Generalized Slow Roll in the Effective Field Theory of Inflation

Wayne Hu July 2018, YITP Kyoto

Outline

- Beyond Canonical Slow-Roll Inflation
- Single Clock and ADM
- EFT of Single Field Inflation
- Power Spectra
- Generalized Slow Roll

Outline

- Beyond Canonical Slow-Roll Inflation
- Single Clock and ADM
- EFT of Single Field Inflation
- Power Spectra
- Generalized Slow Roll
- Optimized Slow Roll
- Features and their Templates
- Polarization and Bispectrum
- Reconstructing the EFT

Outline

- Beyond Canonical Slow-Roll Inflation
- Single Clock and ADM
- EFT of Single Field Inflation
- Power Spectra
- Generalized Slow Roll
- Optimized Slow Roll
- Features and their Templates
- Polarization and Bispectrum
- Reconstructing the EFT
- Thanks to many collaborators: Hayato Motohashi, Peter Adshead, Cora Dvorkin, Chen Heinrich, Vivian Miranda, Georges Obied, Sam Passaglia, Hector Ramirez...

Beyond Canonical Slow Roll

Constraints on Inflation Models

- Constraints on the scalar tilt n_s and tensor-scalar ratio r
- Simple featureless potentials like $m^2\phi^2$ disfavored

Beyond Canonical Slow Roll

- Simplest scale-free monomial potentials in canonical inflation coming under increasing observational pressure
- More complicated single-field models involve non-standard kinetic terms and (temporal) features with hints in large scale observables
- Requires a more general framework for the inflationary paradigm that does not assume:
 - canonical Lagrangian for scalar field
 - scale-free behavior for the full 60 efolds of inflation
 and allows model building from observations to theory
- Effective Field Theory (EFT)
 - + Generalized Slow Roll (GSR)...

Operators to Observables

• From operators to observables and back

Single Clock and ADM

Single Clock

- Single field inflation is based on the idea that there is a preferred time slicing defined by a single "clock": $\phi(t) \to t(\phi)$
- Preferred slicing breaks full 4D diffeomorphism invariance leaving only spatial diffeomorphism invariance

Single Clock

- Single field inflation is based on the idea that there is a preferred time slicing defined by a single "clock": $\phi(t) \to t(\phi)$
- Preferred slicing breaks full 4D diffeomorphism invariance leaving only spatial diffeomorphism invariance
- Geometric objects and their dynamics in this 3+1 split is best characterized in the ADM (Arnowitt-Deser-Misner) formalism
- Define most general line element: lapse N, shift N^i , 3-metric h_{ij}

$$ds^{2} = -N^{2}dt^{2} + h_{ij}(dx^{i} + N^{i}dt)(dx^{j} + N^{j}dt)$$

or equivalently the metric

$$g_{00} = -N^2 + N^i N_i, \quad g_{0i} = h_{ij} N^j \equiv N_i, \quad g_{ij} = h_{ij}$$

Single Clock

- Single field inflation is based on the idea that there is a preferred time slicing defined by a single "clock": $\phi(t) \to t(\phi)$
- Preferred slicing breaks full 4D diffeomorphism invariance leaving only spatial diffeomorphism invariance
- Geometric objects and their dynamics in this 3+1 split is best characterized in the ADM (Arnowitt-Deser-Misner) formalism
- Define most general line element: lapse N, shift N^i , 3-metric h_{ij}

$$ds^{2} = -N^{2}dt^{2} + h_{ij}(dx^{i} + N^{i}dt)(dx^{j} + N^{j}dt)$$

or equivalently the metric (inverse: g^{00} depends only on lapse)

$$g_{00} = -N^2 + N^i N_i, \quad g_{0i} = h_{ij} N^j \equiv N_i, \quad g_{ij} = h_{ij}$$

$$g^{00} = -1/N^2$$
, $g^{0i} = N^i/N^2$, $g^{ij} = h^{ij} - N^i N^j/N^2$

ADM 3+1 Split

• Useful to define the unit normal timelike vector $n_{\mu}n^{\mu}=-1$, orthogonal to constant time surfaces $n_{\mu} \propto \partial_{\mu} \phi$

$$n_{\mu} = (-N, 0, 0, 0), \quad n^{\mu} = (1/N, -N^{i}/N)$$

where we have used $n^{\mu} = g^{\mu\nu}n_{\nu}$

• Interpretation: lapse of proper time along normal, shift of spatial coordinates with respect to normal

ADM 3+1 Split

• Projecting 4D tensors onto the normal direction utilizes $n^{\mu}n_{\nu}$, e.g.

$$-n^{\mu}n_{\nu}V^{\nu}$$

 Projecting 4D tensors onto the 3D tensors involves the complement through the induced metric

$$h_{\mu\nu} = g_{\mu\nu} + n_{\mu}n_{\nu},$$

$$h^{\mu}_{\ \nu}V^{\nu} = (\delta^{\mu}_{\ \nu} + n^{\mu}n_{\nu})V^{\nu} = V^{\mu} + n^{\mu}n_{\nu}V^{\nu}$$

e.g. in the preferred slicing

$$\tilde{V}^{\mu} = h^{\mu}_{\ \nu} V^{\nu} = (\delta^{\mu}_{\ \nu} + n^{\mu} n_{\nu}) V^{\nu} = (0, V^{i} + N^{i} V^{0})$$

whose spatial indices are raised an lowered by h_{ij} :

$$\tilde{V}_i = g_{i\nu}\tilde{V}^{\nu} = h_{ij}\tilde{V}^{j}$$

Extrinsic Curvature

- 3-surface embedded in 4D, so there is both an intrinsic curvature associated with h_{ij} and an extrinsic curvature
- Extrinsic curvature $K_{\mu\nu}$ is the spatial projection of the gradient of n^{μ}

$$K_{\mu\nu} = h_{\mu}{}^{\alpha} h_{\nu}{}^{\beta} n_{\alpha;\beta}$$

Spacetime Curvature

• Likewise split the spacetime curvature $^{(4)}R$ into intrinsic $^{(3)}R=R$ and extrinsic pieces via Gauss-Codazzi relation

$$^{(4)}R = K_{\mu\nu}K^{\mu\nu} - (K_{\mu}^{\ \mu})^2 + R + 2(K_{\nu}^{\ \nu}n^{\mu} - n^{\alpha}n^{\mu}_{\ ;\alpha})_{;\mu}$$

