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Beyond Canonical Slow Roll



Constraints on Inflation Models

e Constraints on the scalar tilt n, and tensor-scalar ratio r

o Simple featureless potentials like m?¢? disfavored
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Beyond Canonical Slow Roll

e Simplest scale-free monomial potentials in canonical inflation
coming under increasing observational pressure

e More complicated single-field models involve non-standard kinetic
terms and (temporal) features with hints in large scale observables

e Requires a more general framework for the inflationary paradigm
that does not assume:

— canonical Lagrangian for scalar field

— scale-free behavior for the full 60 efolds of inflation

and allows model building from observations to theory

e Effective Field Theory (EFT)
+ Generalized Slow Roll (GSR)...



Operators to Observables

e From operators to observables and back
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Single Clock and ADM



Single Clock

e Single field inflation 1s based on the 1dea that there 1s a preferred
time slicing defined by a single “clock™: ¢(t) — t(¢)

e Preferred slicing breaks full 4D diffeomorphism invariance leaving
only spatial diffeomorphism invariance



Single Clock

e Single field inflation 1s based on the 1dea that there 1s a preferred
time slicing defined by a single “clock™: ¢(t) — t(¢)

e Preferred slicing breaks full 4D diffeomorphism invariance leaving
only spatial diffeomorphism invariance

e Geometric objects and their dynamics in this 3 + 1 split 1s best
characterized in the ADM (Arnowitt-Deser-Misner) formalism

e Define most general line element: lapse N, shift N*, 3-metric h;;
ds* = —N?dt* + hyj(dx’ + N'dt)(da’ + N7dt)
or equivalently the metric

goo = —N?*+ N'N;, g = hiij = N, gij = hij



Single Clock

e Single field inflation 1s based on the 1dea that there 1s a preferred
time slicing defined by a single “clock™: ¢(t) — t(¢)

e Preferred slicing breaks full 4D diffeomorphism invariance leaving
only spatial diffeomorphism invariance

e Geometric objects and their dynamics in this 3 + 1 split 1s best
characterized in the ADM (Arnowitt-Deser-Misner) formalism

e Define most general line element: lapse N, shift N, 3-metric /.,
ds* = —N?dt* + hy;(dz’ + N'dt)(dx’ + N’dt)
or equivalently the metric (inverse: ¢g°° depends only on lapse)

goo = —N?*+ N'N;, g = hiij = N, gij = hij
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ADM 3+1 Split

e Useful to define the unit normal timelike vector n,n" = —1,
orthogonal to constant time surfaces n,, o< 0,,¢

n, = (—N,0,0,0), n"=(1/N, —N'/N)
where we have used n* = ¢""n,,

e Interpretation: lapse of proper time along normal, shift of spatial
coordinates with respect to normal

xi=-N'dr xi=0

t+dt

O+dd

=~



ADM 3+1 Split

e Projecting 4D tensors onto the normal direction utilizes n#n,, e.g.

—nktn, V"

e Projecting 4D tensors onto the 3D tensors involves the
complement through the induced metric

h,uu — Juv =+ My,

ht VY = (6", + ntn, VY = VF + nfn, V"
e.g. 1n the preferred slicing
Vi =R VY = (6", 4+ nfn,)VY = (0,V' + N'V°)

whose spatial indices are raised an lowered by h;;:
V; = ngy = hij‘?j



Extrinsic Curvature

e 3-surface embedded 1n 4D, so there 1s both an intrinsic curvature
associated with h;; and an extrinsic curvature

e Extrinsic curvature K, 1s the spatial projection of the gradient of

nt

KMV — h,uahyﬁnOGﬁ
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Spacetime Curvature

o Likewise split the spacetime curvature (Y R into intrinsic ® R = R
and extrinsic pieces via Gauss-Codazzi relation

DR = K K = () + R+ 2(K,"n =),

e Last piece is total derivative so Einstein Hilbert Ly = @GR /2
action 1s equivalent to keeping first three pieces



Spacetime Curvature

o Likewise split the spacetime curvature (Y R into intrinsic ® R = R
and extrinsic pieces via Gauss-Codazzi relation

