The Outtakes

- CMB Transfer Function
- Testing Inflation
- Weighing Neutrinos
- Decaying Neutrinos
- Testing Λ
- Testing Quintessence
- Polarization Sensitivity
- SDSS Complementarity
- Secondary Anisotropies
- Doppler Effect
- Vishniac Effect
- Patchy Reionization
- Sunyaev-Zel'dovich Effect
- Rees-Sciama & Lensing

- Foregrounds
- Doppler Peaks?
- SNIa Complementarity
- Polarization Primer
- Gamma Approximation
- ISW Effect

Doppler Effect

- Relative velocity of fluid and observer
- Extrema of oscillations are turning points or velocity zero points
- Velocity $\pi/2$ out of phase with temperature

Doppler Effect

No baryons

 $-|\Psi|/3$

 $-|\Psi|/3$

Baryons

- Relative velocity of fluid and observer
- Extrema of oscillations are turning points or velocity zero points
- Velocity $\pi/2$ out of phase with temperature
- Zero point not shifted by baryon drag
- Increased baryon inertia decreases effect $m_{\rm eff} V^2 = {\rm const.} \quad V \propto \ m_{\rm eff}^{-1/2} = (1+R)^{-1/2}$

Doppler Peaks?

• Doppler effect has lower amplitude and weak features from projection

Relative Contributions

Relative Contributions

Projection into Angular Peaks

- Peaks in spatial power spectrum
- Projection on sphere
- Spherical harmonic decomposition

- Maximum power at *l*=*kd*
- Extended tail to $l \ll kd$
- Described by spherical bessel function j_l(kd)

Bond & Efstathiou (1987)

Hu & Sugiyama (1995); Hu & White (1997)

Projection into Angular Peaks

- Peaks in spatial power spectrum
- Projection on sphere
- Spherical harmonic decomposition

- Maximum power at l = kd
- Extended tail to $l \ll kd$
- 2D Transfer Function $T^2(k,l) \sim (2l+1)^2 [\Delta T/T]^2 j_l^2(kd)$

Hu & Sugiyama (1995)

Measuring the Potential

- Remove smooth damping (independent of perturbations)
- Measure relative peak heights
- Relate to $R\Psi$ at last scattering
- Residual is smooth potential envelope and measures matter-radiation ratio

Hu & White (1996)

Uses of Acoustic Oscillations

- Distinct features
- Presence/absence unmistakenable
- Sensitive to background parameters through fluid parameters
- Sensitive to perturbations through gravitational potential wells which later form structure
- Robust measures of
 - Angular diameter distance (curvature) Baryon–photon ratio

Uses of Baryon Drag

- Measures baryon-photon ratio at last scattering + $z_{last scattering}$ + T_{CMB} $\rightarrow \Omega_b h^2$
- Measures potential wells at last scattering (compare with large–scale structure today)
- Removes phase ambiguity by distinguishing compression from rarefaction peaks (separates inflation from causal seed models)

Uses of Damping

- Sensitive to thermal history and baryon content
- Independent of (robust to changes in) perturbation spectrum
- Robust physical scale for angular diameter distance test $(\Omega_K,\,\Omega_\Lambda)$

Integrated Sachs–Wolfe Effect

• Potential redshift: $g_{00} = -(1+\Psi)^2 \overline{\delta_{ij}}$

Kofman & Starobinskii (1985)

Hu & Sugiyama (1994)

Integrated Sachs–Wolfe Effect

- Potential redshift: $g_{00} = -(1+\Psi)^2 \delta_{ij}$
- Perturbed cosmological redshift $g_{ij} = a^2(1+\Psi)^2 \delta_{ij}$ $\delta T/T = -\delta a/a = \Psi$

Kofman & Starobinskii (1985)

Hu & Sugiyama (1994)

Integrated Sachs–Wolfe Effect

- Potential redshift: $g_{00} = -(1+\Psi)^2 \delta_{ij}$
- Perturbed cosmological redshift $g_{ij} = a^2(1+\Psi)^2 \delta_{ij}$ $\delta T/T = -\delta a/a = \Psi$
- Time-varying potential **Rapid** compared with λ/c $\delta T/T = -2\Delta \Psi$ **Slow** compared with λ/c redshift-blueshift cancel
- Imprint characteristic time scale of decay in angular spectrum

 $(2\Psi)^2$

Kofman & Starobinskii (1985)

Hu & Sugiyama (1994)

Testing Inflation / Initial Conditions

- Superluminal expansion (inflation) required to generate superhorizon curvature (density) perturbations
- Else perturbations are isocurvature initially with matter moving causally

η

(a) Adiabatic

(b) Isocurvature

- Curvature (potential) perturbations drive acoustic oscillations
- Ratio of peak locations
- Harmonic series: curvature 1:2:3... isocurvature 1:3:5...

Hu & White (1996)

Testing Inflation / Initial Conditions

- Superluminal expansion (inflation) required to generate superhorizon curvature (density) perturbations
- Else perturbations are isocurvature initially with matter moving causally
- Curvature (potential) perturbations drive acoustic oscillations
- Ratio of peak locations
- Harmonic series: curvature 1:2:3... isocurvature 1:3:5...

