Physics of CMB Anisotropies

Moriond 2000

Wayne Hu
Current CMB Quilt

\[\Delta T (\text{\(\mu\)K}) \]

\[\theta \text{ (degrees)} \]

\[l \text{ (multipole)} \]

Projected Boomerang Errors

ΔT (μK)

θ (degrees)

l (multipole)

W. Hu – May 1999
What We Have Already Learned

• Adiabatic CDM models have survived the onslaught of data

• Dark energy is not all in curvature $\Omega_K \leq 0.3$
 robust to model unless: $h > 1$, recombination substantially delayed, or closed + isocurvature

For the Skeptic: confirm with 2nd peak

Lineweaver (1998); Bond & Jaffe (1998); Dodelson & Knox (1999); Tegmark & Zaldarriaga (1999)
What We Have Already Learned

- Adiabatic CDM models have survived the onslaught of data

- Dark energy is not all in curvature $\Omega_k \leq 0.3$
 robust to model unless: $h > 1$, recombination substantially delayed, or closed + isocurvature
 For the Skeptic: confirm with 2nd peak

- Assuming adiabatic CDM:
 Baryonic dark matter necessary ($\Omega_b h^2 \geq 0.015$)
 For the Skeptic: confirm with 2nd peak; measure with 3rd peak
 Hints of low $\Omega_m \approx 0.3$ hence a cosmological constant $\Omega_{\Lambda} \approx 0.7$
 For the Skeptic: confirm with relative peak heights
 Optically thin during reionization $\tau \leq 0.5$

Lineweaver (1998); Bond & Jaffe (1998); Dodelson & Knox (1999); Tegmark & Zaldarriaga (1999)
What We Have Already Learned

• Adiabatic CDM models have survived the onslaught of data

• Dark energy is not all in curvature $\Omega_K \leq 0.3$
 robust to model unless: $h > 1$, recombination substantially delayed, or closed + isocurvature
 For the Skeptic: confirm with 2nd peak

• Assuming adiabatic CDM:
 Baryonic dark matter necessary ($\Omega_b h^2 \geq 0.015$)
 For the Skeptic: confirm with 2nd peak; measure with 3rd peak
 Hints of low $\Omega_m \approx 0.3$ hence a cosmological constant $\Omega_\Lambda \approx 0.7$
 For the Skeptic: confirm with relative peak heights
 Optically thin during reionization $\tau \leq 0.5$

• Inflationary origin implied
 For the Skeptic: confirm with the polarization

Lineweaver (1998); Bond & Jaffe (1998); Dodelson & Knox (1999); Tegmark & Zaldarriaga (1999)
What We Have Already Learned

- Adiabatic CDM models have survived the onslaught of data
- Dark energy is not all in curvature $\Omega_K \leq 0.3$
 robust to model unless: $h > 1$, recombination substantially delayed, or closed + isocurvature
 For the Skeptic: confirm with 2nd peak
- Assuming adiabatic CDM:
 Baryonic dark matter necessary ($\Omega_b h^2 \geq 0.015$)
 For the Skeptic: confirm with 2nd peak; measure with 3rd peak
 Hints of low $\Omega_m \approx 0.3$ hence a cosmological constant $\Omega_\Lambda \approx 0.7$
 For the Skeptic: confirm with relative peak heights
 Optically thin during reionization $\tau \leq 0.5$
- Inflationary origin implied
 For the Skeptic: confirm with the polarization
- Consistent with LSS, cluster abundance, SNIa, BBN, h

Lineweaver (1998); Bond & Jaffe (1998); Dodelson & Knox (1999); Tegmark & Zaldarriaga (1999)
Acoustic Peak
Preliminaries
Thermal History

- $z > 1000; T_\gamma > 3000K$
- Hydrogen ionized
- Free electrons glue photons to baryons

Photon–baryon fluid
Potential wells that later form structure

![Diagram showing tightly coupled fluid with mean free path much less than wavelength, indicating a hot/cold gradient.](image-url)
Thermal History

- $z > 1000; \ T_\gamma > 3000K$
 - Hydrogen ionized
 - Free electrons glue photons to baryons