• Last piece is total derivative so Einstein Hilbert $L_{\rm EH} = {}^{(4)}R/2$ action is equivalent to keeping first three pieces

Spacetime Curvature

• Likewise split the spacetime curvature $^{(4)}R$ into intrinsic $^{(3)}R=R$ and extrinsic pieces via Gauss-Codazzi relation

$$^{(4)}R = K_{\mu\nu}K^{\mu\nu} - (K_{\mu}^{\ \mu})^2 + R + 2(K_{\nu}^{\ \nu}n^{\mu} - n^{\alpha}n^{\mu}_{\ ;\alpha})_{;\mu}$$

- Last piece is total derivative so Einstein Hilbert $L_{\rm EH}={}^{(4)}R/2$ action is equivalent to keeping first three pieces
- Gravitational action of GR composed of extrinsic $K_{\mu}^{\ \nu}$, and intrinsic $R_{i}^{\ j}$ curvatures
- No dependence on slicing and threading $N, N^i \leftrightarrow \text{full diffs}$
- In GR any preferred slicing is picked out by the matter distribution $L = L_{\rm EH} + L_{\rm matter}$ not gravity
- Alternately view "matter" with preferred homogeneous slicing + "gravitational" Lagrangian \to total depend on N,t

K_{ij} as Metric "Velocity"

In terms of the ADM variables

$$K_{ij} = \frac{1}{2N} (\partial_t h_{ij} - N_{j|i} - N_{i|j})$$

where | denotes the covariant derivative with respect to h_{ij}

- Extrinsic curvature acts like a "velocity" term for h_{ij} moving the metric from one slice to another with the coordinate freedom of the lapse and shift
- In GR: define h_{ij} and h_{ij} on the spacelike surface and integrate forwards, with lapse and shift defining the temporal and spatial coordinates

Beyond GR

• In a general scalar-tensor theory in addition to functions of N, t Lagrangian involves curvatures

$$L(K_i^j, R_i^j, N; t)$$

in non EH combinations leading to different kinetic structure for spatial metric: Horndeski/GLPV

- Extra spatial derivatives without temporal derivatives typically imply extra degrees of freedom hidden by the preferred slicing
- \bullet Derivatives of N usually make it dynamical: Ostrogradsky instability
- Special degenerate theories ("DHOST") propagate one combination of the lapse and spatial metric...

Beyond Beyond GR

• DHOST adds degenerate combinations built out of the acceleration: directional derivative of the normal along the normal

$$a_{\mu} = (n_{\mu;\beta})n^{\beta}$$

which contains spatial derivatives of the lapse and/or

$$\beta = n^{\mu} (\ln N)_{,\mu}$$

which contains temporal derivatives as well

- Define EFT as the most general spatially covariant combination of these ADM quantities, expanded around an FRW backgrounnd
- EFT of inflation as this EFT of "dark sector" under the assumption that other components of matter are negligible and background is near de Sitter . . .

EFT of Single Field Inflation

Single Field Inflation

• General Lagrangian for metric: preferred slicing but unbroken spatial diffs Cheung et al 2008,...,Hu & Motohashi 2017

$$S = \int d^4x N \sqrt{h} L(N, K^i_j, R^i_j; t)$$

where the function L can be any spatially covariant contractions of the ADM geometric objects

- Can extended to include covariant spatial derivatives ∇_i Gleyzes et al 2015, dynamical lapse (a_μ, β) Langois et al 2017, Hu & Motohashi, in prep and shift, but these generally introduce extra dofs
- In preferred "unitary" slicing, inflaton degree of freedom is in the metric

Inflaton as Stuckelberg Field

- Restore temporal diffs by introducing $\phi(\mathbf{x}, t)$ as a Stuckelberg field, or equivalently a gauge transformation out of unitary gauge
- On a new time slicing of constant

$$t \to t - \pi(\mathbf{x}, t)$$
 or $\delta \phi(\mathbf{x}, t) = \dot{\phi}\pi$

- Work with π (or $\delta\phi$) in an arbitrary gauge Spatially flat gauge: scalar $\delta h_{ij}=0$, non-dynamical lapse and shift
- Or alternately stick with unitary gauge and work with δh_{ij} as the dynamical variables as we will continue to do

Examples

Canonical scalar field

$$X = \nabla_{\mu}\phi\nabla^{\mu}\phi$$
, potential $V(\phi)$

$$L_{\phi} = -\frac{X}{2} - V$$

• In unitary gauge $\phi(t)$ so accounting for the lapse $X = g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$

$$X = -\frac{\dot{\phi}^2}{N^2}$$
 and $V[\phi(t)] = V(t)$

and

$$L_{\text{EH}} + L_{\phi} = L_{\text{EH}}(K_{j}^{i}, R) + \frac{\dot{\phi}^{2}(t)}{2N^{2}} - V(t)$$

= $L(K_{j}^{i}, R, N, t)$

Examples

• K-essence $L_{\phi} = P(X, \phi)$ also gives

$$L(K_j^i, R, N, t)$$

but with a more general functional form for the N dependence

• Horndeski and GLPV theories: specific contractions of K_j^i , R_j^i

$$L = A_{2}(N, t) + A_{3}(N, t)K + A_{4}(N, t)(K^{2} - K_{j}^{i}K_{i}^{j})$$

$$+ B_{4}(N, t)R + A_{5}(N, t)(K^{3} - 3KK_{j}^{i}K_{i}^{j} + 2K_{j}^{i}K_{k}^{j}K_{i}^{k})$$

$$+ B_{5}(N, t)(K_{j}^{i}R_{i}^{j} - \frac{1}{2}KR)$$

$$= L(K_{j}^{i}, R_{j}^{i}, N, t)$$

• DHOST adds dependence on a_i and β for lapse that is dynamical but subsumed into a single scalar degree of freedom

