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Beyond Canonical Slow Roll



Constraints on Inflation Models
• Constraints on the scalar tilt ns and tensor-scalar ratio r

• Simple featureless potentials like m2φ2 disfavored
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Beyond Canonical Slow Roll
• Simplest scale-free monomial potentials in canonical inflation

coming under increasing observational pressure

• More complicated single-field models involve non-standard kinetic
terms and (temporal) features with hints in large scale observables

• Requires a more general framework for the inflationary paradigm
that does not assume:

– canonical Lagrangian for scalar field

– scale-free behavior for the full 60 efolds of inflation

and allows model building from observations to theory

• Effective Field Theory (EFT)
+ Generalized Slow Roll (GSR)...



Operators to Observables
• From operators to observables and back
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Single Clock and ADM



Single Clock
• Single field inflation is based on the idea that there is a preferred

time slicing defined by a single “clock”: φ(t)→ t(φ)

• Preferred slicing breaks full 4D diffeomorphism invariance leaving
only spatial diffeomorphism invariance

• Geometric objects and their dynamics in this 3 + 1 split is best
characterized in the ADM (Arnowitt-Deser-Misner) formalism

• Define most general line element: lapse N , shift N i, 3-metric hij

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt)

or equivalently the metric (inverse: g00 depends only on lapse)

g00 = −N2 +N iNi, g0i = hijN
j ≡ Ni, gij = hij

g00 = −1/N2, g0i = N i/N2, gij = hij −N iN j/N2
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ADM 3+1 Split
• Useful to define the unit normal timelike vector nµnµ = −1,

orthogonal to constant time surfaces nµ ∝ ∂µφ

nµ = (−N, 0, 0, 0), nµ = (1/N,−N i/N)

where we have used nµ = gµνnν

• Interpretation: lapse of proper time along normal, shift of spatial
coordinates with respect to normal

φ

φ+dφ
t+dt

t

nµ

xi=0  

xi=0  xi=-Nidt

Ndt



ADM 3+1 Split
• Projecting 4D tensors onto the normal direction utilizes nµnν , e.g.

−nµnνV ν

• Projecting 4D tensors onto the 3D tensors involves the
complement through the induced metric

hµν = gµν + nµnν ,

hµνV
ν = (δµν + nµnν)V

ν = V µ + nµnνV
ν

e.g. in the preferred slicing

Ṽ µ = hµνV
ν = (δµν + nµnν)V

ν = (0, V i +N iV 0)

whose spatial indices are raised an lowered by hij:
Ṽi = giνṼ

ν = hijṼ
j



Extrinsic Curvature
• 3-surface embedded in 4D, so there is both an intrinsic curvature

associated with hij and an extrinsic curvature

• Extrinsic curvature Kµν is the spatial projection of the gradient of
nµ

Kµν = h α
µ h β

ν nα;β

nµ nµ+δnµ

δxi

Ki 
jδxi

φ

φ+dφ
t+dt

t



Spacetime Curvature
• Likewise split the spacetime curvature (4)R into intrinsic (3)R = R

and extrinsic pieces via Gauss-Codazzi relation

(4)R = KµνK
µν − (K µ

µ )2 +R + 2(K ν
ν nµ − nαnµ;α);µ

• Last piece is total derivative so Einstein Hilbert LEH = (4)R/2

action is equivalent to keeping first three pieces

• Gravitational action of GR composed of extrinsic K ν
µ , and

intrinsic R j
i curvatures

• No dependence on slicing and threading N , N i ↔ full diffs

• In GR any preferred slicing is picked out by the matter distribution
L = LEH + Lmatter not gravity

• Alternately view “matter” with preferred homogeneous slicing +

“gravitational” Lagrangian→ total depend on N, t
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Kij as Metric “Velocity”
• In terms of the ADM variables

Kij =
1

2N
(∂thij −Nj|i −Ni|j)

where | denotes the covariant derivative with respect to hij

• Extrinsic curvature acts like a “velocity” term for hij moving the
metric from one slice to another with the coordinate freedom of the
lapse and shift

• In GR: define hij and ḣij on the spacelike surface and integrate
forwards, with lapse and shift defining the temporal and spatial
coordinates



Beyond GR
• In a general scalar-tensor theory in addition to functions of N, t

Lagrangian involves curvatures

L(K j
i , R

j
i , N ; t)

in non EH combinations leading to different kinetic structure for
spatial metric: Horndeski/GLPV

• Extra spatial derivatives without temporal derivatives typically
imply extra degrees of freedom hidden by the preferred slicing

• Derivatives of N usually make it dynamical: Ostrogradsky
instability

• Special degenerate theories (“DHOST”) propagate one
combination of the lapse and spatial metric. . .