 $\gamma e^- p$

 Compton scattering
 Coulomb interactions

- $z \sim 1000; \ T_\gamma \sim 3000K$
 - Recombination
 - Fluid breakdown

- $z < 1000; \ T_\gamma < 3000K$
 - Gravitational redshifts & lensing
 - Reionization; rescattering

Photon–baryon fluid
Potential wells that later form structure

\[\lambda \sim k^{-1} \]
\[\theta \sim l^{-1} \]

Observer

Last scattering surface

$z=1000$ recombination
Acoustic Oscillations

- Photon pressure resists compression in potential wells
- Acoustic oscillations

Peebles & Yu (1970)
Hu & Suguama (1995)
Acoustic Oscillations

- Photon pressure resists compression in potential wells
- Acoustic oscillations
- Gravity displaces zero point
 \[\Theta \equiv \frac{\delta T}{T} = -\Psi \]

Oscillation amplitude = initial displacement from zero point
 \[\Theta - (-\Psi) = \frac{1}{3} \Psi \]

Acoustic Oscillations

- Photon **pressure** resists compression in potential wells
- Acoustic oscillations
- Gravity displaces zero point
 \[\Theta \equiv \frac{\delta T}{T} = -\Psi \]

- Oscillation **amplitude** = initial displacement from zero pt.
 \[\Theta - (-\Psi) = \frac{1}{3} \Psi \]

- Gravitational redshift: observed
 \[(\frac{\delta T}{T})_{\text{obs}} = \Theta + \Psi \]
 oscillates around zero

First Extrema

Peebles & Yu (1970)

Hu & Sugyama (1995)
Acoustic Oscillations

- Photon **pressure** resists compression in **potential wells**
- Acoustic oscillations
- Gravity displaces **zero point**
 \[\Theta \equiv \delta T/T = -\Psi \]

- Oscillation **amplitude** = initial displacement from zero pt.
 \[\Theta - (-\Psi) = 1/3 \Psi \]
- Gravitational redshift: observed
 \[(\delta T/T)_{\text{obs}} = \Theta + \Psi \]
 oscillates around **zero**

Peebles & Yu (1970)
Hu & Sugyama (1995)
Harmonic Peaks

- Oscillations frozen at last scattering
- Wavenumbers at extrema = peaks
- Sound speed c_s

Doroshkevich, Zel'dovich & Sunyaev (1978); Bond & Efstathiou (1984); Hu & Sugiyama (1995)
Harmonic Peaks

- Oscillations frozen at last scattering
- Wavenumbers at extrema = peaks
- Sound speed c_s

- Frequency $\omega = kc_s$; conformal time η
- Phase $\propto k$; $\phi = \int_0^{\text{last scattering}} d\eta \omega = k$ sound horizon
- Harmonic series in sound horizon
 $\phi_n = n\pi \rightarrow k_n = n\pi/\text{sound horizon}$

Doroshkevich, Zel'dovich & Sunyaev (1978); Bond & Efstathiou (1984); Hu & Sugiyama (1995)
Curvature and the Cosmological Constant
Angular Diameter Distance

- **A Classical Test**
 Standard(ized) comoving ruler
 Measure angular extent
 Absolute scale drops out
 Infer curvature

- **Upper limit 1st Peak Scale (Horizon)**
 Upper limit on Curvature

- **Calibrate 2 Physical Scales**
 Sound horizon (peak spacing)
 Diffusion scale (damping tail)

Houston, Spergel & Sugiyama (1994)
Hu & White (1996)
Curvature and the Cosmological Constant

Gravitational Redshift

Shifted Acoustic Signature

Power

Ω_K

Ω_Λ

Ω_K

Ω_Λ
Curvature & Λ: Constraints

Ω_m vs Ω_Λ

Boomerang & COBE

Melchiorri et al. (1999)
Curvature & Λ: Constraints

- Boomerang & COBE
- Melchiorri et al. (1999)
- Riess et al. (1998)
- Perlmutter et al. (1998)
Dark Energy: Future Prospects