EFT Coefficients

• These general models can all be described by EFT coefficients representing the Taylor expansion of L around a spatially flat FRW background

$$\bar{N} = 1, \quad \bar{N}^i = 0, \quad \bar{h}_{ij} = a^2 \delta_{ij}$$

where given $H = d \ln a / dt$

$$\bar{K}^i_{\ j} = H\delta^i_{\ j}, \quad \bar{R}^i_{\ j} = 0$$

with time dependent expansion coefficients for $X, Y, Z \in K, R, N$

$$L\Big|_{\mathbf{b}} = \mathcal{C}, \quad \frac{\partial L}{\partial Y_{j}^{i}}\Big|_{\mathbf{b}} = \mathcal{C}_{Y}\delta_{i}^{j},$$

$$\frac{\partial^{2} L}{\partial Y_{i}^{i}\partial Z_{\ell}^{k}}\Big|_{\mathbf{b}} = \mathcal{C}_{YZ}\delta_{i}^{j}\delta_{k}^{\ell} + \frac{\tilde{\mathcal{C}}_{YZ}}{2}(\delta_{i}^{\ell}\delta_{k}^{j} + \delta_{ik}\delta^{j\ell}), \quad \dots$$

Power Spectra

Quadratic Action

• Expand Lagrangian in the metric fluctuations: scalar and tensor

$$N = 1 + \delta N$$
, $N_i = \partial_i \psi$, $h_{ij} = a^2 e^{2\mathcal{R}} (\delta_{ij} + \gamma_{ij})$

- In linear theory, scalars and tensors decouple due to the symmetry of background
- Consider their quadratic Lagrangians separately

$$\mathcal{L} = \sqrt{-g}L = N\sqrt{h}L$$

For tensors

$$\mathcal{L}_2 = a^3 \left[\frac{\tilde{\mathcal{C}}_{KK}}{8} \dot{\gamma}_{ij}^2 - \frac{\mathcal{C}_R}{4a^2} (\partial_k \gamma_{ij})^2 \right].$$

Gravitational Waves

• For plane wave fluctuations in the two polarization states $\gamma_{+,\times}$

$$\gamma_{ij}(t,z) = \gamma_{+}(t)e^{ikz}(\delta_{ix}\delta_{jx} - \delta_{iy}\delta_{jy}) + \gamma_{\times}(t)e^{ikz}(\delta_{ix}\delta_{jy} + \delta_{jx}\delta_{iy})$$

Quadratic Lagrangian

$$\mathcal{L}_2 = \sum_{\lambda = +, \times} \frac{a^3 b_t}{4c_t^2} \left(\dot{\gamma}_{\lambda}^2 - \frac{c_t^2 k^2}{a^2} \gamma_{\lambda}^2 \right)$$

Modified propagation speed

$$c_t^2 = \frac{2\mathcal{C}_R}{\tilde{\mathcal{C}}_{KK}}$$

Non-canonical normalization

$$b_t = 2\mathcal{C}_R$$

• In $P(X, \phi)$ and canonical, $c_t = b_t = 1$

Scalar Quadratic Action

- For scalars, varying with respect to the lapse and shift yield constraints by which they can be eliminated
- Quadratic Lagrangian for k-modes of \mathcal{R} (for second order in space and time derivs)

$$\mathcal{L}_2 = \frac{a^3 b_s \epsilon_H}{c_s^2} \left(\dot{\mathcal{R}}^2 - \frac{c_s^2 k^2}{a^2} \mathcal{R}^2 \right)$$

where the slow roll parameter

$$\epsilon_H = -\frac{d\ln H}{d\ln a}$$

- Sound speed and normalization can be written in terms of the EFT coefficients \mathcal{C} (see Motohashi & Hu 2017 for specific form)
- For $P(X, \phi)$, $b_s = 1$, $c_s =$ arbitrary and for canonical scalar $b_s = c_s = 1$

Equations of Motion

- Tensor and scalar quadratic Lagrangians follow the same form but with different normalization and sound speeds
- Equations of motion follow the general form with different sound horizons

$$s_{s,t} = \int d\ln a \frac{c_{s,t}}{aH}$$

and different normalizations

$$f_{s,t} = 2\pi z_{s,t} \sqrt{c_{s,t}} s_{s,t}$$

determined by the source to the Mukhanov-Sasaki variable $z_{s,t}$

$$z_s = \frac{a}{c_s} \sqrt{2b_s \epsilon_H}, \qquad z_t = \frac{a}{c_t} \sqrt{b_t/2}$$

Modefunctions & Power Spectra

 Mukhanov-Sasaki variable or modefunctions of the scalar curvature and tensor polarization states

$$\sqrt{\frac{k^3}{2\pi^2}}\mathcal{R} = \frac{x_s y_s}{f_s}, \qquad \sqrt{\frac{k^3}{2\pi^2}}\gamma_{+,\times} = \frac{x_t y_t}{f_t}$$

obey the general form with x = ks

$$\frac{d^2y}{dx^2} + \left(1 - \frac{2}{x^2}\right)y = \frac{f'' - 3f'}{f}\frac{y}{x^2}, \qquad ' = \frac{d}{d\ln s}$$

with Bunch-Davies initial conditions where $\lim_{x\to\infty} y = e^{ix}$

• Power spectra are evaluated at $x \ll 1$ where the perturbations are well outside their sound horizons

$$\Delta_{\mathcal{R}}^2 = \lim_{x_s \to 0} \left| \frac{x_s y_s}{f_s} \right|^2, \qquad \Delta_{\gamma}^2 = \lim_{x_t \to 0} \left| \frac{x_t y_t}{f_t} \right|^2,$$

Generalized Slow Roll

Mukhanov-Sasaki Equation

- Solutions to the modefunction evolution in general require numerical solutions to the Mukhanov-Sasaki equation
- Approximations involve assuming that the net fractional change in f or $\Delta \ln f$ across the efolds of evolution is small in amplitude
- Usual lowest order slow roll approximation takes f=const., evaluated around sound horizon crossing so

$$y \to y_0 = \left(1 + \frac{i}{x}\right)e^{ix}$$

and

$$\Delta_{\mathcal{R}}^2 \approx \frac{1}{f_s^2} \bigg|_{x_s=1}, \qquad \Delta_{\gamma}^2 \approx \frac{1}{f_t^2} \bigg|_{x_t=1}$$