Beyond Beyond GR
• DHOST adds degenerate combinations built out of the

acceleration: directional derivative of the normal along the normal

aµ = (nµ;β)nβ

which contains spatial derivatives of the lapse and/or

β = nµ(lnN),µ

which contains temporal derivatives as well

• Define EFT as the most general spatially covariant combination of
these ADM quantities, expanded around an FRW backgrounnd

• EFT of inflation as this EFT of “dark sector” under the assumption
that other components of matter are negligible and background is
near de Sitter . . .



EFT of Single Field Inflation



Single Field Inflation
• General Lagrangian for metric: preferred slicing but unbroken

spatial diffs Cheung et al 2008,...,Hu & Motohashi 2017

S =

∫
d4xN

√
hL(N,Ki

j, R
i
j; t)

where the function L can be any spatially covariant contractions of
the ADM geometric objects

• Can extended to include covariant spatial derivatives ∇i Gleyzes et al

2015, dynamical lapse (aµ, β) Langois et al 2017, Hu & Motohashi, in prep and
shift, but these generally introduce extra dofs

• In preferred “unitary” slicing, inflaton degree of freedom is in the
metric



Inflaton as Stuckelberg Field
• Restore temporal diffs by introducing φ(x, t) as a Stuckelberg

field, or equivalently a gauge transformation out of unitary gauge

• On a new time slicing of constant

t→ t− π(x, t) or δφ(x, t) = φ̇π

• Work with π (or δφ) in an arbitrary gauge

Spatially flat gauge: scalar δhij = 0, non-dynamical lapse and shift

• Or alternately stick with unitary gauge and work with δhij as the
dynamical variables as we will continue to do

φ
δφ t



Examples
.

V[φ(t)]: time dependence 

φ

kinetic term
lapse dependence

• Canonical scalar field
X = ∇µφ∇µφ, potential V (φ)

Lφ = −X
2
− V

• In unitary gauge φ(t) so accounting for the lapse X = gµν∂µφ∂νφ

X = − φ̇
2

N2
and V [φ(t)] = V (t)

and

LEH + Lφ = LEH(Ki
j, R) +

φ̇2(t)

2N2
− V (t)

= L(Ki
j, R,N, t)



Examples
• K-essence Lφ = P (X,φ) also gives

L(Ki
j, R,N, t)

but with a more general functional form for the N dependence

• Horndeski and GLPV theories: specific contractions of Ki
j , R

i
j

L = A2(N, t) + A3(N, t)K + A4(N, t)(K
2 −Ki

jK
j
i)

+B4(N, t)R + A5(N, t)(K
3 − 3KKi

jK
j
i + 2Ki

jK
j
kK

k
i)

+B5(N, t)(K
i
jR

j
i − 1

2
KR)

= L(Ki
j, R

i
j, N, t)

• DHOST adds dependence on ai and β for lapse that is dynamical
but subsumed into a single scalar degree of freedom



EFT Coefficients
• These general models can all be described by EFT coefficients

representing the Taylor expansion of L around a spatially flat FRW
background

N̄ = 1, N̄ i = 0, h̄ij = a2δij

where given H = d ln a/dt

K̄i
j = Hδij, R̄i

j = 0

with time dependent expansion coefficients for X, Y, Z ∈ K,R,N

L
∣∣∣
b

= C, ∂L

∂Y i
j

∣∣∣
b

= CY δji,

∂2L

∂Y i
j∂Z

k
`

∣∣∣
b

= CY Zδjiδ`k +
C̃Y Z

2
(δ`iδ

j
k + δikδ

j`), . . .



Power Spectra



Quadratic Action
• Expand Lagrangian in the metric fluctuations: scalar and tensor

N = 1 + δN, Ni = ∂iψ, hij = a2e2R(δij + γij)

• In linear theory, scalars and tensors decouple due to the symmetry
of background

• Consider their quadratic Lagrangians separately

L =
√−gL = N

√
hL

• For tensors

L2 = a3

[
C̃KK

8
γ̇2ij −

CR
4a2

(∂kγij)
2

]
.



Gravitational Waves
• For plane wave fluctuations in the two polarization states γ+,×

γij(t, z) = γ+(t)eikz(δixδjx − δiyδjy) + γ×(t)eikz(δixδjy + δjxδiy)

• Quadratic Lagrangian

L2 =
∑
λ=+,×

a3bt
4c2t

(
γ̇2λ −

c2tk
2

a2
γ2λ

)
• Modified propagation speed

c2t =
2CR
C̃KK

• Non-canonical normalization

bt = 2CR
• In P (X,φ) and canonical, ct = bt = 1



Scalar Quadratic Action
• For scalars, varying with respect to the lapse and shift yield

constraints by which they can be eliminated

• Quadratic Lagrangian for k-modes ofR (for second order in space
and time derivs)