Dark Baryons
Baryon Drag

• Baryons provide **inertia**

• Relative momentum density

 \[R = (\rho_b + p_b) V_b / (\rho_\gamma + p_\gamma) V_\gamma \propto \Omega_b h^2 \]

• Effective **mass** \(m_{\text{eff}} = (1 + R) \)

Hu & Sugiyama (1995)
Baryon Drag

- Baryons provide inertia
- Relative momentum density
 \[R = \frac{(\rho_b + p_b)V_b}{(\rho_\gamma + p_\gamma)V_\gamma} \propto \Omega_b h^2 \]
- Effective mass \(m_{\text{eff}} = (1 + R) \)
- Baryons drag photons into potential wells → zero point ↑
- Amplitude ↑
- Frequency ↓ (\(\omega \propto m_{\text{eff}}^{-1/2} \))

- Constant \(R, \Psi \):
 \[
 (1+R)\ddot{\Theta} + \left(\frac{k^2}{3}\right)\Theta = -(1+R)\left(\frac{k^2}{3}\right)\Psi
 \]
 \[\Theta + \Psi = [\Theta(0) + (1+R)\Psi(0)] \cos \left[\frac{k\eta}{\sqrt{3}} (1+R) \right] - R\Psi \]

Hu & Sugiyama (1995)
Baryon Drag

- Baryons provide inertia
- Relative momentum density
 \[R = (\rho_b + p_b) V_b / (\rho_\gamma + p_\gamma) V_\gamma \propto \Omega_b h^2 \]
- Effective mass \(m_{\text{eff}} = (1 + R) \)
- Baryons drag photons into potential wells → zero point ↑
- Amplitude ↑
- Frequency ↓ (\(\omega \propto m_{\text{eff}}^{-1/2} \))

Constant \(R, \Psi \): \((1 + R) \ddot{\Theta} + (k^2/3) \Theta = -(1 + R) (k^2/3) \Psi \)
\[\Theta + \Psi = [\Theta(0) + (1 + R) \Psi(0)] \cos [k\eta/\sqrt{3} (1 + R)] – R\Psi \]

Dissipation / Diffusion Damping

- Imperfections in the coupled fluid \rightarrow mean free path λ_C in the baryons
- Random walk over diffusion scale: $\lambda_D \sim \lambda_C \sqrt{N} \sim \sqrt{\lambda_C \eta} \gg \lambda_C$

 Viscous damping for $R<1$; heat conduction damping for $R>1$

$N = \eta / \lambda_C$

Silk (1968)
Dissipation / Diffusion Damping

- Imperfections in the coupled fluid \rightarrow mean free path λ_C in the baryons
- Random walk over diffusion scale: $\lambda_D \sim \lambda_C \sqrt{N} \sim \sqrt{\lambda_C \eta} \gg \lambda_C$
- Rapid increase at recombination as mfp \uparrow

- Peak/Damping angular scale: calibrate $\Omega_b h^2$ or test recombination
- Robust physical scale for angular diameter distance test (Ω_K, Ω_Λ)

Recombination

Silk (1968); Hu & White (1996)
Baryons in the CMB

- High odd peaks

- Additional Effects
 - Time–varying potential
 - Dissipation/Fluid imperfections

\[\Omega_b h^2 \]

\[\text{Power} \]

\[l \]
Matter–Radiation Ratio
Driving Effects and Matter/Radiation

- Potential perturbation: \(k^2 \Psi = -4\pi G a^2 \delta \rho \) generated by radiation
- **Radiation \rightarrow Potential:** inside sound horizon \(\delta \rho / \rho \) pressure supported \(\delta \rho \) hence \(\Psi \) decays with expansion

Hu & Sugiyama (1995)
Driving Effects and Matter/Radiation

- Potential perturbation: $k^2 \Psi = -4\pi G a^2 \delta \rho$ generated by radiation

- Radiation → Potential: inside sound horizon $\delta \rho / \rho$ pressure supported $\delta \rho$ hence Ψ decays with expansion

- Potential → Radiation: Ψ–decay timed to drive oscillation $-2\Psi + (1/3)\Psi = -(5/3)\Psi \rightarrow 5x$ boost