• Focus on scalar sector, so hereafter drop subscript "s" for compactness

Beyond Slow Roll

- Sufficient inflation requires only that $\epsilon_H \ll 1$
- Evolution of f on timescales shorter than the 60 efolds of inflation lead to non-power law (constant tilt n_s-1) spectra
 - running of tilt that is of order the tilt
 - monodromy oscillations in the power spectrum
 - step features that cause power spectrum glitches...
- As long as the modefunction remains sufficiently close to the leading order solution y_0 , "generalized slow-roll" applies
- Iteratively correct solution y to the Mukhanov-Sasaki equation

$$y = y_0 + y_1 + \dots$$

Generalized Slow Roll

• Construct Green function out of the source free solution y_0 and consider the f-terms as external source

$$\frac{d^2y_1}{dx^2} + \left(1 - \frac{2}{x^2}\right)y_1 = \frac{f'' - 3f'}{f}\frac{y_0}{x^2}$$

to obtain the first order correction Stewart 2002

$$y_1(x) = -\int_x^\infty \frac{du}{u^2} \left(\frac{f'' - 3f'}{f}\right) y_0 \text{Im}[y_0^*(u)y_0(x)]$$

and iteratively improve

$$y_n(x) = -\int_x^{\infty} \frac{du}{u^2} \left(\frac{f'' - 3f'}{f} \right) y_{n-1} \text{Im}[y_0^*(u)y_0(x)]$$

• Series converges if the amplitude of the deviation of y from y_0 is small – does not necessarily require evolution of f is slow

Generalized Slow Roll

- This basic technique holds for general set of cases
- Includes ultra slow roll where $f^{\prime}/f=3$ and the curvature does not freeze out
- Flaws for cases when the curvature does freeze out based on further assumptions:

If we additionally assume $|f'/f| \ll 1$ the first order power spectrum becomes Stewart 2002

$$\Delta_{\mathcal{R}}^2 = \frac{1}{f^2} \left[1 + \frac{2}{3} \frac{f'}{f} + \frac{2}{3} \int_x^{\infty} \frac{du}{u} W(u) \left(\frac{f'' - 3f'}{f} \right) \right]$$

W is a window function that determines when excitations from the source freeze out: not instantanously at horizon crossing...

Freezeout Window

• Window determines how excitations freeze out (see second lecture)

$$W(x) \equiv \frac{3\sin 2x}{2x^3} - \frac{3\cos 2x}{x^2} - \frac{3\sin 2x}{2x}$$

Flaws

This form of GSR suffers from notable flaws

$$\Delta_{\mathcal{R}}^2 = \frac{1}{f^2} \left[1 + \frac{2}{3} \frac{f'}{f} + \frac{2}{3} \int_x^\infty \frac{du}{u} W(u) \left(\frac{f'' - 3f'}{f} \right) \right]$$

- power spectrum is not necessarily positive definite
- depends on arbitrary superhorizon $x \ll 1$ epoch for evaluation
- does not enforce constant superhorizon curvature
- Can make GSR less accurate than ordinary slow roll if x too small
- Worse yet, these flaws very apparent when f'/f becomes large
- Rectify these flaws to construct a practically useful approach
- First recall how and why superhorizon curvature is constant...

Curvature Freezeout

- Transformation $\mathcal{R}=xy/f$ lies at the heart of poor convergence of GSR, especially if evaluated well after horizon crossing $x\ll 1$
- Canonical field highlights problem: normalized field y is related to scalar field fluctuation $\delta\phi$ in spatially flat gauge $y=-\sqrt{2k}a\delta\phi$
- Field fluctuation does not freezeout but follows the rolling of the background field: $\delta\phi\propto\dot{\phi}$ [exception: ultra slow roll where f''/f=3f'/f on a flat potential]

Curvature Freezeout

• For a canonical field where

$$\mathcal{R} = -\frac{\delta\phi}{d\phi/dN}$$

generally freezes out on superhorizon scales

- More generally consequence of the separate universe approximation
- If superhorizon fluctuations behave as the background of a local FRW expansion, the local curvature measured by freely falling observers $K_{\rm local}$ = const Hu & Joyce 2016
- It is sufficient that unitary gauge observers see \mathcal{R} =const. for separate universe approximation to hold
- Iterative approach in y mixes order in \mathcal{R} when f evolves

Step Example with y_1

- Example: step in potential evolution of f causes noticeable discrepancy for superhorizon modes at the step Dvorkin & Hu 2010
- Error can be arbitrarily large as evaluation point $x_{\min} \to 0$

GSR for Large Power Spectrum Features

• Solution: reorganize iterations in terms of \mathcal{R}_n instead of y_n by including f'/f corrections that appear at next order Dvorkin & Hu 2010

$$\ln \Delta_{\mathcal{R}}^{2} \approx G(\ln x) + \int_{x}^{\infty} \frac{du}{u} W(u) G'(\ln u)$$
$$\approx -\int_{x}^{\infty} \frac{du}{u} W'(x) G(\ln u),$$

where integration by parts $\to x$ independence, $W'(x \to 0) = 0$

$$G \equiv -2\ln f + \frac{2}{3}(\ln f)'$$

and the replacement $g \to G'$ involves $(f'/f)^2$ corrections from the next order

$$G' = \frac{2}{3} \left[g - \left(\frac{f'}{f} \right)^2 \right]$$

GSR for Large Power Spectrum Features

- Superhorizon evolution of G no longer changes \mathcal{R} and the evaluation point can now be taken to zero $x \to 0$
- Exponential form guarantees positive definite power spectrum, controlled approximation even for large features
- Derivation can be formalized by directly iterating in \mathcal{R} Miranda, Hu, (Heinrich née) He, Motohashi 2015

$$\mathcal{R} = \mathcal{R}_0 + \mathcal{R}_1 + \mathcal{R}_2$$

with the tradeoff being that the Bunch-Davies initial condition $\mathcal{R}_0(x) = xy_0/f_0$ depends on $f_0 = f(x_0)$

$$\mathcal{R}_n(x) = 2 \int_{x}^{x_0} \frac{du}{u} \frac{f'}{f} \frac{x}{u} \frac{d\mathcal{R}_{n-1}}{du} \operatorname{Im}[y_0^*(u)y_0(x)]$$