L2 =
a3bsεH
c2s

(
Ṙ2 − c2sk

2

a2
R2

)
where the slow roll parameter

εH = −d lnH

d ln a

• Sound speed and normalization can be written in terms of the EFT
coefficients C (see Motohashi & Hu 2017 for specific form)

• For P (X,φ), bs = 1, cs = arbitrary and for canonical scalar
bs = cs = 1



Equations of Motion
• Tensor and scalar quadratic Lagrangians follow the same form but

with different normalization and sound speeds

• Equations of motion follow the general form with different sound
horizons

ss,t =

∫
d ln a

cs,t
aH

and different normalizations

fs,t = 2πzs,t
√
cs,tss,t

determined by the source to the Mukhanov-Sasaki variable zs,t

zs =
a

cs

√
2bsεH , zt =

a

ct

√
bt/2



Modefunctions & Power Spectra
• Mukhanov-Sasaki variable or modefunctions of the scalar

curvature and tensor polarization states√
k3

2π2
R =

xsys
fs

,

√
k3

2π2
γ+,× =

xtyt
ft

obey the general form with x = ks

d2y

dx2
+

(
1− 2

x2

)
y =

f ′′ − 3f ′

f

y

x2
, ′ =

d

d ln s

with Bunch-Davies initial conditions where limx→∞ y = eix

• Power spectra are evaluated at x� 1 where the perturbations are
well outside their sound horizons

∆2
R = lim

xs→0

∣∣∣∣xsysfs

∣∣∣∣2 , ∆2
γ = lim

xt→0

∣∣∣∣xtytft
∣∣∣∣2 ,



Generalized Slow Roll



Mukhanov-Sasaki Equation
• Solutions to the modefunction evolution in general require

numerical solutions to the Mukhanov-Sasaki equation

• Approximations involve assuming that the net fractional change in
f or ∆ ln f across the efolds of evolution is small in amplitude

• Usual lowest order slow roll approximation takes f=const.,
evaluated around sound horizon crossing so

y → y0 =

(
1 +

i

x

)
eix

and

∆2
R ≈

1

f 2
s

∣∣∣∣
xs=1

, ∆2
γ ≈

1

f 2
t

∣∣∣∣
xt=1

• Focus on scalar sector, so hereafter drop subscript “s” for
compactness



Beyond Slow Roll
• Sufficient inflation requires only that εH � 1

• Evolution of f on timescales shorter than the 60 efolds of inflation
lead to non-power law (constant tilt ns − 1) spectra

– running of tilt that is of order the tilt

– monodromy oscillations in the power spectrum

– step features that cause power spectrum glitches...

• As long as the modefunction remains sufficiently close to the
leading order solution y0, “generalized slow-roll” applies

• Iteratively correct solution y to the Mukhanov-Sasaki equation

y = y0 + y1 + ...



Generalized Slow Roll
• Construct Green function out of the source free solution y0 and

consider the f -terms as external source

d2y1
dx2

+

(
1− 2

x2

)
y1 =

f ′′ − 3f ′

f

y0
x2

to obtain the first order correction Stewart 2002

y1(x) = −
∫ ∞
x

du

u2

(
f ′′ − 3f ′

f

)
y0Im[y∗0(u)y0(x)]

and iteratively improve

yn(x) = −
∫ ∞
x

du

u2

(
f ′′ − 3f ′

f

)
yn−1Im[y∗0(u)y0(x)]

• Series converges if the amplitude of the deviation of y from y0 is
small – does not necessarily require evolution of f is slow



Generalized Slow Roll
• This basic technique holds for general set of cases

• Includes ultra slow roll where f ′/f = 3 and the curvature does not
freeze out

• Flaws for cases when the curvature does freeze out based on
further assumptions:

If we additionally assume |f ′/f | � 1 the first order power
spectrum becomes Stewart 2002

∆2
R =

1

f 2

[
1 +

2

3

f ′

f
+

2

3

∫ ∞
x

du

u
W (u)

(
f ′′ − 3f ′

f

)]
W is a window function that determines when excitations from the
source freeze out: not instantanously at horizon crossing. . .



Freezeout Window
• Window determines how excitations freeze out (see second lecture)

W (x) ≡ 3 sin 2x

2x3
− 3 cos 2x

x2
− 3 sin 2x

2x

ks

tra
ns

fe
r f

un
ct

io
n 

W
(k

s)

0.1 1 10
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0.0
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cause oscillation

in k



Flaws
• This form of GSR suffers from notable flaws

∆2
R =

1

f 2

[
1 +

2

3

f ′

f
+

2

3

∫ ∞
x

du

u
W (u)

(
f ′′ − 3f ′

f

)]
– power spectrum is not necessarily positive definite

– depends on arbitrary superhorizon x� 1 epoch for evaluation

– does not enforce constant superhorizon curvature

• Can make GSR less accurate than ordinary slow roll if x too small

• Worse yet, these flaws very apparent when f ′/f becomes large

• Rectify these flaws to construct a practically useful approach

• First recall how and why superhorizon curvature is constant...



