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Paradigm of Precision Cosmology
.
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• Precision measurements
and maps

– temperature

– polarization

– lensing

– 9 frequencies

• Control over systematics

– most recently polarization

• Accurate and precise
theoretical predictions

– Gaussian, adiabatic

– ΛCDM



Near Perfection in 6 Numbers
.
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• All this precision
data described by
6 ΛCDM parameters

– Ωch
2: CDM

– Ωbh
2: baryons

– θs: sound scale

– As: amplitude

– ns: tilt

– τ : reionization

• Measured
to sub percent
precision (except τ )



Predictive Power
.
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TE glitch

• Small residuals from
ΛCDM in various
spectra

• Temp↔ pol
residuals in ΛCDM
with reduced sample
variance

• Largely consistent,
but with high
precision, moderately
significant deviations

• ∼ 2σ outliers, expected
but some also
drive parameters



Predictive Power
• Predicts all other observables, which direct measurements test
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• Good agreement, even weak lensing, clusters, and yes H0 (< 10%)



Anchors Sink ΛCDM?
• When distance ladder calibrated by CMB sound horizon, H0

discrepant with local measurements at 4.4σ (Riess et al 2019)

• Relative distances forward/backwards by ladder: CMB to BAO to
SN isolating discrepancy as anchors (e.g. Aylor et al. 2018)

• Relative distances ∼ ΛCDM: little room for any new physics at
intermediate redshifts to resolve

0.5 1.0 1.5 2.0 2.5

0.90

0.95

1.00

1.05

1.10

(D
/
r d

ra
g
)/
(D

/
r d

ra
g
) P

la
n
ck

6DFGS

SDSS
MGS

SDSS quasars

WiggleZ

BOSS
DR12

BOSS Ly-α (DM)

DES (DM)

DR14 LRG

−0.8

−0.4

0.0

0.4

0.8

JLA and Pantheon

Pantheon only

0.01 0.1 1

zz z

−0.10

−0.05

0.00

0.05

µ
−
µ
P
la
n
ck

SNIa BAO

So
un

d 
H

or
zo

n

Lo
ca

l A
nc

ho
rs

0.0 0.5 1.0 1.5 2.0 2.5

56

62

68

74

H
(z
)/
(1

+
z
) Local Anchors

Sound Horizon 
anchor tension

Planck (2018) I,VI



Driving in the Anchor
• CMB anchor is sound horizon, must calibrate propagation time

• H(z < 103): with radiation, baryons fixed only Ωch
2 unknown

• Ωch
2 controls matter-radiation ratio and radiation driving from

potential decay due to Jeans stability
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Glitch and Oscillatory Residuals
• Shifts in CMB anchor between low & high ` (Addison et al 2015)

• Low multipole glitch – deficit of power – looks like peaks should
be higher, more driving, less matter, higher H0

• High multipole oscillatory residuals: smoother acoustic peaks, less
driving, more matter, lower H0

– also drives “lensing tension”: Pavel Motloch’s talk
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Glitch and Large Angle Features
• Exclude low ` < 30 glitch (Planck Intermediate 2016 LI)

• H0 falls, consistent with high multipoles within errors

• Alternately marginalize over possible features during inflation,
mild ∆χ2 ∼ 12 improvement, but 5 params

• Likewise H0 returns to low value (Obied et al 2017)
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Driving and Oscillatory Residuals
• Oscillatory residuals indicate smoother peaks (and persist even in

best fit ΛCDM)

• Driving sharpens the peaks

• Residuals indicate less driving, higher matter-radiation ratio

• Higher Ωch
2, lower H0
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Driving and CDM
• Signatures of CDM Ωch

2: TT amplitude and oscillatory residuals

• Polarization sharper test: projection effects for TT (Galli et al. 2014)

Obied et al (2017)
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Polarization Signatures
• Polarization sensitivity provides independent calibration using
` < 1000 TE Planck data

• TE glitch at ` ∼ 165 enhances sensitivity, since lowering Ωch
2

(raising H0) further raises predictions

Obied et al (2017)
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Dark Radiation
• Extra dark species whose energy density redshifts faster than

matter change sound horizon calibration

• Raise H(z < 103), lower sound horizon, raise H0 at fixed θs

• Additional driving from Jeans stable ∆Neff radiation compensated
by raising matter Ωch

2
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Driving and Damping
• But damping provides second standard ruler in diffusion scale

• Random walk distance of photon scales as harmonic mean
between horizon and mean free path

• Consistency check that ΛCDM passes and constrains any
additional radiation ∆Neff
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Dark Exotica
• Decreasing additional dark components during radiation

domination changes damping vs sound horizon

• Reconcile ratio if timed exactly right
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General Mechanism
• Must compensate effect of raising Ωch

2 which reduces decay of
potential
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General Mechanism
• Dark exotica with relativistic sound speed, acoustic oscillations,

enhances decay
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4 Parameter Tuning
• Tune the impact with sound speed (first dark acoustic peak) and

equation of state (redshifts away faster)
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Reducing Tuning
• Poulin et al (2018) 4 parameters, amplitude, time scale, c2

s and w
must be carefully tuned (top of oscillatory potential c2

s ↓)
• Data favor something both more specific and generic: c2

s = w,
transition to kinetic energy domination (Lin et al 2019)
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Potential to Kinetic
• With c2

s = w = 1 leaves 2 parameters: amplitude and slope of
potential and requires kinetic energy redshift away (not oscillate)

• Amplitude ∼ 0.08ρeq and slope must be large enough to release
from Hubble drag
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Fit and Predictive Signatures
.
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• Fits joint data better
by ∆χ2 ∼ 12− 14

for 2-3 parameters

• Fits CMB itself
better, largely TE

• TE glitch ` ∼ 165

highly sensitive

• Dark component
redshifts away by
recombination
leaving nearly
bare Ωch

2 signature



Potential Conversion of H0 Tension
• Raises H0 to bring CMB and local anchors into better agreement

• Minor further improvements with additional parameters

• Posterior depends on parameter volume near ΛCDM, maximum
likelihood (ML) more reflective

• But mainly converts H0 question to “why this, why then”!
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Potential Conversion of H0 Tension
• Raises H0 to bring CMB and local anchors into better agreement

• Minor further improvements with additional parameters

• Posterior depends on parameter volume near ΛCDM, maximum
likelihood (ML) more reflective

• Already limited by Planck TE polarization, distinguishing details
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Potential Conversion of H0 Tension
• Raises H0 to bring CMB and local anchors into better agreement

• Minor further improvements with additional parameters

• Posterior depends on parameter volume near ΛCDM, maximum
likelihood (ML) more reflective

• EE residuals are ∼ 0.3 vs cosmic variance per multipole

-1

-0.5

0

0.5

1

∆
C

E
E

�
/σ

C
V

30 500 1000 1500 2000

� Lin et al (2019)

• Opportunity for testing ideas based on changing CMB anchor!



Summary
• Planck and other precision CMB experiments have firmly

established ΛCDM as the standard model

• ΛCDM unreasonably effective and efficient in describing suite of
cosmological observables

• 6 numbers, mostly measured to sub percent precision, mostly
consistent at this level with everything

• Tensions, anomalies and curiosities: imperfection is more
interesting than perfection

• H0 at 4.4σ, can only be explained by changing one of the anchors

• CMB anchor is sound horizon and cross checked by damping scale

• Potential conversion illustrates designer difficulties, one or more
parameters per effect:

– look for predictive power of any explanation