DR =K, K" — (K,")? 4+ R+ 2(K,"n" —n®n",),,
e Last piece is total derivative so Einstein Hilbert Ly = @GR /2
action 1s equivalent to keeping first three pieces

e Gravitational action of GR composed of extrinsic K Y, and

intrinsic R, curvatures
e No dependence on slicing and threading N, N* < full diffs

e In GR any preferred slicing 1s picked out by the matter distribution
L = Lgy + Lmatter NOt gravity

e Alternately view “matter” with preferred homogeneous slicing +
“gravitational” Lagrangian — total depend on IV, ¢



K;; as Metric “Velocity”
e In terms of the ADM variables

1
Kij = 5~ (Ochiz — Ny = Niyj)

where | denotes the covariant derivative with respect to f;;

e Extrinsic curvature acts like a “velocity” term for /;; moving the
metric from one slice to another with the coordinate freedom of the
lapse and shift

e In GR: define h;; and hij on the spacelike surface and integrate
forwards, with lapse and shift defining the temporal and spatial
coordinates



Beyond GR

e In a general scalar-tensor theory in addition to functions of V, ¢
Lagrangian involves curvatures

L(K’ R’ N:t)
in non EH combinations leading to different kinetic structure for
spatial metric: Horndeski/GLPV

e Extra spatial derivatives without temporal derivatives typically
imply extra degrees of freedom hidden by the preferred slicing

e Derivatives of NV usually make it dynamical: Ostrogradsky
instability

e Special degenerate theories (“DHOST”) propagate one
combination of the lapse and spatial metric. ..



Beyond Beyond GR

e DHOST adds degenerate combinations built out of the
acceleration: directional derivative of the normal along the normal

Ay = (nu;ﬂ)nﬁ

which contains spatial derivatives of the lapse and/or

8 =n"(InN),,

which contains temporal derivatives as well

e Define EFT as the most general spatially covariant combination of
these ADM quantities, expanded around an FRW backgrounnd

e EFT of inflation as this EFT of “dark sector” under the assumption
that other components of matter are negligible and background 1s
near de Sitter ...



EFT of Single Field Inflation



Single Field Inflation

e General Lagrangian for metric: preferred slicing but unbroken
spatial diffs

S = / d*zNvVh L(N, K' R ;t)

where the function L can be any spatially covariant contractions of
the ADM geometric objects

e Can extended to include covariant spatial derivatives V;
, dynamical lapse (a,,, ) and
shift, but these generally introduce extra dofs

e In preferred “unitary” slicing, inflaton degree of freedom is in the
metric



Inflaton as Stuckelberg Field

e Restore temporal diffs by introducing ¢(x,t) as a Stuckelberg
field, or equivalently a gauge transformation out of unitary gauge

e On a new time slicing of constant

t—t—m(x,t) or 0¢(x,t)=¢m

e Work with 7 (or 0¢) in an arbitrary gauge
Spatially flat gauge: scalar 0h,;; = 0, non-dynamical lapse and shift

e Or alternately stick with unitary gauge and work with 0/, as the
dynamical variables as we will continue to do

m t

2 Nq)




Examples

e Canonical scalar field VI(#)]: time dependence

X =V, ,¢V*+o¢, potential V (¢)

Kinetic term
lapse dependence Y,

X
Ly=——-V

: ¢

e In unitary gauge ¢(¢) so accounting for the lapse X = ¢"¥0,¢0, ¢
¢2
X = ~Nz and Vie(t)] =V (¢)
and
12
: t
Lgn + Ly = Leu(K7Y, R) + qg]\(m) - V(t)

= L(K', R, N,t)



Examples
o K-essence Ly = P(X, ¢) also gives

L(K", R, N,t)
but with a more general functional form for the /N dependence

e Horndeski and GLPV theories: specific contractions of K, R,

L = Ay(N,t) + A3(N, t) K + Ay(N, 1)(K* — K',K”)
+ By(N,t)R + A5(N,t)(K? - 3K K" K’, + 2K'. K’, K*)
+ B5(N, t)(K" R, — 1KR)
= L(K', R';, N, t)

e DHOST adds dependence on a; and 3 for lapse that is dynamical
but subsumed 1nto a single scalar degree of freedom



EFT Coefficients

e These general models can all be described by EFT coefficients
representing the Taylor expansion of L around a spatially flat FRW
background

N = 1, NZ — O, Bz’j — CLQCSij
where given H = dIna/dt
K =Hb6., R =0

with time dependent expansion coefficients for X, Y, Z € K, R, N

L| _c. oL

| =Cy
b Y b Y¥eo

~

0°L
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Power Spectra



Quadratic Action

Expand Lagrangian in the metric fluctuations: scalar and tensor

N=1+0N, N,;=0, hij — a2€2R(5ij + %‘j)