Curvature Freezeout
• TransformationR = xy/f lies at the heart of poor convergence of

GSR, especially if evaluated well after horizon crossing x� 1

• Canonical field highlights problem: normalized field y is related to
scalar field fluctuation δφ in spatially flat gauge y = −

√
2kaδφ

• Field fluctuation does not freezeout but follows the rolling of the
background field: δφ ∝ φ̇ [exception: ultra slow roll where
f ′′/f = 3f ′/f on a flat potential]

V(φ)

φ

increasing φ
.
δφ

increasing δφ



Curvature Freezeout
• For a canonical field where

R = − δφ

dφ/dN

generally freezes out on superhorizon scales

• More generally consequence of the separate universe
approximation

• If superhorizon fluctuations behave as the background of a local
FRW expansion, the local curvature measured by freely falling
observers Klocal = const Hu & Joyce 2016

• It is sufficient that unitary gauge observers seeR=const. for
separate universe approximation to hold

• Iterative approach in y mixes order inR when f evolves



Step Example with y1
• Example: step in potential - evolution of f causes noticeable

discrepancy for superhorizon modes at the step Dvorkin & Hu 2010

• Error can be arbitrarily large as evaluation point xmin → 0

Step
Smooth xmin=0.01

y1 iteration

numerical

s



GSR for Large Power Spectrum Features
• Solution: reorganize iterations in terms ofRn instead of yn by

including f ′/f corrections that appear at next order Dvorkin & Hu 2010

ln ∆2
R ≈ G(lnx) +

∫ ∞
x

du

u
W (u)G′(lnu)

≈ −
∫ ∞
x

du

u
W ′(x)G(lnu),

where integration by parts→ x independence, W ′(x→ 0) = 0

G ≡ −2 ln f +
2

3
(ln f)′

and the replacement g → G′ involves (f ′/f)2 corrections from the
next order

G′ =
2

3

[
g −

(
f ′

f

)2
]



GSR for Large Power Spectrum Features
• Superhorizon evolution of G no longer changesR and the

evaluation point can now be taken to zero x→ 0

• Exponential form guarantees positive definite power spectrum,
controlled approximation even for large features

• Derivation can be formalized by directly iterating inR Miranda, Hu,

(Heinrich née) He, Motohashi 2015

R = R0 +R1 +R2

with the tradeoff being that the Bunch-Davies initial condition
R0(x) = xy0/f0 depends on f0 = f(x0)

Rn(x) = 2

∫ x0

x

du

u

f ′

f

x

u

dRn−1
du

Im[y∗0(u)y0(x)]



GSR for Large Power Spectrum Features
• Result is the same structure introduced in Dvorkin & Hu 2010 but with

a more systematic order counting

• Exponentiation appears because a modefunction excitation
generates further excitations Miranda, Hu, He, Motohashi 2016

• Functional form even in the nonlinear regime is highly constrained
by relation between Bogoliubov coefficients (|α|2 = |β|2 + 1) for
subhorizon sources

∆2
R = A(coshB − sinhB cosϕ)

where B can be related to the first order excitation for an impulse
source and explains the origin of exponentiation

• Second order expression is sufficiently accurate in current
observables up to order unity deviations in power spectra



Second Order in GSR
• Iterating to second order Choe, Gong, Stewart 2004; Dvorkin & Hu 2010

∆2
R ≈ eI0

[(
1 +

1

4
I21 +

1

2
I2

)2

+
1

2
I21

]
where I0 gives the first order piece and the second order
corrections are

I1 =
1√
2

∫ ∞
0

dx

x
G′(lnx)X(x),

I2 = −4

∫ ∞
0

dx

x

(
X +

1

3
X ′
)
f ′

f

∫ ∞
x

du

u2
f ′

f

with

X(x) =
3

x3
(sinx− x cosx)2



Single Source Function G′
• I1 represents the square of first order excitations (imaginary vs real

component)

• I2 represents an excitation from an excitation and is suppressed
before horizon crossing Miranda, Hu, He, Motohashi 2015

• For large, rapid, power spectrum features keeping only I1 often
suffices; magnitude is a control parameter for iterative expansion

I1 < 1/
√

2

• For slowly varying power spectrum features I1 and I2 partially
cancel but their net effect then too small to observe

