An introduction to
the cosmic microwave background

W. Hu
Cosmological Background

"Big Bang"
- Universe Began Hot and Dense
- Expands and Cools

"Gravitational Instability"
- Galaxies ("Structure") from the self-attraction of primordial fluctuations

W. Hu
Cosmological Expansion

Recession
Velocity

Expansion
Redshift

W. Hu
Thermal History
CMB Properties

- 3 degrees above absolute zero (-270°C)
- mm-cm wavelength (1-10% microwave oven)
- 400 photons/cm³ (10 trillion photons/sec/cm²)
- Few percent of TV "snow"
Large–Angle Anisotropies

Actual Temperature Data Really Isotropic!

W. Hu
Large–Angle Anisotropies

dipole anisotropy
1 part in 1000

W. Hu
Large–Angle Anisotropies

10°–90° anisotropy
1 part in 100000

W. Hu
Anisotropies: A Time Machine

• Reversing time:
A Brief Thermal History

- CMB photons hotter at high redshift z
- At $z \sim 1000$, $T \sim 3000$K: photons ionize hydrogen
Very Brief History

Nucleo-Synthesis

3 min 3\times 10^5 \text{ yrs}

CMB

3\times 10^9 \text{ yrs}

Galaxy Formation

W. Hu
Gravitational Instability
Gravitational Instability

"Wrinkles"
or Hills & Valleys

Accumulation in Valleys
Inflation to Structure Formation

Quantum Fluctuations

W. Hu
Inflation to Structure Formation

<10^{-35}s

Exponential Stretch

Rapid Expansion

Inflation

W. Hu
Inflation to Structure Formation

<10^{-35}s

Exponential Stretch

Rapid Expansion

Inflation

Gravitational Instability
Inflation to Structure Formation

- Inflation: $<10^{-35}$s
- Present: 10^{10} yrs
- Exponential Stretch
- Gravitational Instability
- Galaxies
- Large Scale Structure

W. Hu
Inflation to Structure Formation

Inflation

<10^{-35}s

3 \times 10^5 \text{ yrs}

Gravitational Instability

Large Scale Structure

CMB Observer

Galaxies

Exponential Stretch

Rapid Expansion

Horizon

Horizon Crossing

Last Scattering

Present

10^{10} \text{ yrs}

W. Hu
Temperature Maps
Large–Angle Anisotropies

10°–90° anisotropy
seeing beyond the horizon

W. Hu
Understanding Maps

COBE's fuzzy vision

W. Hu
Understanding Maps

COBE's fuzzy vision

W. Hu
Understanding Maps

COBE's imperfect reception
Understanding Maps

Our best guess for the original map

W. Hu
Small–Angle Anisotropies

<1° anisotropy seeing inside the horizon

W. Hu
New DASI Data

[Image: A grid of circular maps representing cosmic microwave background (CMB) radiation data. The maps show variations in temperature with a color scale ranging from -100μK to 100μK. The maps are spread across a 3.5° x 3.5° area.]
MAP Satellite has Launched!
What MAP Should See

Simulated Data

http://map.gsfc.nasa.gov
Ringing in the New Cosmology
Projected MAP Errors

ΔT (µK) vs. l (multipole) and θ (degrees)

W. Hu – Feb. 1998
Thermal History II
Small–Angle Anisotropies

Horizon Crossing

W. Hu
Small–Angle Anisotropies

3x10^5 yrs 10^{10} yrs

Horizon

Last Scattering Present

W. Hu
Small–Angle Anisotropies

3x10^5 yrs

10^{10} yrs

CMB Observer

Horizon

Last Scattering

Present

W. Hu
A Brief Thermal History

- Rapid **scattering** couples **photons** and **baryons**
- Plasma behaves as **perfect fluid**
Acoustic Oscillations
Gravitational Ringing

• Potential wells = inflationary seeds of structure

• Fluid falls into wells, pressure resists: acoustic oscillations
Seeing Sound

- Oscillations *frozen at recombination*
- Compression=*hot spots*, Rarefaction=*cold spots*
Harmonic Modes

• **Frequency proportional to wavenumber**: \(\omega = kc_s \)

• **Twice the wavenumber = twice the frequency of oscillation**
Angular Peaks
Why Anisotropies?

- Spatial temperature perturbation oscillating in time and frozen in at recombination
Peaks in Angular Power

• Standing wave acoustic oscillations in local temperature
Peaks in Angular Power

- Oscillations frozen in at recombination
- Prompt release of photons
Peaks in Angular Power

• Photons arriving at observer show an anisotropy whose angular scale decreases with time

• Temperature inhomogeneity \rightarrow anisotropy
Peaks in Angular Power

- The Anisotropy Formation Process
Acoustic Landscape
The First Peak
Curvature and Fate of Universe

Negative Curvature: Expand Forever
Positive Curvature: Big Crunch
Curvature in the Power Spectrum

- Features scale with angular diameter distance
- Angular location of the first peak
The Second Peak
Baryon & Inertia

• Baryons add inertia to the fluid

• Equivalent to adding mass on a spring

• Same initial conditions

• Same null in fluctuations

• Unequal amplitudes of extrema
Baryons in the Power Spectrum
Second Peak Detected
Score Card
Higher Peaks
Radiation and Dark Matter

- **Radiation domination:**
 potential wells created by CMB itself
- **Pressure support** \Rightarrow potential decay \Rightarrow driving
- **Heights measures** when dark matter dominates
Dark Matter in the Power Spectrum
Third Peak Constrained
Microwave Background Past

Validation of

• **Big Bang**
 (Hot, Expanding Univ.)
 Thermal Spectrum
 Temp. at early times

• **Gravitational Instability**
 (wrinkles → galaxies)
 Amplitude and Spectrum of Anisotropies

W. Hu
Microwave Background Present

How Microwaves Ring

• **Origin and Evolution of Structure** (galaxies...)

 Music of Inflation?

• **Global Properties of the Universe**

 Curvature, Content (dark energy, dark matter baryons)

W. Hu
Microwave Background

Future

How Inflation Works

- Particle physics of the Early Universe
 Polarization

Understanding the Dark Side

- Evolution of Structure and Dark Matter and Dark Energy
 Secondary Anisotropies
Index

• Properties
• Thermal History
• Gravitational Instability
• Temperature Maps
• Acoustic Oscillations
• Peaks
• First Peak
• Second Peak

Outtakess
http://background.uchicago.edu