In linear theory, scalars and tensors decouple due to the symmetry
of background

Consider their quadratic Lagrangians separately

L =+/—gL=NVhL

For tensors

~

Crk | Cr
Ly =a’ T%Q] - 4_612(314%9')2




Gravitational Waves

e For plane wave fluctuations in the two polarization states v

Vi (t, 2) = 14 (0)e™ (050050 — 0iy0jy) + Y (£)€™% (6005 + 6204)

e (Quadratic Lagrangian

acby (., cck*
L= Y T (3-5)

A=+, X

e Modified propagation speed

o
CK K

e Non-canonical normalization

bt — QCR
e In P(X, ¢) and canonical, ¢; = b, = 1



Scalar Quadratic Action

e For scalars, varying with respect to the lapse and shift yield
constraints by which they can be eliminated

e Quadratic Lagrangian for k-modes of R (for second order in space
and time derivs)

L, = a*bsey <R2 B Czk2R2>

2 2
C: a

where the slow roll parameter

dln H
dlna
e Sound speed and normalization can be written in terms of the EFT

€ — —

coefficients C (see for specific form)

e For P(X, ¢), by = 1, ¢, = arbitrary and for canonical scalar
b =c, =1



Equations of Motion

e Tensor and scalar quadratic Lagrangians follow the same form but
with different normalization and sound speeds

e Equations of motion follow the general form with different sound

Cs.t
o= [ dlna=>
St / Y

and different normalizations

horizons

fs,t — 27TZS,t\/ CstSs,t

determined by the source to the Mukhanov-Sasaki variable 2,

Zszﬁ QbSEH, Zt:g\/ bt/2

Cs Ct



Modetunctions & Power Spectra

e Mukhanov-Sasaki variable or modefunctions of the scalar
curvature and tensor polarization states

k3 72’__1tsys k3 o LYt
2w T Nam T

obey the general form with x = ks

@+<1_3)y:f//_3f/y / d

dx? T2 f o x? ~ dlns

with Bunch-Davies initial conditions where lim,_,., y = €®

e Power spectra are evaluated at x < 1 where the perturbations are
well outside their sound horizons

2 2

Lsls

fs

LY

A? = lim
fi

A2 = lim
R ’ T 2,50

xrs—0

)




Generalized Slow Roll



Mukhanov-Sasaki Equation

e Solutions to the modefunction evolution in general require
numerical solutions to the Mukhanov-Sasaki equation

e Approximations involve assuming that the net fractional change in
f or Aln f across the efolds of evolution is small in amplitude

e Usual lowest order slow roll approximation takes f=const.,
evaluated around sound horizon crossing so

i\
y%yo=<1+—)€m
T

A? !

) fyf’tjf_tg

and

1
£2

2~
A2 ~

rs=1 rr=1

e Focus on scalar sector, so hereafter drop subscript “s” for
compactness



Beyond Slow Roll

e Sufficient inflation requires only that ez << 1

e Evolution of f on timescales shorter than the 60 efolds of inflation
lead to non-power law (constant tilt n, — 1) spectra
— running of tilt that 1s of order the tilt
— monodromy oscillations 1n the power spectrum

— step features that cause power spectrum glitches...

e As long as the modefunction remains sufficiently close to the
leading order solution vy, “generalized slow-roll”” applies

e Iteratively correct solution y to the Mukhanov-Sasaki equation

Yy="Yo T Y+ ..



Generalized Slow Roll

e Construct Green function out of the source free solution 1, and
consider the f-terms as external source

dQ?th 1_3 _f”—3f'yo
dx? 2 1= f €2

to obtain the first order correction

n(o) == [ (520wl (o)

and iteratively improve

i) == [ (E20) e stmlygato)

e Series converges if the amplitude of the deviation of y from vy 1s

small — does not necessarily require evolution of f is slow



Generalized Slow Roll

e This basic technique holds for general set of cases

e Includes ultra slow roll where f’/f = 3 and the curvature does not
freeze out

e Flaws for cases when the curvature does freeze out based on
further assumptions:

If we additionally assume |f’/f| < 1 the first order power
spectrum becomes

9 P g
e G)

W 1s a window function that determines when excitations from the

source freeze out: not instantanously at horizon crossing. ..



