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Massive Gravity
• A generic theory of massive gravity propagates 6 polarization
 states: 5 for a massive spin-2 and 1ghost
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Massive Gravity
• A generic theory of massive gravity propagates 6 polarization
 states: 5 for a massive spin-2 and 1ghost
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Ghost free linearized theory



vDVZ Discontinuity
• Scalar mode coupled to matter changes space curvature
 per unit dynamical mass violating solar system lensing 
 even as m     0

C

GR
Fierz-
Pauli

van Dam & Veltman (1970)
Zakharov (1970)



Vainshtein Mechanism
• Around massive sources, nonlinear interactions suppress
 scalar force

C

GR, Vainshtein 
Fierz-
Pauli

Vainshtein (1972)



Boulware-Deser Ghost
• But a generic nonlinear completion restores the 6th
 ghostly polarization
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Boulware & Deser (1972)
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Massive Gravity
• de Rham, Gabadadze, Tolley (dRGT 2011) provided nonlinear

completion to Fierz-Pauli that evades the Boulware-Deser ghost

S =
Mp

2

∫
d4X
√
−g

[
R− m2

2

4∑
n=0

βn
n!
Fn(
√
g−1η)

]
where η is a fiducial metric, taken to be non-dynamical flat

ds2g = gabdX
adXb, ds2f = ηabdX

adXb = −dT 2 + dX2
i

Presence of fiducial metric breaks diffeomorphism invariance: a
preferred unitary gauge where metric is standard Minkowski

Diffeomorphism invariance can be restored by transforming from
these preferred coordinates

g−1η → gαµ∂µX
a∂νX

bηab = gαµfµν
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• Presence of fiducial metric breaks diffeomorphism invariance: a
preferred unitary gauge where metric is standard Minkowski

• Diffeomorphism invariance can be restored by transforming from
these preferred coordinates

g−1η → gαµ∂µX
a∂νX

bηab = gαµfµν

• Jacobian transformation represents fiducial metric covariantly fµν
• Unitary gauge coordinates become 4 scalar Stückelberg fields



Spacetime Evolves from Minkowski
• Using Minkowski coordinates to chart the expanding
 spacetime

FRW SpaceMinkowski Space

a(t)



Spacetime Evolves from Minkowski
• Using Minkowski coordinates to chart the expanding
 spacetime

FRW SpaceMinkowski Space

a(t)
In spatially flat Minkowski 
coordinates the spacetime 
metric is superficially
inhomogeneous but isotropic
(H2R2 terms; static/physical 
vs comoving coordinates)
 



Homogeneity and Isotropy
• Coordinate problems take on geometric significance with
 two metrics
• Spatially flat slicing of Minkowski incompatible with 
 homogeneous and isotropic FRW slicing of spacetime
 “no spatially flat FRW cosmologies” d’Amico et al (2011)

 = no single coordinates where both the spacetime and 
 fiducial metric are simultaneously homogeneous and isotropic

• Open slicing of Minkowski (Milne) compatible with 
 homogeneous and isotropic slicing of an open FRW spacetime
 Gumrukcuoglu, Lin, Mukohyama (2011)

 ...but these are generally are generally unstable 
 Gumrukcuoglu, Lin, Mukohyama (2011); DeFelice, Gumrukcuoglu, Mukohyama (2012)

• Note: this does not preclude homogeneous and isotropic FRW
 spacetimes of any curvature or address their stability 



Massive Multiverse

de Rham (2015)



Massive Multiverse

de Rham (2015)

explore issues with 2 metrics
relatively simply; common to 
many generalizations

cosm
ology rover



Self-Accelerating Solutions
• Allow the Minkowski coordinates T, R or Stuckelberg field
 to be inhomogeneous in isotropic FRW coordinates 

FRW SpaceMinkowski Space

a(t)

R=x0a(t)r

x0 constant
determined by 
MG Parameters 



Self-Accelerating Solutions
• Allow the Minkowski coordinates T, R or Stuckelberg field
 to be inhomogeneous in isotropic FRW coordinates

FRW SpaceMinkowski Space

a(t)

R=x0a(t)r

x0 constant
determined by 
MG Parameters 

All such constructions 
lead to an effective 
stress energy of a 
cosmological constant
leaving remaining freedom
in choosing Minkowski 
time T(t,r)



Self-Accelerating Solutions
• Allow the Minkowski coordinates T, R or Stuckelberg field
 to be inhomogeneous in isotropic FRW coordinates 

FRW SpaceMinkowski Space

a(t)

R=x0a(t)r

x0 constant
determined by 
MG Parameters 

applies to any isotropic 
distribution of matter and 
unifies the description of
all self-accelerating solutions
Gratia, Hu, Wyman (2012)

generalizes Koyama, Niz, Tasinato (2011);
d’Amico et al (2012); Gumrukcouglu 
et al (2012); Berezhiani et al (2011);... 