• Power spectrum becomes a functional of G′ alone

∆2
R[G′]→ G′[∆2

R]

allowing the data to reconstruct G′



Single Source Function G′
• Single source approximation vs. subhorizon resumation vs

numerical for large potential step Miranda, Hu, He, Motohashi 2015

Large Step FeatureEnormous Step Feature



Tensor Spectrum
• Tensor fluctuations follow the same rules but with the single

function being G′t
• Tensor features usually small compared with scalars for canonical

scalar since H typically is smoothly varying Gong 2004; Hu 2014

curvature

tensors



Summary of Lecture I
• Single field inflation is defined by having a single clock or

preferred ADM time slicing

• EFT constructs all models consistent with unbroken spatial diffs
on the slice

• Lagrangian from spatially covariant functions of intrinsic and
extrinsic curvature, lapse (and their covariant derivatives,
acceleration)

• Second order theories in both space and time derivatives lead to
Horndeski/GLPV Lagrangian

• All such cases give quadratic action for scalars and tensors in their
normal form with sound speed and normalization as parameters

• Parameters can have arbitrary time dependence in EFT



Summary of Lecture I
• Generalized slow roll provides an iterative approach to solving

Mukhanov-Sasaki equation for

– Modefunctions

– Power spectra

– Bispectra (next lecture), . . .

• Characterized by

– Source of excitations from de Sitter modefunctions

– Window function for freezeout

• For up to order unity excitations, GSR characterized by single
source function

– G for scalars and tensors separately

• Tensor usually suppressed compared with scalars
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Optimized Slow Roll



Deviations from Scale Invariance
• If f ≈ const.

∆2
R ≈

1

f 2

∣∣∣∣
csk
aH
≈1

Nearly scale independent power spectrum in ordinary slow roll
approximation

• Net deviations from scale invariance in amplitude observationally
small across k-efolds δ ln k in CMB

δ ln ∆2
R

δ ln k
= ns − 1

and for models, typically for inflation to end in N ∼ 60 efolds

1− ns ≈
1

N

• Deviations need not vary equally slowly in ∆ ln k



Generalized Slow-Roll Deviations
• In EFT, coefficients can have arbitrary time dependence as long as

they don’t cause inflation to end

• GSR allows us to separate these two senses of deviations from
scale-invariance: amplitude and temporal frequency

• Two pieces of the slow roll approximation:

– Average amplitude of modefunction deviations

Ḡ′ = 1− ns = O(1/N)

– Slowness of the temporal variation

G′′/G′ = O(1/∆N)→ G(p) = O(1/N∆Np−1)

• Usual slow roll approximation conflates N ∼ 60 and ∆N by
implicitly assuming that inflation has only one feature: its end



Generalized Slow Roll
• For 1 . ∆N � N need to keep O(1/N∆Np−1) as leading order

• In GSR, this means we can use the leading order in modefunction
amplitude deviation Motohashi & Hu 2015

ln ∆2
R ≈ −

∫ ∞
0

dx

x
W ′(x)G(lnx) + . . .

and Taylor expand G around the epoch of horizon crossing xf

G(lnx) =
∞∑
0

G(p)(lnxf )

p!
(lnx− lnxf )

p

• Integrals can be precomputed

qp(lnxf ) = − 1

p!

∫ ∞
0

dx

x
W ′(x)(lnx− lnxf )

p



Freezeout Window
• W ′ decreases rapidly for x� 1 or − lnx > 0, freezing out G

according to the pretabulated qp coefficients
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Generalized Slow Roll
• Leads to a series expansion of the power spectrum that converges

if ∆N > 1

ln ∆2
R ≈ G(lnxf ) +

∞∑
p=1

qp(lnxf )G
(p)(lnxf )

• Taylor expansion in G then defines tilt and running of tilt
d/d ln k = −d/d ln s

dG(p)(lnxf )

d ln k
= −G(p+1)(lnxf )

• Tilt associated with G′ to leading order in 1/∆N

ns − 1 ≡ d ln ∆2
R

d ln k
≈ −G′(lnxf )−

∞∑
p=1

qpG
(p+1)(lnxf )



Running of tilt
• Running of tilt G′′ to leading order in 1/∆N

α ≡ dns
d ln k

≈ G′′(lnxf ) +
∞∑
p=1

qpG
(p+2)(lnxf )

• Since G′′/G′ = O(1/∆N), running of the tilt is only suppressed
vs tilt by 1/∆N not 1/N as usually assumed

• With ∆N ∼ few, running can be observably large if ∆N relatively
small

• If ∆N small, then higher order terms in evaluating tilt and running
become relatively more important too

• Taylor series still leaves unspecified the epoch around horizon
crossing of the expansion which can be optimized...



Optimized Slow Roll
• Weights qp on Taylor coefficients depend only xf

• Enhance the accuracy of the Taylor expansion by choosing the
freezeout epoch xf to zero out next qp in the series

Leading Order:

• – Keep only leading order term, set q1(lnxf ) = 0 by choosing
lnxf = 1.06, i.e. around 1-efold before horizon crossing

– As accurate as retaining next order term but leaving lnxf = 0

• Next Order:

– Retain q1 and set q2(lnxf ) = 0 by choosing lnxf = 0.22

– As accurate as retaining next-to-next order term for generic lnxf .