Weighing Neutrinos

- Massive neutrinos suppress power strongly on small scales $[\Delta P/P \approx -8\Omega_v/\Omega_m]$: well modeled by $[c_{eff}^2 = w_g, c_{vis}^2 = w_g, w_g: 1/3 \rightarrow 1]$
- Degenerate with other effects [tilt n, $\Omega_m h^2$...]
- CMB signal small but breaks degeneracies
- 2σ Detection: 0.3eV [Map (pol) + SDSS]

Hu, Eisenstein, & Tegmark (1998); Eisenstein, Hu & Tegmark (1998)

Cosmology and the Neutrino Anomalies

Hata (1998)

Cosmology and the Neutrino Anomalies

Hata (1998) Hu, Eisenstein & Tegmark (1998)

Cosmology and the Neutrino Anomalies

Hata (1998) Hu, Eisenstein & Tegmark (1998) Hu & Tegmark (1998)

Decaying Dark Matter

- Example: relativistic matter goes nonrelativistic, decays back into radiation
- Model decay and decay products as a single component of dark matter
- Novel consequences: scale-invariant curvature perturbation from scaleinvariant isocurvature perturbations

- If $w_g < 0$, GDM has no effect on acoustic dynamics $\rightarrow (k_{\text{peaks}}, \text{heights})$ independent of w_g , Ω_g , c_{eff} , c_{vis}
- CMB sensitive to GDM/ Λ mainly through angular diameter distance $[d_A = f(w_g, \Omega_g...)]$

Hu, Eisenstein, Tegmark & White (1998)

- If $w_g < 0$, GDM has no effect on acoustic dynamics $\rightarrow (k_{\text{peaks}}, \text{heights})$ independent of w_g , Ω_g , c_{eff} , c_{vis}
- CMB sensitive to GDM/ Λ mainly through angular diameter distance $[d_A = f(w_g, \Omega_g...)]$
- Galaxy surveys determines *h*
- CMB determines $\Omega_{\rm m}h^2 \rightarrow \Omega_{\rm m}$
- Flatness $\Omega_g = 1 \Omega_m$

Hu, Eisenstein, Tegmark & White (1998)

- If $w_g < 0$, GDM has no effect on acoustic dynamics $\rightarrow (k_{\text{peaks}}, \text{heights})$ independent of w_g , Ω_g , c_{eff} , c_{vis}
- CMB sensitive to GDM/ Λ mainly through angular diameter distance $[d_A = f(w_g, \Omega_g...)]$
- Galaxy surveys determines *h*
- CMB determines $\Omega_{\rm m}h^2 \rightarrow \Omega_{\rm m}$
- Flatness $\Omega_g = 1 \Omega_m$
- SNIa determines luminosity distance $[d_L = f(w_g, \Omega_g)]$

Hu, Eisenstein, Tegmark & White (1998)

- If $w_g < 0$, GDM has no effect on acoustic dynamics $\rightarrow (k_{\text{peaks}}, \text{heights})$ independent of w_g , Ω_g , c_{eff} , c_{vis}
- CMB sensitive to GDM/ Λ mainly through angular diameter distance $[d_A = f(w_g, \Omega_g...)]$
- Galaxy surveys determines *h*
- CMB determines $\Omega_{\rm m}h^2 \rightarrow \Omega_{\rm m}$
- Flatness $\Omega_g = 1 \Omega_m$
- SNIa determines luminosity distance $[d_L = f(w_g, \Omega_g)]$

Garnavich et al (1998); Riess et al (1998); Perlmutter et al (1998)

Is the Missing Energy a Scalar Field?

• Scalar Fields have maximal sound speed [c_{eff} =1, speed of light]

 CMB+LSS → Lower limit on c_{eff}>0.6 at w_g=-1/6 [2.7σ: MAP+SDSS; 7.7σ: Planck+SDSS] [in 10d parameter space, including bias, tensors]

• Strong constraints for $w_g > -1/2$

Polarization from Thomson Scattering

- Thomson scattering of anisotropic radiation \rightarrow linear polarization
- Polarization aligned with cold lobe of the quadrupole anisotropy

Perturbations & Their Quadrupoles

- Orientation of quadrupole relative to wave (k) determines pattern
- Scalars (density)
- Vectors (vorticity)
- Tensors (gravity waves) m:

Polarization Patterns

Electric & Magnetic Patterns

- Global view: behavior under parity
- Local view: alignment of principle vs. polarization axes

Patterns and Perturbation Types

- Amplitude modulated by plane wave \rightarrow Principle axis
- Direction detemined by perturbation type \rightarrow Polarization axis

Kamionkowski, Kosowski, Stebbins (1997); Zaldarriaga & Seljak (1997); Hu & White (1997)

Polarization Raw Sensitivity

SDSS: Improving Parameter Estimation

Eisenstein, Hu & Tegmark (1998)

Garnavich et al. (1998); Riess et al. (1998); Perlmutter et al. (1998) Figure: Hu, Eisenstein, Tegmark, White (1998)

Hu, Eisenstein, Tegmark, White (1998)

SDSS: Improving Parameter Estimation

Eisenstein, Hu & Tegmark (1998)

Secondary Anisotropies

- Temperature and polarization anisotropies imprinted in the CMB after z=1000
- Rescattering Effects
 - Linear Doppler Effect (cancelled)
 - Modulated Doppler Effects (non–linear)
 - by linear density perturbations → Ostriker–Vishniac Effect
 - by ionization fraction → Inhomogeneous Reionization
 - by clusters → thermal & kinetic Sunyaev–Zel'dovich Effects
- Gravitational Effects
 - Gravitational Redshifts
 - by cessation of linear growth → Integrated Sachs–Wolfe Effect
 - by non–linear growth → Rees–Sciama Effect
 - Gravitational Lensing

Ostriker–Vishniac Effect

Thermal SZ Effect

Persi et al. (1995)

Atrio–Barandela & Muecket (1998)

Rees–Sciama Effect

Gravitational Lensing

Seljak (1996a,b)

Residual Foreground Effects

MAP

Foregrounds & Parameter Estimation

Tegmark, Eisenstein, Hu, de Oliviera Costa (1999)

Features in the Transfer Function

- Features in the linear transfer function
- Break at sound horizon
- Oscillations at small scales; washed out by nonlinearities

