Self Calibration of Cluster Counts:
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Scattered Forecasts

Scatter, or a distribution in the observable mass, causes uncertainty
[ in dark energy constraints at high z

Related work:

O MHolder et al (2000); Battye & Weller (2003): bias from scatter
O Olevine et al (2002): marginalization of constant M-T bias & scatter

This work: O
O dLima & Hu (2005):

0 00 abstract/general analysis of the impact of scatter and bias in the
O 00 distribution

O OO0 prospects for self-calibration of a simple, Gaussian,
[0 00 mass independent distribution that evolves

O 00 O shape: Hu (2003); power: Majumdar & Mohr (2003)
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Observable Mass Distribution

Gaussian scatter and bias of a mass estimator
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Degeneracy

Uncertainties in bias and scatter cause degeneracies with
dark energy
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Selection Bias

Exponential tail of mass function
Threshold cut in the observable mass

dn
PmdInM

0.02-

Mobs:1014.2

0.01

1014§ 1015

|1014 | | - |1015



Selection Bias

Clusters upscattered into threshold
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Selection Bias

Clusters upscattered into threshold
Out number downscattered across threshold
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Selection Bias

Bias proportional to variance of distribution and mass function slope
Introduces trend in redshift even if scatter is constant
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Relative Importance of Scatter

In the small scatter limit, relative importance of variance vs. bias
[1 proportional to local power law slope of mass function

Increases with increasing mass or redshift
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Sensitivity to Uncertainties

A 25% bias would produce a ~100% change in high-z
cluster counts

A 25% scatter a ~50% change - but scales as variance
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Fully Calibrated

Given a completely known observable-mass distribution dark energy
constraints are quite tight (4000 sq deg, z<2)
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Un-Calibrated

Marginalizing scatter (linear z evolution) and bias (power law
evolution) destroys all dark energy information




Self-Calibration with Clustering

Clustering bias as a function of mass is predicted in a cosmology
Angular clustering of clusters or (co)variance of counts provides
mass bias calibration but not jointly with scatter
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Self-Calibration with Clustering

Arbitrary evolution of bias and scatter in 20 bins of Az=0.1




Self-Calibration with Clustering

Power law evolution of bias and arbitrary evolution of scatter in
20 bins of Az=0.1




Self-Calibration with Clustering

Power law evolution of bias and cubic evolution of scatter in z




Observable Mass BiIns

Exploit knowledge by breaking sample into observable mass bins
Demand consistent count ratio to solve for bias and scatter
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Self-Calibration with Binning

Arbitrary evolution of bias and scatter in 20 bins of Az=0.1




Self-Calibration with Binning

Power law evolution of bias and arbitrary evolution of scatter in
20 bins of Az=0.1
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Self-Calibration with Binning

Power law evolution of bias and cubic evolution of scatter in z
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Joint Self-Calibration

Both counts and their variance as a function of binned observable
Many observables allows for a joint solution of a mass independent
bias and scatter with cosmology
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Joint Self Calibration

Arbitrary evolution of bias and scatter in 20 bins of Az=0.1
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Joint Self Calibration

Power law evolution of bias and arbitrary evolution of scatter in
20 bins of Az=0.1
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Joint Self Calibration

Power law evolution of bias and cubic evolution of scatter in z

/7

-0.8 8

0.7 0.72 0.74



Prior Knowledge of Scatter

Priors on the 20 independent scatter parameters of 10% each

Or 2% on the evolution of scatter to z~1 improves constraints

x2 beyond self-calibration
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Forecasts: Scatters with Partial Clearing

Unknown scatter at the 10% level at z>1 will significantly degrade
the cosmological utility of such clusters

Self-calibration from the power spectrum or clustering of clusters
alone is insufficient to solve internally for both a bias and a scatter

Self-calibration from the shape of the counts in the observable
can jointly provide for calibration with a sufficiently deep sample

External calibration will assist self calibration at the level of
2-10% scatter uncertainties at z~1
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Caveats:
trends In the distribution versus the mass must be known and
taken out
non-Gaussian tails in the distribution must be understood

self calibration « self consistency
divide up data in as many ways as possible, check assumptions!