GSR for Large Power Spectrum Features

- Result is the same structure introduced in Dvorkin & Hu 2010 but with a more systematic order counting
- Exponentiation appears because a modefunction excitation generates further excitations Miranda, Hu, He, Motohashi 2016
- Functional form even in the nonlinear regime is highly constrained by relation between Bogoliubov coefficients ($|\alpha|^2 = |\beta|^2 + 1$) for subhorizon sources

$$\Delta_{\mathcal{R}}^2 = A(\cosh B - \sinh B \cos \varphi)$$

where B can be related to the first order excitation for an impulse source and explains the origin of exponentiation

• Second order expression is sufficiently accurate in current observables up to order unity deviations in power spectra

Second Order in GSR

• Iterating to second order Choe, Gong, Stewart 2004; Dvorkin & Hu 2010

$$\Delta_{\mathcal{R}}^2 \approx e^{I_0} \left[\left(1 + \frac{1}{4}I_1^2 + \frac{1}{2}I_2 \right)^2 + \frac{1}{2}I_1^2 \right]$$

where I_0 gives the first order piece and the second order corrections are

$$I_1 = \frac{1}{\sqrt{2}} \int_0^\infty \frac{dx}{x} G'(\ln x) X(x),$$

$$I_2 = -4 \int_0^\infty \frac{dx}{x} \left(X + \frac{1}{3} X' \right) \frac{f'}{f} \int_x^\infty \frac{du}{u^2} \frac{f'}{f}$$

with

$$X(x) = \frac{3}{x^3} (\sin x - x \cos x)^2$$

Single Source Function G'

- I_1 represents the square of first order excitations (imaginary vs real component)
- I_2 represents an excitation from an excitation and is suppressed before horizon crossing Miranda, Hu, He, Motohashi 2015
- For large, rapid, power spectrum features keeping only I_1 often suffices; magnitude is a control parameter for iterative expansion

$$I_1 < 1/\sqrt{2}$$

- For slowly varying power spectrum features I_1 and I_2 partially cancel but their net effect then too small to observe
- Power spectrum becomes a functional of G' alone

$$\Delta^2_{\mathcal{R}}[G'] \to G'[\Delta^2_{\mathcal{R}}]$$

allowing the data to reconstruct G'

Single Source Function G'

• Single source approximation vs. subhorizon resumation vs numerical for large potential step Miranda, Hu, He, Motohashi 2015

Tensor Spectrum

- Tensor fluctuations follow the same rules but with the single function being G_t^\prime
- Tensor features usually small compared with scalars for canonical scalar since H typically is smoothly varying Gong 2004; Hu 2014

Summary of Lecture I

- Single field inflation is defined by having a single clock or preferred ADM time slicing
- EFT constructs all models consistent with unbroken spatial diffs on the slice
- Lagrangian from spatially covariant functions of intrinsic and extrinsic curvature, lapse (and their covariant derivatives, acceleration)
- Second order theories in both space and time derivatives lead to Horndeski/GLPV Lagrangian
- All such cases give quadratic action for scalars and tensors in their normal form with sound speed and normalization as parameters
- Parameters can have arbitrary time dependence in EFT

Summary of Lecture I

- Generalized slow roll provides an iterative approach to solving Mukhanov-Sasaki equation for
 - Modefunctions
 - Power spectra
 - Bispectra (next lecture), . . .
- Characterized by
 - Source of excitations from de Sitter modefunctions
 - Window function for freezeout
- For up to order unity excitations, GSR characterized by single source function
 - -G for scalars and tensors separately
- Tensor usually suppressed compared with scalars

Generalized Slow Roll in the

Effective Field Theory of Inflation

Wayne Hu July 2018, YITP Kyoto

Outline

- Beyond Canonical Slow-Roll Inflation
- Single Clock and ADM
- EFT of Single Field Inflation
- Power Spectra
- Generalized Slow Roll
- Optimized Slow Roll
- Features and their Templates
- Polarization and Bispectrum
- Reconstructing the EFT

Deviations from Scale Invariance

• If $f \approx \text{const.}$

$$\Delta_{\mathcal{R}}^2 \approx \frac{1}{f^2} \bigg|_{\frac{c_s k}{aH} \approx 1}$$

Nearly scale independent power spectrum in ordinary slow roll approximation

• Net deviations from scale invariance in amplitude observationally small across k-efolds $\delta \ln k$ in CMB

$$\frac{\delta \ln \Delta_{\mathcal{R}}^2}{\delta \ln k} = n_s - 1$$

and for models, typically for inflation to end in $N\sim60$ efolds

$$1 - n_s \approx \frac{1}{N}$$

• Deviations need not vary equally slowly in $\Delta \ln k$

Generalized Slow-Roll Deviations

- In EFT, coefficients can have arbitrary time dependence as long as they don't cause inflation to end
- GSR allows us to separate these two senses of deviations from scale-invariance: amplitude and temporal frequency
- Two pieces of the slow roll approximation:
 - Average amplitude of modefunction deviations

$$\bar{G}' = 1 - n_s = \mathcal{O}(1/N)$$

Slowness of the temporal variation

$$G''/G' = \mathcal{O}(1/\Delta N) \to G^{(p)} = \mathcal{O}(1/N\Delta N^{p-1})$$

• Usual slow roll approximation conflates $N \sim 60$ and ΔN by implicitly assuming that inflation has only one feature: its end

Generalized Slow Roll

- For $1 \lesssim \Delta N \ll N$ need to keep $\mathcal{O}(1/N\Delta N^{p-1})$ as leading order
- In GSR, this means we can use the leading order in modefunction amplitude deviation Motohashi & Hu 2015

$$\ln \Delta_{\mathcal{R}}^2 \approx -\int_0^\infty \frac{dx}{x} W'(x) G(\ln x) + \dots$$

and Taylor expand G around the epoch of horizon crossing x_f

$$G(\ln x) = \sum_{0}^{\infty} \frac{G^{(p)}(\ln x_f)}{p!} (\ln x - \ln x_f)^p$$

Integrals can be precomputed

$$q_p(\ln x_f) = -\frac{1}{p!} \int_0^\infty \frac{dx}{x} W'(x) (\ln x - \ln x_f)^p$$

Freezeout Window

• W' decreases rapidly for $x \ll 1$ or $-\ln x > 0$, freezing out G according to the pretabulated q_p coefficients