- Feedback stops at matter domination

Hu & Sugiyama (1995)
Driving Effects and Matter/Radiation

• Potential perturbation: \(k^2 \Psi = -4\pi G a^2 \delta \rho \) generated by radiation

• Radiation → Potential: inside sound horizon \(\delta \rho / \rho \) pressure supported \(\delta \rho \) hence \(\Psi \) decays with expansion

• Potential → Radiation: \(\Psi \)–decay timed to drive oscillation
 \[-2\Psi + (1/3)\Psi = -(5/3)\Psi \rightarrow 5x \text{ boost}\]

• Feedback stops at matter domination

Hu & Sugiyama (1995)
Matter Density in the CMB

- Amplitude ramp across matter–radiation equality
- Radiation density fixed by CMB temperature & thermal history

- Measure $\Omega_m h^2$ from peak heights
Inflation & The Origin of Perturbations
Inflation as Source of Perturbations

- Superluminal expansion (inflation) required to generate superhorizon potential (density) perturbations

- Potential perturbations drive oscillations

- (Nearly) unique prediction for phase

- Ratio of peak locations
 - Inflation: 1:2:3...
 - Passive causal models: 1:3:5...
 - Active causal models: no peaks

Hu & White (1996)
Inflation as Source of Perturbations

- Superluminal expansion (inflation) required to generate superhorizon potential (density) perturbations

- Potential perturbations drive oscillations

- (Nearly) unique prediction for phase

- Ratio of peak locations 1:2:3 strongly suggests inflation but not necessarily the adiabatic or isocurvature nature of initial conditions

(Hu 1998; Hu & Peebles 1999)
Summary of Acoustic Phenomenology

- Fluid + Gravity
 \rightarrow harmonic series:
 inflationary origin
Summary of Acoustic Phenomenology

- Fluid + Gravity
 - harmonic series:
 - inflationary origin
 - alternating peaks:
 - photon/baryon $\Omega_b h^2$
Summary of Acoustic Phenomenology

- Fluid + Gravity
 - harmonic series: inflationary origin
 - alternating peaks: photon/baryon $\Omega_b h^2$
 - driven oscillations: matter/radiation $\Omega_m h^2$
Summary of Acoustic Phenomenology

- Fluid + Gravity
 - harmonic series: inflationary origin
 - $\text{alternating peaks:}$ photon/baryon $\Omega_b h^2$
 - $\text{driven oscillations:}$ matter/radiation $\Omega_m h^2$

- Ruler Calibration
 - sound horizon
 - damping scale

- Geometry
 - angular diameter distance $f(\Omega_\Lambda, \Omega_K)$
 - flatness or no Ω_Λ,
 - Ω_Λ or Ω_K

\[
l_A = d_A \times \pi k_A \quad \text{ISW}
\]

\[
l_D = d_A \times k_D
\]
Secondary Anisotropies
Physics of Secondary Anisotropies

Primary Anisotropies

recombination
$z \sim 1000$

reionization
$z \sim 10$

Λ–domination
$z \sim 1$
Secondary Anisotropies: Power Spectra

- Gravitational Effects
 - ISW Effect
 (redshift from decaying potentials)
 - Weak Lensing
 (smoothes peaks and generates power <1')

- Scattering Effects
 - Doppler Effect
 - Vishniac Effect
 (LSS kinetic SZ effect)
 - Patchy Reionization
 (LSS thermal)
 - SZ effect
 (LSS thermal)
Recent Work on Isolating Secondary Anisotropies