Freezeout Window

e Window determines how excitations freeze out (see second lecture)
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Flaws

e This form of GSR suffers from notable flaws

, 9 £ % J " __ g fl
st es [ e (5]

— power spectrum 1s not necessarily positive definite

— depends on arbitrary superhorizon x < 1 epoch for evaluation

— does not enforce constant superhorizon curvature
e Can make GSR less accurate than ordinary slow roll if  too small

e Worse yet, these flaws very apparent when f’/ f becomes large

e Rectify these flaws to construct a practically useful approach

e First recall how and why superhorizon curvature is constant...



Curvature Freezeout

e Transformation R = zy/ f lies at the heart of poor convergence of
GSR, especially if evaluated well after horizon crossing r < 1

e Canonical field highlights problem: normalized field y 1s related to
scalar field fluctuation 0¢ in spatially flat gauge y = —v/2kad¢

e Field fluctuation does not freezeout but follows the rolling of the
background field: 0¢ o ¢ [exception: ultra slow roll where

f"/f =3f"/f on a flat potential]

4,

O 4
increasing ¢ /

increasing 62/




Curvature Freezeout

e For a canonical field where

09

R==0s)an

generally freezes out on superhorizon scales

e More generally consequence of the separate universe
approximation

e If superhorizon fluctuations behave as the background of a local
FRW expansion, the local curvature measured by freely falling
observers K ., =const

e It 1s sufficient that unitary gauge observers see /R=const. for
separate universe approximation to hold

e Iterative approach in y mixes order in 'R when f evolves



Step Example with 14

e Example: step in potential - evolution of f causes noticeable
discrepancy for superhorizon modes at the step

e Error can be arbitrarily large as evaluation point x,,;, — 0
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GSR for Large Power Spectrum Features

e Solution: reorganize iterations in terms of R, instead of y,, by
including f’/f corrections that appear at next order

> du

MA%Qﬁ(mwf+/)j;WW@Gﬂnw

> du

%—L ()G w),

u

where integration by parts — x independence, W/(x — 0) = 0

= -2Inf+ g(lnf)’

and the replacement g — G’ involves (f’/f)?* corrections from the
next order

2] (1
“=319 <f)




GSR for Large Power Spectrum Features

e Superhorizon evolution of G no longer changes ‘R and the
evaluation point can now be taken to zero x — 0

e Exponential form guarantees positive definite power spectrum,
controlled approximation even for large features

e Derivation can be formalized by directly iterating in R

R=Ro+Ri+ Ry

with the tradeoff being that the Bunch-Davies initial condition
Ro(z) = xyo/ fo depends on fo = f (o)

B du f'r dR,—q .
Rofa) =2 [ S iy (o)



GSR for Large Power Spectrum Features

e Result 1s the same structure introduced 1n but with
a more systematic order counting

e Exponentiation appears because a modefunction excitation
generates further excitations

e Functional form even in the nonlinear regime 1s highly constrained
by relation between Bogoliubov coefficients (|a|* = |8]* + 1) for
subhorizon sources

A% = A(cosh B — sinh B cos )
where B can be related to the first order excitation for an impulse
source and explains the origin of exponentiation

e Second order expression is sufficiently accurate in current
observables up to order unity deviations in power spectra



Second Order in GSR

e [terating to second order

1 1 \* 1

where [ gives the first order piece and the second order
corrections are

I = f/ “ 6 (o)X (x),

et f ?(X%X)?/ji??

3
X(z) = —(sinz — xcosx)?

with



Single Source Function G’

e [, represents the square of first order excitations (imaginary vs real
component)

e [, represents an excitation from an excitation and 1s suppressed
before horizon crossing

e For large, rapid, power spectrum features keeping only /; often
suffices; magnitude 1s a control parameter for iterative expansion

L <1/V2

e For slowly varying power spectrum features /; and /5 partially
cancel but their net effect then too small to observe

e Power spectrum becomes a functional of G’ alone
AR[G'] = G'[A%]

allowing the data to reconstruct GG’