Generalized Slow Roll

• Leads to a series expansion of the power spectrum that converges if $\Delta N > 1$

$$\ln \Delta_{\mathcal{R}}^2 \approx G(\ln x_f) + \sum_{p=1}^{\infty} q_p(\ln x_f) G^{(p)}(\ln x_f)$$

• Taylor expansion in G then defines tilt and running of tilt $d/d \ln k = -d/d \ln s$

$$\frac{dG^{(p)}(\ln x_f)}{d\ln k} = -G^{(p+1)}(\ln x_f)$$

• Tilt associated with G' to leading order in $1/\Delta N$

$$n_s - 1 \equiv \frac{d \ln \Delta_R^2}{d \ln k} \approx -G'(\ln x_f) - \sum_{p=1}^{\infty} q_p G^{(p+1)}(\ln x_f)$$

Running of tilt

• Running of tilt G'' to leading order in $1/\Delta N$

$$\alpha \equiv \frac{dn_s}{d\ln k} \approx G''(\ln x_f) + \sum_{p=1}^{\infty} q_p G^{(p+2)}(\ln x_f)$$

- Since $G''/G' = \mathcal{O}(1/\Delta N)$, running of the tilt is only suppressed vs tilt by $1/\Delta N$ not 1/N as usually assumed
- With $\Delta N \sim$ few, running can be observably large if ΔN relatively small
- If ΔN small, then higher order terms in evaluating tilt and running become relatively more important too
- Taylor series still leaves unspecified the epoch around horizon crossing of the expansion which can be optimized...

- Weights q_p on Taylor coefficients depend only x_f
- Enhance the accuracy of the Taylor expansion by choosing the freezeout epoch x_f to zero out next q_p in the series

- Weights q_p on Taylor coefficients depend only x_f
- Enhance the accuracy of the Taylor expansion by choosing the freezeout epoch x_f to zero out next q_p in the series
- Leading Order:
 - Keep only leading order term, set $q_1(\ln x_f) = 0$ by choosing $\ln x_f = 1.06$, i.e. around 1-efold before horizon crossing
 - As accurate as retaining next order term but leaving $\ln x_f = 0$

- Weights q_p on Taylor coefficients depend only x_f
- Enhance the accuracy of the Taylor expansion by choosing the freezeout epoch x_f to zero out next q_p in the series

• Leading Order:

- Keep only leading order term, set $q_1(\ln x_f) = 0$ by choosing $\ln x_f = 1.06$, i.e. around 1-efold before horizon crossing
- As accurate as retaining next order term but leaving $\ln x_f = 0$

• Next Order:

- Retain q_1 and set $q_2(\ln x_f) = 0$ by choosing $\ln x_f = 0.22$
- As accurate as retaining next-to-next order term for generic $\ln x_f$.
- Self consistent order counting between observables (remaining error mainly in $\ln k \leftrightarrow N$ not between observables)

• GSR parameters $G^{(n)} \leftrightarrow$ more familiar slow-roll parameters

$$G \equiv -2\ln f + \frac{2}{3}(\ln f)', \quad f \propto \sqrt{\frac{b_s \epsilon_H c_s}{H^2}} \frac{aHs}{c_s}$$
$$' \equiv \frac{d}{d\ln s} \leftrightarrow -\frac{d}{dN}$$

• GSR parameters $G^{(n)} \leftrightarrow$ more familiar slow-roll parameters

$$G \equiv -2 \ln f + \frac{2}{3} (\ln f)', \quad f \propto \sqrt{\frac{b_s \epsilon_H c_s}{H^2}} \frac{aHs}{c_s}$$

$$' \equiv \frac{d}{d \ln s} \leftrightarrow -\frac{d}{dN}$$

• Evolution of H (and ϵ_H)

$$\epsilon_H \equiv -\frac{d \ln H}{dN}, \quad \delta_1 \equiv \frac{1}{2} \frac{d \ln \epsilon_H}{dN} - \epsilon_H,$$

$$\delta_{p+1} \equiv \frac{d \delta_p}{dN} + \delta_p (\delta_1 - p \epsilon_H)$$

• Evolution of c_s

$$\sigma_1 \equiv \frac{d \ln c_s}{dN}, \quad \sigma_{p+1} \equiv \frac{d\sigma_p}{dN},$$

• Evolution of normalization b_s

$$\xi_1 \equiv \frac{d \ln b_s}{dN}, \quad \xi_{p+1} \equiv \frac{d\xi_p}{dN},$$

- Similar hierarchies for c_t and b_t tensor functions
- For explicit relations: Motohashi & Hu 2017

• Evolution of normalization b_s

$$\xi_1 \equiv \frac{d \ln b_s}{dN}, \quad \xi_{p+1} \equiv \frac{d\xi_p}{dN},$$

- Similar hierarchies for c_t and b_t tensor functions
- For explicit relations: Motohashi & Hu 2017
- For canonical scalar only ϵ_H, δ_p
- For $P(X, \phi)$ add σ_p
- For Horndeski/GLPV add ξ_p
- GSR expansion involves keeping higher order in p but still dropping products of slow roll parameters

• In canonical inflation, can also relate ${\cal G}^{(p)}$ to derivatives of the potential ${\cal V}^{(p)}$

$$\mathcal{V}_p = \left(\frac{V^{(1)}}{V}\right)^{p-1} \frac{V^{(p+1)}}{V}$$

• In canonical inflation, can also relate $G^{(p)}$ to derivatives of the potential $V^{(p)}$

$$\mathcal{V}_p = \left(\frac{V^{(1)}}{V}\right)^{p-1} \frac{V^{(p+1)}}{V}$$

Ordinary slow roll approximation assumes

$$\{\epsilon_H, \delta_1, \sigma_{i,1}, \xi_1\} = \mathcal{O}\left(\frac{1}{N}\right), \quad \{\delta_p, \sigma_p, \xi_p, \mathcal{V}_p\} = \mathcal{O}\left(\frac{1}{N^p}\right)$$