• Self consistent order counting between observables (remaining
error mainly in ln k ↔ N not between observables)
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Slow Roll Parameters
• GSR parameters G(n)↔ more familiar slow-roll parameters

G ≡ −2 ln f +
2

3
(ln f)′, f ∝

√
bsεHcs
H2

aHs

cs

′ ≡ d

d ln s
↔ − d

dN

• Evolution of H (and εH)

εH≡ −
d lnH

dN
, δ1 ≡

1

2

d ln εH
dN

− εH ,

δp+1≡
dδp
dN

+ δp(δ1 − pεH)

• Evolution of cs

σ1 ≡
d ln cs
dN

, σp+1 ≡
dσp
dN

,
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Slow Roll Parameters
• Evolution of normalization bs

ξ1 ≡
d ln bs
dN

, ξp+1 ≡
dξp
dN

,

• Similar hierarchies for ct and bt tensor functions

• For explicit relations: Motohashi & Hu 2017

• For canonical scalar only εH , δp

• For P (X,φ) add σp

• For Horndeski/GLPV add ξp

• GSR expansion involves keeping higher order in p but still
dropping products of slow roll parameters
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Slow Roll Parameters
• In canonical inflation, can also relate G(p) to derivatives of the

potential V (p)

Vp =

(
V (1)

V

)p−1
V (p+1)

V

• Ordinary slow roll approximation assumes

{εH , δ1, σi,1, ξ1} = O
(

1

N

)
, {δp, σp, ξp,Vp} = O

(
1

Np

)
so that to leading order we need only keep the first set

• More generally, evolution of the first set of slow roll parameters
can take place on a different, shorter time scale ∆N < N

{εH , δ1, σ1, ξ1} = O
(

1

N

)
, {δp, σp, ξp,Vp} = O

(
1

N∆Np−1

)



Slow Roll Parameters
• In canonical inflation, can also relate G(p) to derivatives of the

potential V (p)

Vp =

(
V (1)

V

)p−1
V (p+1)

V

• Ordinary slow roll approximation assumes

{εH , δ1, σi,1, ξ1} = O
(

1

N

)
, {δp, σp, ξp,Vp} = O

(
1

Np

)
so that to leading order we need only keep the first set

• More generally, evolution of the first set of slow roll parameters
can take place on a different, shorter time scale ∆N < N

{εH , δ1, σ1, ξ1} = O
(

1

N

)
, {δp, σp, ξp,Vp} = O

(
1

N∆Np−1

)



Slow Roll Parameters
• In canonical inflation, can also relate G(p) to derivatives of the

potential V (p)

Vp =

(
V (1)

V

)p−1
V (p+1)

V

• Ordinary slow roll approximation assumes

{εH , δ1, σi,1, ξ1} = O
(

1

N

)
, {δp, σp, ξp,Vp} = O

(
1

Np

)
so that to leading order we need only keep the first set

• More generally, evolution of the first set of slow roll parameters
can take place on a different, shorter time scale ∆N < N

{εH , δ1, σ1, ξ1} = O
(

1

N

)
, {δp, σp, ξp,Vp} = O

(
1

N∆Np−1

)



Slow Roll Parameters
• If one uses the ordinary slow roll approximation to decide which

parameters to keep can lead to very wrong relationships between
tilt ns and running α.

• For example Hubble flow parameters

dεp
dN

= εpεp+1, ε1 = εH

• Constructs the time derivative of each order as the product of two
slow parameters and builds in a counting procedure where
∆N ≈ N and εn = O(1/N).

• Inconsistent to truncate based on keeping a fixed order in Hubble
flow parameters

• Can falsely rule out true model because of inconsistent evaluation
between observables



Monodromy
• Consider a monodromy potential Silverstein et al 2008

V (φ) = λφ+ Λ4 cos

(
φ

f
+ θ

)
• Inflaton rolls over oscillations in 60� ∆N > 1 Motohashi & Hu 2015

numerical
Hubble flow 2nd order
opt. leading order

numerical
potential 2nd order
opt. next order



Primordial Black Holes
• Amplify power on small scales via running of the mass

V (φ) = V0 +
1

2
m2(lnφ)φ2

• For primordial black holes to be all the dark matter, a large feature
during inflation is required violating the ordinary slow roll
approximation Motohashi & Hu 2017
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G-inflation
• Transition from cubic galileon potential-driven inflation to

canonical inflation→ ns induced by transition not end of inflation

• Large but allowed running, reduced tensors given ns Ramirez,

Passaglia, Motohashi, Hu, Mena 2018
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Features and their Templates



Features
• If the timescale for variations in the EFT coefficients is ∆N � 1

all generic constructions based on slow-roll parameters (including
optimized slow roll) fail