Single Source Function G’

e Single source approximation vs. subhorizon resumation vs
numerical for large potential step
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Tensor Spectrum

e Tensor fluctuations follow the same rules but with the single
function being G

e Tensor features usually small compared with scalars for canonical
scalar since H typically is smoothly varying
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Summary of Lecture I

e Single field inflation 1s defined by having a single clock or
preferred ADM time slicing

e EFT constructs all models consistent with unbroken spatial diffs
on the slice

e Lagrangian from spatially covariant functions of intrinsic and
extrinsic curvature, lapse (and their covariant derivatives,
acceleration)

e Second order theories in both space and time derivatives lead to
Horndeski/GLPV Lagrangian

e All such cases give quadratic action for scalars and tensors in their
normal form with sound speed and normalization as parameters

e Parameters can have arbitrary time dependence in EFT



Summary of Lecture I

e Generalized slow roll provides an iterative approach to solving
Mukhanov-Sasaki equation for

— Modefunctions
— Power spectra

— Bispectra (next lecture), . . .

e Characterized by
— Source of excitations from de Sitter modefunctions
— Window function for freezeout
e For up to order unity excitations, GSR characterized by single
source function

— (& for scalars and tensors separately

e Tensor usually suppressed compared with scalars
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Optimized Slow Roll



Deviations from Scale Invariance

e If f ~const.

1
~ r2
f ?—;zl
Nearly scale independent power spectrum in ordinary slow roll
approximation

A%

e Net deviations from scale invariance in amplitude observationally
small across k-efolds 0 In k£ in CMB

6 In A%
—n,—1
SInk
and for models, typically for inflation to end in N ~ 60 efolds
. 1
N

e Deviations need not vary equally slowly in A In &



Generalized Slow-Roll Deviations

e In EFT, coefficients can have arbitrary time dependence as long as
they don’t cause inflation to end

e GSR allows us to separate these two senses of deviations from
scale-invariance: amplitude and temporal frequency

e Two pieces of the slow roll approximation:

— Average amplitude of modefunction deviations
G'=1-n,=0O(1/N)
— Slowness of the temporal variation
G" /G = O(1/AN) = G?») = O(1/NANP™)

e Usual slow roll approximation conflates N ~ 60 and AN by
implicitly assuming that inflation has only one feature: its end



Generalized Slow Roll
e For1 < AN < N need to keep O(1/NANP~1) as leading order

e In GSR, this means we can use the leading order in modefunction
amplitude deviation

X

In A% ~ —/ @W’(:p)G(lnx) + ...
0

and Taylor expand G around the epoch of horizon crossing z ¢

. G
G(lnx) :ZG S'nxf)(ln:c—lnxf)p
- !

e Integrals can be precomputed

1 [>d
qp(Inxys) = ——'/ —xW’(x)(lnaj —Inzs)?
p-Jo X



Freezeout Window

o W' decreases rapidly for z < 1 or —Inz > 0, freezing out G
according to the pretabulated g, coetficients

4

subhorizon superhorizon

° |
| f\

W’




Generalized Slow Roll

e Leads to a series expansion of the power spectrum that converges
if AN > 1

In A% ~ G(lnwzy) + Z q,(In 2 ;)G (In ;)
p=1
e Taylor expansion in GG then defines tilt and running of tilt
d/dInk = —d/dIns

dGP (Inzy)
dink

e Tilt associated with G’ to leading order in 1/AN

— —G(p+1)(ln T)

d1ln A2

_ / (r+1)
ne—1 = T ~ —G (Inzy) qu G (Inz )




Running of tilt

e Running of tilt G” to leading order in 1/AN

dn
dlnk

a = ~G'(Inzy) + quG(p+2)(ln )
p=1

e Since G /G' = O(1/AN), running of the tilt is only suppressed
vs tilt by 1/AN not 1/N as usually assumed

e With AN ~ few, running can be observably large if AN relatively
small

e If AN small, then higher order terms in evaluating tilt and running
become relatively more important too

e Taylor series still leaves unspecified the epoch around horizon
crossing of the expansion which can be optimized...



Optimized Slow Roll

e Weights g, on Taylor coetficients depend only x ¢

e Enhance the accuracy of the Taylor expansion by choosing the
freezeout epoch x ;s to zero out next g, in the series



Optimized Slow Roll

e Weights g, on Taylor coetficients depend only x ¢

e Enhance the accuracy of the Taylor expansion by choosing the
freezeout epoch x ;s to zero out next g, in the series

e Leading Order:

— Keep only leading order term, set ¢; (In zs) = 0 by choosing
Inz; = 1.06, 1.e. around 1-efold before horizon crossing

— As accurate as retaining next order term but leaving Inz ¢ = 0



Optimized Slow Roll

e Weights g, on Taylor coetficients depend only x ¢

e Enhance the accuracy of the Taylor expansion by choosing the
freezeout epoch x ;s to zero out next g, in the series

e Leading Order:

— Keep only leading order term, set ¢; (In zs) = 0 by choosing
Inz; = 1.06, 1.e. around 1-efold before horizon crossing

— As accurate as retaining next order term but leaving Inz ¢ = 0

e Next Order:
— Retain ¢; and set ¢a(Inx¢) = 0 by choosing In x s = 0.22
— As accurate as retaining next-to-next order term for generic In z¢.

e Self consistent order counting between observables (remaining
error mainly in In k£ <+ N not between observables)



Slow Roll Parameters

e GSR parameters G <+ more familiar slow-roll parameters

_ 2 b.eycs aHs
G:—anf—|—§(lnf)’, f oy 7 e




Slow Roll Parameters

e GSR parameters G <+ more familiar slow-roll parameters

begcs aHs
= 2Inf+ - (lnf) f o<y O

¢ . a
~ dlns dN
e Evolution of H (and eg)
_ dlnH 5 _ldlney
€H AN 1 5 AN CH,
do,
Op+1 = N + 0 (51 pEH)
e Evolution of c,
d In ¢4 _doy,




Slow Roll Parameters

e Evolution of normalization b,

_ dlInb, B

d&,
51 — AN ) £p+1 — d_N7

e Similar hierarchies for ¢; and b; tensor functions

e For explicit relations:



Slow Roll Parameters

e Evolution of normalization b,

_ dInby _dg,

51: AN ) gp—l—lsza

e Similar hierarchies for ¢; and b; tensor functions

e For explicit relations:

e For canonical scalar only €y, 9,
e For P(X, ¢) add o,
e For Horndeski/GLPV add &,

e GSR expansion involves keeping higher order in p but still
dropping products of slow roll parameters



Slow Roll Parameters

e In canonical inflation, can also relate GP) to derivatives of the
potential V' (P)




Slow Roll Parameters

e In canonical inflation, can also relate GP) to derivatives of the
potential V' (P)

V V

e Ordinary slow roll approximation assumes

NP e+
- ()

| 1
{€H7 517 O-z',17£1} — O (N) 7 {529, 0-]97 fp, Vp} B O (M)



Slow Roll Parameters

e In canonical inflation, can also relate G to derivatives of the
potential V' (P)

VONPT e+
= (7) v

e Ordinary slow roll approximation assumes

| 1
{€H7 517 O-z',17£1} — O (N) 7 {529, O-Z” fp) Vp} B O (ﬁ)

so that to leading order we need only keep the first set

e More generally, evolution of the first set of slow roll parameters
can take place on a different, shorter time scale AN < N

1 1
{€H75170-17€1} =0 (N) ) {5p70p7€pavp} =0 (NANp_1>




Slow Roll Parameters

e If one uses the ordinary slow roll approximation to decide which
parameters to keep can lead to very wrong relationships between
tilt n, and running o.

e For example Hubble flow parameters

de,
d_N — €p€pt1, €1 = C€H
e Constructs the time derivative of each order as the product of two

slow parameters and builds in a counting procedure where
AN ~ N and ¢, = O(1/N).

e Inconsistent to truncate based on keeping a fixed order in Hubble
flow parameters

e Can falsely rule out true model because of inconsistent evaluation
between observables



Monodromy

e Consider a monodromy potential

V(¢) = Ao+ A* cos %—F@

e Inflaton rolls over oscillations in 60 > AN > 1
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Primordial Black Holes

e Amplify power on small scales via running of the mass

V(9) = Vi + 5mi(ing)s?

e For primordial black holes to be all the dark matter, a large feature

during inflation 1s required violating the ordinary slow roll
approximation
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G-1inflation
e Transition from cubic galileon potential-driven inflation to
canonical inflation — n, induced by transition not end of inflation

e Large but allowed running, reduced tensors given n

Planck TT + lowP + BKP + BAO

AN = 50 C\1<]Q:
AN = 60
Il 5

H
=
L

*

Tensor-to-scalar ratio (7)

107°F @  Chaotic inflation
s (7 — model

% Step model (AN = 55)
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Features and their Templates