• In canonical inflation, can also relate ${\cal G}^{(p)}$ to derivatives of the potential ${\cal V}^{(p)}$

$$\mathcal{V}_p = \left(\frac{V^{(1)}}{V}\right)^{p-1} \frac{V^{(p+1)}}{V}$$

Ordinary slow roll approximation assumes

$$\{\epsilon_H, \delta_1, \sigma_{i,1}, \xi_1\} = \mathcal{O}\left(\frac{1}{N}\right), \quad \{\delta_p, \sigma_p, \xi_p, \mathcal{V}_p\} = \mathcal{O}\left(\frac{1}{N^p}\right)$$

so that to leading order we need only keep the first set

• More generally, evolution of the first set of slow roll parameters can take place on a different, shorter time scale $\Delta N < N$

$$\{\epsilon_H, \delta_1, \sigma_1, \xi_1\} = \mathcal{O}\left(\frac{1}{N}\right), \quad \{\delta_p, \sigma_p, \xi_p, \mathcal{V}_p\} = \mathcal{O}\left(\frac{1}{N\Delta N^{p-1}}\right)$$

- If one uses the ordinary slow roll approximation to decide which parameters to keep can lead to very wrong relationships between tilt n_s and running α .
- For example Hubble flow parameters

$$\frac{d\epsilon_p}{dN} = \epsilon_p \epsilon_{p+1}, \quad \epsilon_1 = \epsilon_H$$

- Constructs the time derivative of each order as the product of two slow parameters and builds in a counting procedure where $\Delta N \approx N$ and $\epsilon_n = \mathcal{O}(1/N)$.
- Inconsistent to truncate based on keeping a fixed order in Hubble flow parameters
- Can falsely rule out true model because of inconsistent evaluation between observables

Monodromy

• Consider a monodromy potential Silverstein et al 2008

$$V(\phi) = \lambda \phi + \Lambda^4 \cos\left(\frac{\phi}{f} + \theta\right)$$

• Inflaton rolls over oscillations in $60 \gg \Delta N > 1$ Motohashi & Hu 2015

Primordial Black Holes

Amplify power on small scales via running of the mass

$$V(\phi) = V_0 + \frac{1}{2}m^2(\ln \phi)\phi^2$$

• For primordial black holes to be all the dark matter, a large feature during inflation is required violating the ordinary slow roll approximation Motohashi & Hu 2017

G-inflation

- Transition from cubic galileon potential-driven inflation to canonical inflation $\rightarrow n_s$ induced by transition not end of inflation
- Large but allowed running, reduced tensors given n_s Ramirez,

Passaglia, Motohashi, Hu, Mena 2018

Features and their Templates

Features

- If the timescale for variations in the EFT coefficients is $\Delta N \ll 1$ all generic constructions based on slow-roll parameters (including optimized slow roll) fail
- GSR itself can handle high frequency cases so long as the amplitude of the features is still less than $\mathcal{O}(1)$
- Useful in constructing parameterized templates for observational features in the power spectrum: examples

Power spectrum steps

Monodromy

- Templates enable extensive likelihood analyses (MCMC) where numerical computation of each inflationary model impractical
- Templates enable matching predictions in multiple observables for confirmation/refutation

Low Multipole Glitch

• Feature in the low- ℓ CMB power spectrum first seen in WMAP, confirmed in Planck, responsible for cosmological parameter shifts

Step Potential

- Fits a steplike potential with transition $\Delta N < 1$, causing increasingly large slow roll parameters
- Causes oscillations in the power spectrum, not $\Delta_{\mathcal{R}}^2 \propto H^2/\epsilon_H$
- SR qualitatively wrong; requires GSR approach to capture Dvorkin & Hu 2010

Oscillations

- Rapid changes represent sharp temporal features
- Imprint sharp features in spatial correlation
- A single sharp temporal feature leads to linear ringing in Fourier space, damped by the width
 - Example: steps
- Periodic features generate resonances with the window, leads to logarithmic ringing in Fourier space
 - Example: monodromy

Freezeout Window

- Convolve $G'(\ln s)$ source with W(ks) window
- Single sharp temporal feature leads to damped linear oscillations
- Periodic source leads to resonant logarithmic oscillations

Step Potential

- Second derivative of f makes step potential look like derivative of delta function in source G'
- Dip and bump and damped oscillations in curvature power

CMB Glitch

• GSR sufficiently accurate for testing step model against CMB data

Dvorkin & Hu 2010

Sharp step

- With sharp step G' is mainly derivative of δ functions \rightarrow integrate by parts analytically
- Analytic template for fast searches for features Adshead, Hu, Dvorkin,
 Peiris 2011, Miranda & Hu 2013

Search for Features

- Early indications of oscillatory features in WMAP and Planck were followed up with these detailed templates
- Preference for features weakened with higher multipole data

Polarization and Bispectrum

Lesson from Feature Searches

- Inflationary features can fit random noise fluctuations in any one data set
- Important to check matching features in different observables
 - Different multipoles of temperature power spectrum
 - Matter power spectrum
 - Polarization power spectrum
 - Bispectrum

Polarization Transfer

• Due to projection, polarization features in the acoustic regime are sharper and weighted to slightly higher ℓ

Quadrupole Projection

• Polarization features follow the projection of quadrupole moments

Polarization Features

- For step models that fit the glitch, sharper matching polarization features that can verify/falsify them Mortonson, Dvorkin, Peiris, Hu 2009
- Requires high signal-to-noise EE measurements at $\ell = 20-60$
- Can be separated from high-z reionization Object et al 2018

GSR EFT Bispectrum

- Expand EFT Lagrangian to cubic order: \mathcal{L}_3
- Cubic operators represent interactions with interaction Hamiltonian $H_I = -\int d^3x \mathcal{L}_3$
- 10 distinct cubic EFT operators Passaglia & Hu 2018
- Calculate bispectrum in the interaction picture using in-in formalism

$$\langle \hat{\mathcal{R}}_{\mathbf{k_1}}(t_*) \hat{\mathcal{R}}_{\mathbf{k_2}}(t_*) \hat{\mathcal{R}}_{\mathbf{k_3}}(t_*) \rangle = 2\Re \left[-i \int_{-\infty}^{t_*} dt \langle \hat{\mathcal{R}}_{\mathbf{k_1}}(t_*) \hat{\mathcal{R}}_{\mathbf{k_2}}(t_*) \hat{\mathcal{R}}_{\mathbf{k_3}}(t_*) H_I(t) \rangle \right]$$

