What we have learnt from Planck (organizer's title!)

What we have learnt from Planck I learned

Paradigm of Precision Cosmology

- Precision measurements and maps
 - temperature
 - polarization
 - lensing
 - 9 frequencies
- Control over systematics
 - most recently polarization
- Accurate and precise theoretical predictions
 - Gaussian, adiabatic
 - $-\Lambda CDM$

Near Perfection in 6 Numbers

- All this precision data described by
 6 ACDM parameters
 - $-\Omega_c h^2$: CDM
 - $\Omega_b h^2$: baryons
 - $-\theta_s$: sound scale
 - $-A_s$: amplitude
 - $-n_s$: tilt
 - $-\tau$: reionization
- Measured
 to sub percent
 precision (except τ)

Predictive Power

- Small residuals from ACDM in various spectra
- Temp ↔ pol residuals in ΛCDM with reduced sample variance
- Largely consistent,
 but with high
 precision, moderately
 significant deviations
- $\sim 2\sigma$ outliers, expected but some also drive parameters

Predictive Power

• Predicts all other observables, which direct measurements test

• Good agreement, even weak lensing, clusters, and yes H_0 (< 10%)

Anchors Sink ACDM?

- When distance ladder calibrated by CMB sound horizon, H_0 discrepant with local measurements at 4.4σ (Riess et al 2019)
- Relative distances forward/backwards by ladder: CMB to BAO to SN isolating discrepancy as anchors (e.g. Aylor et al. 2018)
- Relative distances ~ ΛCDM: little room for any new physics at intermediate redshifts to resolve

Driving in the Anchor

- CMB anchor is sound horizon, must calibrate propagation time
- $H(z < 10^3)$: with radiation, baryons fixed only $\Omega_c h^2$ unknown
- $\Omega_c h^2$ controls matter-radiation ratio and radiation driving from potential decay due to Jeans stability

Glitch and Oscillatory Residuals

- Shifts in CMB anchor between low & high ℓ (Addison et al 2015)
- Low multipole glitch deficit of power looks like peaks should be higher, more driving, less matter, higher H_0
- High multipole oscillatory residuals: smoother acoustic peaks, less driving, more matter, lower H_0

- also drives "lensing tension": Pavel Motloch's talk

Glitch and Large Angle Features

- Exclude low $\ell < 30$ glitch (Planck Intermediate 2016 LI)
- H_0 falls, consistent with high multipoles within errors
- Alternately marginalize over possible features during inflation, mild $\Delta\chi^2 \sim 12$ improvement, but 5 params
- Likewise H_0 returns to low value (Obied et al 2017)

Driving and Oscillatory Residuals

- Oscillatory residuals indicate smoother peaks (and persist even in best fit Λ CDM)
- Driving sharpens the peaks
- Residuals indicate less driving, higher matter-radiation ratio
- Higher $\Omega_c h^2$, lower H_0

Driving and CDM

- Signatures of CDM $\Omega_c h^2$: TT amplitude and oscillatory residuals
- Polarization sharper test: projection effects for TT (Galli et al. 2014)

Polarization Signatures

- Polarization sensitivity provides independent calibration using $\ell < 1000$ TE Planck data
- TE glitch at $\ell \sim 165$ enhances sensitivity, since lowering $\Omega_c h^2$ (raising H_0) further raises predictions

Dark Radiation

- Extra dark species whose energy density redshifts faster than matter change sound horizon calibration
- Raise $H(z < 10^3)$, lower sound horizon, raise H_0 at fixed θ_s
- Additional driving from Jeans stable $\Delta N_{\rm eff}$ radiation compensated by raising matter $\Omega_c h^2$

Driving and Damping

- But damping provides second standard ruler in diffusion scale
- Random walk distance of photon scales as harmonic mean between horizon and mean free path
- Consistency check that Λ CDM passes and constrains any additional radiation $\Delta N_{\rm eff}$

Dark Exotica

- Decreasing additional dark components during radiation domination changes damping vs sound horizon
- Reconcile ratio if timed exactly right

• Poulin et al (2018): specific anharmonic, periodic scalar potential

General Mechanism

• Must compensate effect of raising $\Omega_c h^2$ which reduces decay of potential

General Mechanism

• Dark exotica with relativistic sound speed, acoustic oscillations, enhances decay

4 Parameter Tuning

• Tune the impact with sound speed (first dark acoustic peak) and equation of state (redshifts away faster)

Reducing Tuning

- Poulin et al (2018) 4 parameters, amplitude, time scale, c_s² and w must be carefully tuned (top of oscillatory potential c_s² ↓)
- Data favor something both more specific and generic: $c_s^2 = w$, transition to kinetic energy domination (Lin et al 2019)

Potential to Kinetic

- With $c_s^2 = w = 1$ leaves 2 parameters: amplitude and slope of potential and requires kinetic energy redshift away (not oscillate)
- Amplitude $\sim 0.08 \rho_{eq}$ and slope must be large enough to release from Hubble drag

Fit and Predictive Signatures

- Fits joint data better by $\Delta \chi^2 \sim 12 - 14$ for 2-3 parameters
- Fits CMB itself better, largely TE
- TE glitch $\ell \sim 165$ highly sensitive
- Dark component redshifts away by recombination leaving nearly bare $\Omega_c h^2$ signature

Potential Conversion of H_0 Tension

- Raises H_0 to bring CMB and local anchors into better agreement
- Minor further improvements with additional parameters
- Posterior depends on parameter volume near ΛCDM, maximum likelihood (ML) more reflective
- But mainly converts H_0 question to "why this, why then"!

Potential Conversion of H_0 Tension

- Raises H_0 to bring CMB and local anchors into better agreement
- Minor further improvements with additional parameters
- Posterior depends on parameter volume near ΛCDM, maximum likelihood (ML) more reflective
- Already limited by Planck TE polarization, distinguishing details

Potential Conversion of H_0 Tension

- Raises H_0 to bring CMB and local anchors into better agreement
- Minor further improvements with additional parameters
- Posterior depends on parameter volume near ΛCDM, maximum likelihood (ML) more reflective
- EE residuals are ~ 0.3 vs cosmic variance per multipole

• Opportunity for testing ideas based on changing CMB anchor!

Summary

- Planck and other precision CMB experiments have firmly established Λ CDM as the standard model
- ACDM unreasonably effective and efficient in describing suite of cosmological observables
- 6 numbers, mostly measured to sub percent precision, mostly consistent at this level with everything
- Tensions, anomalies and curiosities: imperfection is more interesting than perfection
- H_0 at 4.4 σ , can only be explained by changing one of the anchors
- CMB anchor is sound horizon and cross checked by damping scale
- Potential conversion illustrates designer difficulties, one or more parameters per effect:

– look for predictive power of any explanation