- **Subarcminute Power Spectrum**
 - Vishniac Effect; Kinetic SZ Effect;
 - Patchy Reionization Hu (1999)
 - Bruscoli et al. (1999)
- **SZ in Clusters**
 - Komatsu & Kitayama (1999)
- **SZ in Radio Galaxies**
- **Polarization**
 - Weak Lensing
 - Zaldarriaga & Seljak (1999)
 - Guzik, Seljak & Zaldarriaga (1999)
 - Secondary Scattering
 - Hu (1999); Weller (1999)
- **Frequency spectrum**
 - SZ Effect
 - Bouchet & Gispert (1999); Tegmark et al. (1999)
 - Cooray, Hu & Tegmark (2000)
- **Temperature non-Gaussianity**
 - Weak Lensing & Secondaries
 - 3pt function (bispectrum)
 - Weak Lensing: 4pt function (trispectrum)
 - Zaldarriaga (1999)
 - spot ellipticity & correlation
 - Van Waerbeke, Bernardeau & Benabed (1999)
 - SZ Effect: hydro-simulations
 - da Silva et al. (1999); Refrigier et al. (1999), Seljak, Burwell, Pen (2000);
 - Press-Schechter Aghanim & Forni (1999);
- **Polarization non-Gaussianity**
 - Hu (2000)
Polarization
Polarization Diagnostics

- CMB polarization generated by scattering of quadrupole anisotropies
Polarization Diagnostics

- CMB polarization generated by scattering of quadrupole anisotropies
- Isolates the last scattering surface
 → tests causal generation (inflation vs. defects)

Current Constraints
< 20–40 μK
Saskatoon
TOCO

Hu & White (1997)
Zaldarriaga & Spergel (1997)
Polarization Diagnostics

- **CMB polarization generated by scattering of quadrupole anisotropies**
- **Isolates the last scattering surface**
 → measures the reionization epoch / optical depth (first structures)

Hogan, Kaiser, & Rees (1982)
Efstathiou & Bond (1987)
Perturbations & Their Quadrupoles

- Orientation of quadrupole relative to wave (\mathbf{k}) determines pattern
- Scalars (density) $m=0$
- Vectors (vorticity) $m=\pm 1$
- Tensors (gravity waves) $m=\pm 2$

Hu & White (1997)
Polarization Patterns

Scalars

E, B

$l=2, m=0$

$l=2, m=1$

$l=2, m=2$

Vectors

$\phi = \pi/2$

Tensors
Foregrounds and Tensors

- 257–561 Foreground Parameters Simultaneously Estimated
- Foreground power spectra, frequency dependence, frequency coherence
 - free-free, synchrotron, vibrating dust, rotating dust, thermal SZ, radio point sources, IR point sources
- 10 Cosmological Parameters
- Potentially significant degradation: better prior knowledge; more frequencies

Bouchet & Gispert (1999); Knox (1999)
Foregound and Baryons

- 257–561 Foreground Parameters Simultaneously Estimated
- Foreground power spectra, frequency dependence, frequency coherence
 - free-free, synchrotron, vibrating dust, rotating dust, thermal SZ, radio point sources, IR point sources
- 10 Cosmological Parameters
- Degradation of less than 2 in errors

Tegmark, Eisenstein, Hu, de Oliviera-Costa (1999)
Summary

• Simple adiabatic CDM models have survived the onslaught of data to date
• The dark energy is not curvature
• Baryonic dark matter and low density cold dark matter indicated
• First peak location inconsistent with most non-inflationary models (unless universe is closed or recombination delayed)
Summary

• Simple adiabatic CDM models have survived the onslaught of data to date
• The dark energy is not curvature
• Baryonic dark matter and low density cold dark matter indicated
• First peak location inconsistent with most non-inflationary models (unless universe is closed or recombination delayed)

• Nature of the dark energy can be revealed by precision data
• First objects and reionization revealed by polarization and sub-arcminute scale anisotropy
• Large-scale structure, hot gas via non-Gaussianity, cross correlation
Summary

- Simple **adiabatic CDM** models have survived the onslaught of data to date
- The dark energy is **not curvature**
- **Baryonic dark matter** and low density **cold dark matter** indicated
- **First peak location** inconsistent with most **non-inflationary models** (unless universe is closed or recombination delayed)

- Nature of the **dark energy** can be revealed by **precision data**
- First objects and **reionization** revealed by **polarization** and **sub-arcminute scale** anisotropy
- Large-scale structure, hot gas via **non-Gaussianity**, **cross correlation**

- Foregrounds **not** expected to be a problem for **power spectrum** estimation in the **acoustic regime** but will be a serious issue for polarization, **sub-arcminute anisotropy** and **non-Gaussianity**.