Features

e If the timescale for variations in the EFT coefficients is AN < 1
all generic constructions based on slow-roll parameters (including
optimized slow roll) fail

e GSR itself can handle high frequency cases so long as the
amplitude of the features is still less than O(1)

e Useful in constructing parameterized templates for observational
features in the power spectrum: examples
Power spectrum steps
Monodromy

e Templates enable extensive likelihood analyses (MCMC) where
numerical computation of each inflationary model impractical

e Templates enable matching predictions in multiple observables for
confirmation/refutation



Low Multipole Glitch

e Feature in the low-{ CMB power spectrum first seen in WMAP,
confirmed in Planck, responsible for cosmological parameter shifts
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4

Step Potential

e Fits a steplike potential with transition AN < 1, causing
increasingly large slow roll parameters

e Causes oscillations in the power spectrum, not A% o< H* /ey

e SR qualitatively wrong; requires GSR approach to capture
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Oscillations

e Rapid changes represent sharp temporal features
e Imprint sharp features in spatial correlation

e A single sharp temporal feature leads to linear ringing in Fourier

space, damped by the width
— Example: steps

e Periodic features generate resonances with the window, leads to
logarithmic ringing in Fourier space

— Example: monodromy



Freezeout Window

e Convolve G'(In s) source with W (ks) window
e Single sharp temporal feature leads to damped linear oscillations

e Periodic source leads to resonant logarithmic oscillations

logarithmic

[E—
T T

transfer function W(ks)
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Step Potential

e Second derivative of f makes step potential look like derivative of
delta function in source GG’

e Dip and bump and damped oscillations in curvature power
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CMB Glitch

e GSR sufficiently accurate for testing step model against CMB data
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Sharp step

e With sharp step G’ is mainly derivative of ¢ functions — integrate
by parts analytically

e Analytic template for fast searches for features
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Search for Features

e Early indications of oscillatory features in WMAP and Planck
were followed up with these detailed templates

e Preference for features weakened with higher multipole data
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Polarization and Bispectrum



[.esson from Feature Searches

e Inflationary features can fit random noise fluctuations in any one
data set
e Important to check matching features in different observables
— Different multipoles of temperature power spectrum
— Matter power spectrum
— Polarization power spectrum

— Bispectrum



Polarization Transfer

e Due to projection, polarization features in the acoustic regime are
sharper and weighted to slightly higher ¢
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Quadrupole Projection

e Polarization features follow the projection of quadrupole moments

quadrupole projected
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Y
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Polarization Features

e For step models that fit the glitch, sharper matching polarization
features that can verify/falsity them

e Requires high signal-to-noise EE measurements at £ = 20 — 60

e Can be separated from high-z reionization
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GSR EFT Bispectrum

e Expand EFT Lagrangian to cubic order: L3

e Cubic operators represent interactions with interaction
Hamiltonian H; = — [ d°xL;

e 10 distinct cubic EFT operators

e Calculate bispectrum 1in the interaction picture using in-in
formalism

A A

(Ricy (1) Ricy (1) Rigg (1)) = 2R —’i/_* At (Riacy (1) Ricy (£ Racg (1) Hr (1))

e [teratively expand mode functions to define GSR integral
expressions for the bispectrum



GSR EFT Bispectrum

e Leading order GSR efficiently computes all triangle configurations
of the bispectrum in the form

Br(ky, ko, ks) = Ar(k1)Ar (k) Ar(ks) Z Ti(k1, k2, ks)

y / 95 & (In )W/ (K's)

S
K = ky + ko + ks 1s the perimeter of the triangle

e Elements
— Ax: R-modefunction or square-root of power spectrum
— 1;: source independent configuration shape
— S;: source from the EFT cubic interactions

— W;: freezeout window for the source



Sharp Step Bispectrum

e Sharp step leads to rising equilateral bispectrum until finite-width
damping scale

e Eventually so large that excitations are strongly coupled, beyond
EFT

e Oscillatory shape requires new template forms — GSR provides
accurate analytic expressions
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Sharp Correlation Function Features

e Sharp step: ringing at high k represents sharp feature in physical
space at much larger scales

e Sharpness blurred out by temporal width of feature

e CMB anomalies at large angular scales may have subtle signatures
at high multipole

ATwo point correlation
Three point correlation




Reconstructing EFT



Power Spectrum Features

e Step and monodromy examples highlight that features in power
spectrum are highly constrained by inflationary origin

e Sharp features in k-space must be accompanied by ringing

e Ringing must appear stronger in CMB polarization than
temperature from recombination

e Matching, but lower signal to noise, features in the temperature
and polarization bispectra

e Features can easily fit random noise 1n any one of these
measurements but not all

e Inverse problem of reconstructing the EFT source function(s)