• GSR itself can handle high frequency cases so long as the
amplitude of the features is still less than O(1)

• Useful in constructing parameterized templates for observational
features in the power spectrum: examples

Power spectrum steps

Monodromy

• Templates enable extensive likelihood analyses (MCMC) where
numerical computation of each inflationary model impractical

• Templates enable matching predictions in multiple observables for
confirmation/refutation



Low Multipole Glitch
• Feature in the low-` CMB power spectrum first seen in WMAP,

confirmed in Planck, responsible for cosmological parameter shifts
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Step Potential
• Fits a steplike potential with transition ∆N < 1, causing

increasingly large slow roll parameters

• Causes oscillations in the power spectrum, not ∆2
R ∝ H2/εH

• SR qualitatively wrong; requires GSR approach to capture Dvorkin &

Hu 2010

s

s



Oscillations
• Rapid changes represent sharp temporal features

• Imprint sharp features in spatial correlation

• A single sharp temporal feature leads to linear ringing in Fourier
space, damped by the width

– Example: steps

• Periodic features generate resonances with the window, leads to
logarithmic ringing in Fourier space

– Example: monodromy



Freezeout Window
• Convolve G′(ln s) source with W (ks) window

• Single sharp temporal feature leads to damped linear oscillations

• Periodic source leads to resonant logarithmic oscillations
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Step Potential
• Second derivative of f makes step potential look like derivative of

delta function in source G′

• Dip and bump and damped oscillations in curvature power

s



CMB Glitch
• GSR sufficiently accurate for testing step model against CMB data

Dvorkin & Hu 2010

L



Sharp step
• With sharp step G′ is mainly derivative of δ functions→ integrate

by parts analytically

• Analytic template for fast searches for features Adshead, Hu, Dvorkin,

Peiris 2011, Miranda & Hu 2013



Search for Features
• Early indications of oscillatory features in WMAP and Planck

were followed up with these detailed templates

• Preference for features weakened with higher multipole data



Polarization and Bispectrum



Lesson from Feature Searches
• Inflationary features can fit random noise fluctuations in any one

data set

• Important to check matching features in different observables

– Different multipoles of temperature power spectrum

– Matter power spectrum

– Polarization power spectrum

– Bispectrum



Polarization Transfer
• Due to projection, polarization features in the acoustic regime are

sharper and weighted to slightly higher `

ReionizationISW

Acoustic
Feature range Feature range

Acoustic

SW



Quadrupole Projection
• Polarization features follow the projection of quadrupole moments

quadrupole projected
quadrupoleanisotropy
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scattering
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Polarization Features
• For step models that fit the glitch, sharper matching polarization

features that can verify/falsify them Mortonson, Dvorkin, Peiris, Hu 2009

• Requires high signal-to-noise EE measurements at ` = 20− 60

• Can be separated from high-z reionization Obied et al 2018
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GSR EFT Bispectrum
• Expand EFT Lagrangian to cubic order: L3

• Cubic operators represent interactions with interaction
Hamiltonian HI = −

∫
d3xL3

• 10 distinct cubic EFT operators Passaglia & Hu 2018

• Calculate bispectrum in the interaction picture using in-in
formalism

〈R̂k1(t∗)R̂k2(t∗)R̂k3(t∗)〉 = 2<
[
−i
∫ t∗

−∞
dt〈R̂k1(t∗)R̂k2(t∗)R̂k3(t∗)HI(t)〉

]
• Iteratively expand mode functions to define GSR integral

expressions for the bispectrum Adshead, Hu, Miranda 2012



GSR EFT Bispectrum
• Leading order GSR efficiently computes all triangle configurations

of the bispectrum in the form

BR(k1, k2, k3) = ∆R(k1)∆R(k2)∆R(k3)
∑
i

Ti(k1, k2, k3)

×
∫
ds

s
Si(ln s)W

′
i (Ks)

K = k1 + k2 + k3 is the perimeter of the triangle

• Elements

– ∆R: R-modefunction or square-root of power spectrum

– Ti: source independent configuration shape

– Si: source from the EFT cubic interactions

– Wi: freezeout window for the source



Sharp Step Bispectrum
• Sharp step leads to rising equilateral bispectrum until finite-width

damping scale Adshead, Dvorkin, Hu, Lim 2011

• Eventually so large that excitations are strongly coupled, beyond
EFT Adshead & Hu 2014

• Oscillatory shape requires new template forms – GSR provides
accurate analytic expressions
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Sharp Correlation Function Features
• Sharp step: ringing at high k represents sharp feature in physical

space at much larger scales Adshead, Dvorkin, Hu, Lim 2011

• Sharpness blurred out by temporal width of feature

• CMB anomalies at large angular scales may have subtle signatures
at high multipole
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Reconstructing EFT



Power Spectrum Features
• Step and monodromy examples highlight that features in power

spectrum are highly constrained by inflationary origin

• Sharp features in k-space must be accompanied by ringing

• Ringing must appear stronger in CMB polarization than
temperature from recombination

• Matching, but lower signal to noise, features in the temperature
and polarization bispectra

• Features can easily fit random noise in any one of these
measurements but not all

• Inverse problem of reconstructing the EFT source function(s)
[G′, . . .]