• Iteratively expand mode functions to define GSR integral expressions for the bispectrum Adshead, Hu, Miranda 2012

GSR EFT Bispectrum

• Leading order GSR efficiently computes all triangle configurations of the bispectrum in the form

$$B_{\mathcal{R}}(k_1, k_2, k_3) = \Delta_{\mathcal{R}}(k_1) \Delta_{\mathcal{R}}(k_2) \Delta_{\mathcal{R}}(k_3) \sum_{i} T_i(k_1, k_2, k_3)$$

$$\times \int \frac{ds}{s} S_i(\ln s) W_i'(Ks)$$

 $K = k_1 + k_2 + k_3$ is the perimeter of the triangle

- Elements
 - $-\Delta_{\mathcal{R}}$: \mathcal{R} -modefunction or square-root of power spectrum
 - $-T_i$: source independent configuration shape
 - $-S_i$: source from the EFT cubic interactions
 - $-W_i$: freezeout window for the source

Sharp Step Bispectrum

- Sharp step leads to rising equilateral bispectrum until finite-width damping scale Adshead, Dvorkin, Hu, Lim 2011
- Eventually so large that excitations are strongly coupled, beyond
 EFT Adshead & Hu 2014
- Oscillatory shape requires new template forms GSR provides accurate analytic expressions

Sharp Correlation Function Features

- Sharp step: ringing at high k represents sharp feature in physical space at much larger scales Adshead, Dvorkin, Hu, Lim 2011
- Sharpness blurred out by temporal width of feature
- CMB anomalies at large angular scales may have subtle signatures at high multipole

Reconstructing EFT

Power Spectrum Features

- Step and monodromy examples highlight that features in power spectrum are highly constrained by inflationary origin
- Sharp features in k-space must be accompanied by ringing
- Ringing must appear stronger in CMB polarization than temperature from recombination
- Matching, but lower signal to noise, features in the temperature and polarization bispectra
- Features can easily fit random noise in any one of these measurements but not all
- Inverse problem of reconstructing the EFT source function(s) $[G', \ldots]$

Reconstruction

- By going directly from observables to the inflationary source we guarantee that inferred features are consistent with single field inflation
- If we reconstruct $\Delta_{\mathcal{R}}^2$ first instead, a sharp k-space feature with no ringing pattern would be inconsistent with single field EFT

Low Multipole Anomaly

• Using 10 parameters per decade for $G'(\ln s)$ from $200 \le s/{\rm Mpc} \le 20000$ to fit out low multipole residuals from a pure tilt Dvorkin & Hu 2011, Obied et al 2017,2018

Low Multipole Anomaly

- Reconstruction parameters also allow one to marginalize impact of non-power law power spectra on cosmological parameters
- Low multipole anomaly influences H_0 with only $\ell < 1000$ data, H_0 shifted higher to fit anomaly Addison et al 2015; Aghanim et al 2016
- After marginalizing G' source parameters, even $\ell < 1000$ WMAP data compatible with low H_0
- Planck data at $\ell > 1000$ have smoother temperature peaks than allowed by high H_0

H_0 Tension

- Shift to lower H_0 indicates more CDM relative to radiation from driving effect of potential decay
- Increased angular scale of sound horizon compensated by larger distance to recombination through lower H_0
- > 3σ tension with direct H_0 distance ladder measurements

Polarization

- Polarization EE and TE should provide matching inflationary features and also distinct signatures of low H_0 solution
- Planck 2015 TE spectrum anomalously sensitive to H_0 due to a single deviant multipole band

Lensing Anomaly

- Planck TT power specta want even smoother peaks than low H_0 achieves leaving remaining oscillatory residuals
- If lensing amplitude
 is allowed to vary, then
 residuals can be better fit
 since lensing smooths peaks

- Lens reconstruction from quadratic estimators do not show higher lensing
- Using principal components, this tension is independent of cosmological model at low-z (dark energy, etc) Motloch & Hu 2018

EFT Source Reconstruction

- In source function space, 20 parameters currently mainly fit noise
 - good for marginalizing impact on cosmological parameters
 - bad for trying to interpret implications for inflation
- Filter out noise by constructing principal components, rank ordered to best constrained modes, of G' parameter covariance matrix
- 3 PCs constrained with 95% local CL deviations in $m_1 m_3$

Suppression of Large Scale Power

- Inflationary source corresponds to sharp suppression of large scale power
- Predicts EE polarization feature sharper and at slightly higher multipole
- More generally, $\frac{1.2}{10^{-4}}$ reconstruction from TT makes predictions for polarization
- Testing polarization predictions immune to look elsewhere effect...

Polarization Consistency

- Polarization predictions under single field inflation from WMAP temperature power spectrum
 - Test origin of temperature features
 - Violations could even falsify single field EFT inflation itself

Operators to Observables

• From operators to observables and back

Summary of Lecture II

- GSR allows for temporal features during (rather than purely associated with the end) of inflation
- New scale ΔN in efolds breaks the ordinary slow roll hierarchy assumption that higher parameters are suppressed by increasing powers of $N\sim60$
- If $\Delta N > 1$, GSR is solved by a generalization of slow roll hierarchy
 - Taylor expansion of G source of exitations
 - Optimized evaluation point to zero out next term in series
 - Consistent predictions between observables $n_s 1, \alpha, \dots$
 - Necessary when $\Delta N \ll N$, α comparable to n_s-1

Summary of Lecture II

- If $\Delta N < 1$, GSR predicts ringing of power spectra in a form that must be specialized to individual cases
 - Monodromy
 - Steps

which usually leads to analytic templates for $\Delta N \ll 1$, enabling fast MCMC searches

- Allowing $\Delta N < 1$ leads to noise in CMB TT being fit by inflationary features but also predicts consistency relations with
 - Polarization (and tensors)
 - Bispectrum

Summary of Lecture II

- Reconstructing the EFT of inflation source G (or G') directly from observations
 - Enforces inflationary prediction: sharp features → oscillations
 (cf. power spectrum reconstruction)
 - Marginalize inflationary assumptions for cosmo params (H_0)
 - Highlights low-ℓ power anomaly as locally significant
 - Testable predictions for polarization
 - Ultimately test validity of whole single field paradigm