Determinant Singularities
• Minkowski coordinates may not uniquely chart the whole
 spacetime - Jacobian between Minkowski and spacetime
 coordinates singular
• Fiducial metric has a determinant singularity where the
 spacetime metric does not or vice versa - ratio of determinants
 is a diffeomorphism invariant spacetime scalar
• Example: evolution to a det singularity

t

a(
t)

T(t)~a(t) [open GLM11]

double
valued

Gratia, Hu, Wyman (2013)



Determinant Singularities
• No curvature singularity in the spacetime, normal matter
 sees only spacetime metric 
• But requires ad hoc rules for smoothly joining charts for the
 massive gravity degrees of freedom; evolves into a singularity
• Occurs in more general bi-gravity models Gratia, Hu, Wyman (2014);

 Lagos & Ferreira (2014); Johnson & Terrana (2015) and extended quasi dilaton
 model (where smooth continuation fails) Motohashi & Hu (2014)  

t

a(
t)

Gratia, Hu, Wyman (2013)

Determinant
Singularity



DeSitter Solutions
• Conformal diagram of de Sitter self-accelerating solutions
• Det=0 singularity when coordinates double valued

Motloch, Hu, Joyce, Motohashi (2015)

GLM11
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DeSitter Solutions
• Conformal diagram of de Sitter self-accelerating solutions
• Det=±∞ singularity where continuation flips signature

Motloch, Hu, Joyce, Motohashi (2015)
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Perturbations
• Inhomogeneous Stuckelberg background complicates analysis
• Isotropic mode (scalar) not sourced by matter, carries stress 
 energy,  obeys first order equation of motion Wyman, Hu, Gratia (2011)

 simple system, analytic solutions
• Decoupling limit expectations for the helicity 0 and ±1 
 modes not obeyed, kinetic terms only at order curvature
 d’Amico (2011); Motloch & Hu (2014)

 In general 5 degrees of freedom (including open GLM 
 solution, but 3 parabolic not hyperbolic)
• Fully covariant Stuckelberg-metric quadratic Lagrangian 
 Motloch & Hu (2014)

• Specialize to vacuum unitary perturbation gauge: metric 
 perts only Regge-Wheeler analysis of gw polarizations 
 Motloch, Hu, Motohashi (2015)

 

 



Characteristics
• Characteristic curves of new degrees of freedom 
• Example: “open FRW” solution of GLM11

Motloch, Hu, Joyce, Motohashi (2015)
Motloch, Hu, Motohashi (2015)

see also: Deser, Waldron, etal (2012-15); Izumi & Ong (2013)
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Characteristics
• Characteristic curves of new degrees of freedom 
• Example: “open FRW” solution of GLM11

• Characteristics coincide with constant open time slices
 [no dynamics in open frame]
• Superluminal characteristics
• For monopole & dipole mode first order system: characterstics
 give all smooth and discontinuous front solutions
• Superluminal front and group velocity 

Motloch, Hu, Joyce, Motohashi (2015)
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Characteristics
• Characteristic curves of new degrees of freedom 
• Example: “open FRW” solution of GLM11

• No spacelike surface intersect all characteristics
• For isotropic & dipole modes, second order system decouples
 into two first order systems, where a conditions on a single
 spatial boundary defines unique solution

Motloch, Hu, Joyce, Motohashi (2015)

0

�Π2Η

No Spacelike Cauchy Surface:
Spatial Boundary Conditions



Characteristics
• Characteristic curves of new degrees of freedom 
• Example: “open FRW” solution of GLM11

• Anisotropic l≥2 odd modes are second order and
 parabolic, not hyperbolic
• No wavelike solutions, similar to heat equation
• Requires two spatial boundary conditions to define unique
 solution
 

Motloch, Hu, Motohashi (2015)
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Lightcone degenerates:
parabolic equation for
anisotropic modes



Characteristics
• Example: “SdS” solution of KNT11: characteristic curves  
 run tangent to det singularities - information doesn’t cross
• Spacelike surface do
 intersect characteristics
 defining initial value 
 problem for isotropic & 
 dipole modes
• Special case with 
 luminal characteristics
• But l≥2 odd parity 
 modes are still parabolic, 
 requiring two boundary 
 conditions: true of all self
 accelerating solutions

 

Motloch, Hu, Joyce, Motohashi (2015)
Motloch, Hu, Motohashi (2015)
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Summary: Trouble with Metrics
• Self-accelerating dRGT massive gravity provides a 
 relatively simple arena where Cauchy breakdown 
 occurs at linear order in cosmological perturbations
 (det singularities, parabolic/elliptic equations, no joint spacelike surface)   
• In other cases where modes propagate on a separate metric 
 similar problems occur on nonlinear backgrounds 
 Cosmological voids with cubic galileon Barreira et al (2013); 

 Winther & Ferreira (2015) [hyperbolic turns to elliptic]

 Spherical collapse far from quasistatic approximation
 with DGP Brito et al  (2014) [no joint spacelike Cauchy surface]
• Can be viewed as a strong coupling problem which may be
 solved by a UV completion of effective theory but 
 occurs at relatively low densities and large scales 
 from non pathological initial conditions
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Summary: Don’t Mess with Einstein!

Happy 100th Birthday
GR