Reconstruction
• By going directly from observables to the inflationary source we

guarantee that inferred features are consistent with single field
inflation

• If we reconstruct ∆2
R first instead, a sharp k-space feature with no

ringing pattern would be inconsistent with single field EFT
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Low Multipole Anomaly
• Using 10 parameters per decade for G′(ln s) from

200 ≤ s/Mpc ≤ 20000 to fit out low multipole residuals from a
pure tilt Dvorkin & Hu 2011, Obied et al 2017,2018
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Low Multipole Anomaly
• Reconstruction parameters also allow one to marginalize impact of

non-power law power spectra on cosmological parameters

• Low multipole anomaly influences H0 - with only ` < 1000 data,
H0 shifted higher to fit anomaly Addison et al 2015; Aghanim et al 2016

• After marginalizing G′ source parameters, even ` < 1000 WMAP
data compatible with low H0

• Planck data at ` > 1000 have smoother temperature peaks than
allowed by high H0



H0 Tension
• Shift to lower H0 indicates more CDM relative to radiation from

driving effect of potential decay

• Increased angular scale of sound horizon compensated by larger
distance to recombination through lower H0

• > 3σ tension with direct H0 distance ladder measurements
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Polarization
• Polarization EE and TE should provide matching inflationary

features and also distinct signatures of low H0 solution

• Planck 2015 TE spectrum anomalously sensitive to H0 due to a
single deviant multipole band
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Lensing Anomaly
.

TT + lowTEB

Model− independent tension, 4 lens PCs

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
W

TTTEEE + lowTEB

Power
spectra

ΛCDM

Reconstruction

• Planck TT power
specta want even smoother
peaks than low H0

achieves leaving remaining
oscillatory residuals

• If lensing amplitude
is allowed to vary, then
residuals can be better fit
since lensing smooths peaks

• Lens reconstruction from quadratic estimators do not show higher
lensing

• Using principal components, this tension is independent of
cosmological model at low-z (dark energy, etc) Motloch & Hu 2018



EFT Source Reconstruction
• In source function space, 20 parameters currently mainly fit noise

– good for marginalizing impact on cosmological parameters
– bad for trying to interpret implications for inflation

• Filter out noise by constructing principal components, rank ordered
to best constrained modes, of G′ parameter covariance matrix

• 3 PCs constrained with 95% local CL deviations in m1 −m3
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Suppression of Large Scale Power
.
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• Inflationary source
corresponds to sharp
suppression of large
scale power

• Predicts EE polari-
zation feature sharper
and at slightly higher
multipole

• More generally,
reconstruction from TT

makes predictions for polarization

• Testing polarization predictions immune to look elsewhere effect...



Polarization Consistency
• Polarization predictions under single field inflation from WMAP

temperature power spectrum
– Test origin of temperature features
– Violations could even falsify single field EFT inflation itself

WMAP
Temperature

Polarization Predictions
in Single Field Inflation

Larger deviations



Operators to Observables
• From operators to observables and back
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Summary of Lecture II
• GSR allows for temporal features during (rather than purely

associated with the end) of inflation

• New scale ∆N in efolds breaks the ordinary slow roll hierarchy
assumption that higher parameters are suppressed by increasing
powers of N ∼ 60

• If ∆N > 1, GSR is solved by a generalization of slow roll
hierarchy

– Taylor expansion of G source of exitations

– Optimized evaluation point to zero out next term in series

– Consistent predictions between observables ns − 1, α, . . .

– Necessary when ∆N � N , α comparable to ns − 1



Summary of Lecture II
• If ∆N < 1, GSR predicts ringing of power spectra in a form that

must be specialized to individual cases

– Monodromy

– Steps

which usually leads to analytic templates for ∆N � 1, enabling
fast MCMC searches

• Allowing ∆N < 1 leads to noise in CMB TT being fit by
inflationary features but also predicts consistency relations with

– Polarization (and tensors)

– Bispectrum



Summary of Lecture II
• Reconstructing the EFT of inflation source G (or G′) directly from

observations

– Enforces inflationary prediction: sharp features→ oscillations
(cf. power spectrum reconstruction)

– Marginalize inflationary assumptions for cosmo params (H0)

– Highlights low-` power anomaly as locally significant

– Testable predictions for polarization

– Ultimately test validity of whole single field paradigm


