths from infinitesimal to horizon
	 sized
•	 Requires cosmological simulation of f(R) to predict non-linearities

Song, Peiris & Hu (2007)
Compton wavelength squared B0

no
nl

in
ea

rit
y 

Q
N

L

1110-110-210-310-4
0

20

40

60

80



f (R) Models as
A Complete Theory of Gravity?



Engineering f (R) Models
• Mimic ΛCDM at high redshift

• Accelerate the expansion at low redshift without a cosmological
constant

• Sufficient freedom to vary expansion history within
observationally allowed range

• Contain the phenomenology of ΛCDM in both cosmology and
solar system tests as a limiting case for the purposes of
constraining small deviations

• Suggests

f(R) ∝ Rn

Rn + const.

such that modifications vanish as R→ 0 and go to a constant as
R→∞



Form of f(R) Models 
•	 Transition from zero to constant across an adjustable curvature scale
•	 Slope n controls the rapidity of transition, field amplitude fR0 position
•	 Background curvature stops declining during acceleration epoch
	 and thereafter behaves like cosmological constant

Hu & Sawicki (2007) R/m2
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Expansion History
•	 Effective equation of state
	 weff scales with field amplitude fR0

•	 Crosses the phantom divide at
	 a redshift that decreases with n

•	 Signature of degrees of freedom
	 in dark energy beyond standard
	 kinetic and potential energy of
	 k-essence or quintessence
	 or modified gravity
	

Hu & Sawicki (2007)
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Rapid Evolution During Acceleration
•	 Cosmological deviations evolve rapidly and are only significant
	 at z<1
•	 Dark matter halos like the Galaxy formed during the high curvature
	 GR epoch
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Power Spectrum Deviations
•	 Compton wavelength parameter B approximately field amplitude fR0

•	 Deviations persist until B~10-7-10-6

Hu & Sawicki (2007)
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f (R) Solar System Tests
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curvature, high density = high curvature – not in f(R) gravity
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making Compton wavelength at high density sufficiently small –
gradient price paid somewhere, exterior boundary eventually must
hit cosmological values



Solar System Tests
• Very naive wrong statement: deviations are suppressed at high

curvature, high density = high curvature – not in f(R) gravity

• Naive wrong statement: R = 8πGρ is the minimum of the
effective potential for B > 0 and hence deviations are suppressed
– field gradients carry kinetic energy cost

• Less wrong statement: the chameleon mechanism suppresses
deviations so long as the curvature scaling is sufficiently steep –
making Compton wavelength at high density sufficiently small –
gradient price paid somewhere, exterior boundary eventually must
hit cosmological values

• Overaggressive interpretation: difference between required solar
system and desired cosmological field values combined with the
shallow depth of solar potential rules out all f(R) models – galaxy
intervenes and it determines constraint



Solar Profile
•	 Density profile of Sun is not a constant density sphere - interior
	 photosphere, chromosphere, corona
•	 Density drops by ~25 orders of magnitude - does curvature follow?
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f (R) Chameleon
• Scalar f(R) takes on a chameleon form – mass increases with

density at minimum of effective potential (Khoury & Weltman 2004)

∇2fR ≈
1

3
(R− 8πGρ)

• Solutions either high curvature R ≈ 8πGρ and small field
gradient, or low curvature R� 8πGρ and large field gradient
∇2fR ≈ −8πGρ/3 depending on Compton scale vs size of object



f (R) Chameleon
• Scalar f(R) takes on a chameleon form – mass increases with

density at minimum of effective potential (Khoury & Weltman 2004)

∇2fR ≈
1

3
(R− 8πGρ)

• Solutions either high curvature R ≈ 8πGρ and small field
gradient, or low curvature R� 8πGρ and large field gradient
∇2fR ≈ −8πGρ/3 depending on Compton scale vs size of object

• Low curvature solution places a maximum for change in the field
that is related to the gravitational potential Φ

∆fR ≤
2

3
Φ ,

• If required |∆fR| � Φ the interior must be at high curvature to
suppress the changes and hence the source R− 8πGρ ≈ 0 comes
only from a thin shell of mass



Field Solution
•	 Field solution smoothly relaxes from exterior value
	 to high curvature interior value fR~0, minimizing potential + kinetic
•	 Juncture is where thin-shell criterion is satisfied |∆fR|  ~ ∆Φ

Hu & Sawicki (2007) r/r
100 1000 104

|f R
(r

)| 
 (x

 1
0-

24
)

0

1

2

3

4
|fR0|=0.1
|fR0|=0.05
|fR0|=0.01
|fR0|=0.001
|fR0|=0

n=4



Solar Curvature
•	 Curvature drops suddenly as field moves slightly from zero
•	 Enters into low curvature regime where R<8πGρ 
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f (R) Chameleon
• The field fR does not then sit at the potential minimum everywhere

but instead minimizes the cost of potential and kinetic gradient
energy

• A solution for fR is a solution for R and the metric is fixed to be
consistent with the curvature

|γ − 1| ≈ |∆fR(r)|
Φ(r)

• Constraints on |γ − 1| place constraints on the change in the field
amplitude from the interior of the sun to the exterior of the solar
system

• A second transition occurs from the field changes from in the
galaxy to cosmology



Solar System Constraint
•	 Cassini constraint on PPN |γ-1|<2.3x10-5

•	 Easily satisfied if galactic field is at potential minimum
	 |fRg|<4.9x10-11

•	 Allows even order unity cosmological fields
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Solar System Constraint
•	 Solar system constraint on cosmological field weakens as n 
	 increases
•	 Controls the strength of scaling between cosmological and
	 galactic density 
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Galactic Thin Shell
•	 Galaxy must have a thin shell for interior to remain at high curvature
•	 Rotation curve v/c~10-3, Φ~10-6~|∆fR| limits cosmological field   
•	 Has the low cosmological curvature propagated through local group
	 and galactic exterior?
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Three Regimes
•	 Three regimes defined by γ=−Φ/Ψ 

•	 Same division of scales as DGP braneworld acceleration

•	 Parameterized Post-Friedmann description of additional scalar
	 gravitational degrees of freedom

•	 Challenge for theorists: sufficiently strong non-linearity
	 to send γ=1 in the solar vicinity and interior of halos

Hu & Sawicki (2007)
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Three Regimes
•	 Three regimes defined by γ=−Φ/Ψ 

•	 Same division of scales as DGP braneworld acceleration

•	 Parameterized Post-Friedmann description of additional scalar
	 gravitational degrees of freedom

•	 Challenge for theorists: sufficiently strong non-linearity
	 to send γ=1 in the solar vicinity and interior of halos
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Summary
• Model building 101: take models where the mass squared is

positive and large at high curvature with a small amplitude
cosmological field

• Cosmological tests at very different range of curvature than local
tests and worthwhile even in absence of viable full theory

• Solar system test alone easy to evade but not in combination with
finite galaxy

• Requires cosmological simulations to study structure and evolution
of dark matter halos

• Strongest deviations at intermediate scales where Compton
wavelength large compared with structures, e.g. linear regime and
outskirts of large halos or in small isolated halos



Summary
• Current constraints from P (k) limited by theory and not

observations – lack of knowledge of transition regime to 1-halo
non-linear structure

• Requires cosmological simulations

• Strongest current constraint is from galaxy-ISW correlations in
linear regime - lack of anti-correlation rules out order unity
cosmological effects

• Lessons from f(R) and DGP braneworld examples:

Parameterized Post-Friedmann framework: 3 regimes –
conservation dominated, scalar-tensor, non-linear or GR –
parameterized by γ and strength of gravity