G, .. .]



source function G’

Reconstruction

e By going directly from observables to the inflationary source we

guarantee that inferred features are consistent with single field

inflation

e If we reconstruct A% first instead, a sharp k-space feature with no

0.2

0.1

ringing pattern would be inconsistent with single field EFT
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Low Multipole Anomaly

e Using 10 parameters per decade for G'(In s) from
200 < s/Mpc < 20000 to fit out low multipole residuals from a
pure tilt

Smoother peaks
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Low Multipole Anomaly

e Reconstruction parameters also allow one to marginalize impact of
non-power law power spectra on cosmological parameters

e Low multipole anomaly influences H - with only ¢ < 1000 data,
H shifted higher to fit anomaly

e After marginalizing G’ source parameters, even ¢ < 1000 WMAP
data compatible with low H

e Planck data at £ > 1000 have smoother temperature peaks than
allowed by high H,



H Tension

e Shift to lower Hj indicates more CDM relative to radiation from
driving effect of potential decay

e Increased angular scale of sound horizon compensated by larger
distance to recombination through lower H,

e > 3o tension with direct H, distance ladder measurements

0+ 1)Cy/2m

O'E_lng/dp




Polarization

Polarization £'F/ and T'FE should provide matching inflationary
features and also distinct signatures of low H solution

Planck 2015 7'E spectrum anomalously sensitive to H due to a
single deviant multipole band
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Lensing Anomaly

Planck TT poOwer Model — ilr,ld\ependent tension, 4 lens PCs

/ TT + lowTEB |

specta want even smoother
peaks than low H
achieves leaving remaining

oscillatory residuals | Reconstruction /[N /" \ TTTEEE + lowTEB

Power

If lensing amplitude spectra

1s allowed to vary, then

residuals can be better fit

07 08 09 1.0 11 12 13 14 15
since lensing smooths peaks v

Lens reconstruction from quadratic estimators do not show higher
lensing

Using principal components, this tension 1s independent of
cosmological model at low-z (dark energy, etc)



EFT Source Reconstruction

e In source function space, 20 parameters currently mainly fit noise

— good for marginalizing impact on cosmological parameters

— bad for trying to interpret implications for inflation

e Filter out noise by constructing principal components, rank ordered
to best constrained modes, of G’ parameter covariance matrix

e 3 PCs constrained with 95% local CL deviations 1n m; — ms

oG’
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2.4

Suppression of Large Scale Power

e Inflationary source
corresponds to sharp

suppression of large
scale power

e Predicts £ I/ polari-
zation feature sharper
and at slightly higher

multipole

e More generally, T/ A= m—rr
reconstruction from 7T k [Mpc!]

makes predictions for polarization

e Testing polarization predictions immune to look elsewhere effect...



Polarization Consistency

e Polarization predictions under single field inflation from WMAP

temperature power spectrum

— Test origin of temperature features

— Violations could even falsify single field EFT inflation itself
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Operators to Observables

e From operators to observables and back
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Summary of Lecture 11

e GSR allows for temporal features during (rather than purely
associated with the end) of inflation

e New scale AN in efolds breaks the ordinary slow roll hierarchy
assumption that higher parameters are suppressed by increasing
powers of NV ~ 60

e If AN > 1, GSR is solved by a generalization of slow roll
hierarchy
— Taylor expansion of GG source of exitations
— Optimized evaluation point to zero out next term 1n series
— Consistent predictions between observables ng, — 1, «, . ..

— Necessary when AN < N, a comparable tong — 1



Summary of Lecture 11

o If AN < 1, GSR predicts ringing of power spectra in a form that
must be specialized to individual cases

— Monodromy
— Steps
which usually leads to analytic templates for AN < 1, enabling
fast MCMUC searches
e Allowing AN < 1 leads to noise in CMB TT being fit by
inflationary features but also predicts consistency relations with
— Polarization (and tensors)

— Bispectrum



Summary of Lecture 11

e Reconstructing the EFT of inflation source GG (or G) directly from
observations
— Enforces inflationary prediction: sharp features — oscillations

(cf. power spectrum reconstruction)

— Marginalize inflationary assumptions for cosmo params ()
— Highlights low-£ power anomaly as locally significant

— Testable predictions for polarization

— Ultimately test validity of whole single field paradigm



