
Wayne Hu
Perimeter Institute

April 2010

Cosmic Acceleration 

Dark Energy
v.

Modified Gravity



Outline
• Dark Energy vs Modified Gravity

• Three Regimes of Modified Gravity

• Worked (Toy) Models: f(R) and DGP Braneworld

• Collaborators

Wenjuan Fang Dragan Huterer
Marcos Lima Lucas Lombriser
Michael Mortonson Hiro Oyaizu
Fabian Schmidt Hiranya Peiris
Iggy Sawicki Sanjeev Seehra
Uros Seljak Yong-Seon Song
Anze Slosar Amol Upadhye
Sheng Wang Alexey Vikhlinin



Charting Out the Expansion
Standard candle: apparent brightness of objects with a

 fixed luminosity to judge distance
Standard ruler: apparent (angular) separation of objects 

 with a fixed physical separation to judge distance

Sound waves
CMB+Galaxies

Supernovae
1998 Discovery



             Mercury or Pluto?
General relativity says Gravity = Geometry

 

And Geometry = Matter-Energy 
 

Could the missing energy required by acceleration be an incomplete
 description of how matter determines geometry? 
 



Modified Gravity = Dark Energy?
• Solar system tests of gravity are informed by our knowledge of the

local stress energy content

• With no other constraint on the stress energy of dark energy other
than conservation, modified gravity is formally equivalent to dark
energy

F (gµν) +Gµν = 8πGTM
µν − F (gµν) = 8πGTDE

µν

Gµν = 8πG[TM
µν + TDE

µν ]

and the Bianchi identity guarantees∇µTDE
µν = 0

• Distinguishing between dark energy and modified gravity requires
closure relations that relate components of stress energy tensor

• For matter components, closure relations take the form of
equations of state relating density, pressure and anisotropic stress
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Modified Gravity 6= “Smooth DE”
• Scalar field dark energy has δp = δρ (in constant field gauge) –

relativistic sound speed, no anisotropic stress

• Jeans stability implies that its energy density is spatially smooth
compared with the matter below the sound horizon

ds2 = −(1 + 2Ψ)dt2 + a2(1 + 2Φ)dx2

∇2(Φ−Ψ) ∝ matter density fluctuation

• Anisotropic stress changes the amount of space curvature per unit
dynamical mass

∇2(Φ + Ψ) ∝ anisotropic stress

but its absence in a smooth dark energy model makes
g = (Φ + Ψ)/(Φ−Ψ) = 0 for non-relativistic matter



Falsifiability of Smooth Dark Energy
• With the smoothness assumption, dark energy only affects

gravitational growth of structure through changing the expansion
rate

• Hence geometric measurements of the expansion rate predict the
growth of structure

• Hubble Constant

• Supernovae

• Baryon Acoustic Oscillations

• Growth of structure measurements can therefore falsify the whole
smooth dark energy paradigm

• Cluster Abundance

• Weak Lensing

• Velocity Field (Redshift Space Distortion)



Mortonson, Hu, Huterer (2009)

QuintessenceCosmological Constant 

       Falsifying Quintessence
• Dark energy slows growth of structure in highly predictive way

• Deviation significantly >2% rules out Λ with or without curvature

• Excess >2% rules out quintessence with or without curvature and
 early dark energy [as does >2% excess in H0]



Mortonson, Hu, Huterer (2009)

QuintessenceCosmological Constant

Dynamical Tests of Acceleration
• Dark energy slows growth of structure in highly predictive way



Quintessence Falsified?
• No excess numbers of massive z>1 X-ray or SZ clusters with
 Gaussian initial conditions

• No excess power in gravitational lensing at high z relative to low z
 (Bean 0909.3853)

• But would such violations favor modified gravity?

• Given astrophysical systematics, expect purported 2σ violations
 of smooth dark energy predictions will be common in coming years!

(Jee et al 2009, Brodwin et al 2010)



Dynamical vs Lensing Mass
• Newtonian potential: Ψ=δg00/2g00 which non-relativistic particles feel
 

• Space curvature: Φ=δgii/2gii which also deflects photons
 

• Most of the incisive tests of gravity reduce to testing the
 space curvature per unit dynamical mass
 



Dynamical v Strong Lensing
• Comparison of strong lensing and dynamical mass assuming a density
 profile and velocity dispersion data
• Mean exhibits a bias from GR expectation with statistical errors only
• No mass trend detectable 

T. Smith (2009)



Lensing v Dynamical Comparison 
• Gravitational lensing around galaxies vs. linear velocity field
 (through redshift space distortions and galaxy autocorrelation)
• Consistent with GR + smooth dark energy beginning to test 
 interesting models 
 

Zhang et al (2007); Jain & Zhang (2008)

Reyes et al (2010); Lombriser et al (2010)



Falsify in Favor of What?
• Modified gravity models change space curvature per unit

dynamical mass - enhanced or reduced forces on matter

• Requires two closure relations - 1st an an effective anisotropic
stress that distinguishes lensing from dynamical mass

• Viable induced modifications exhibit three separate regimes

• Horizon Scale

• Scalar-Tensor

• General Relativistic
• Choice of lensing mass contribution as 2nd parameter in

scalar-tensor regime favored by conformal invariance of E&M (Hu
& Sawicki 2007; see also Caldwell et al 2007; Amendola et al 2007)

CAMB Package for Linearized PPF: http://camb.info/ppf

Other uses: phantom crossing dark energy (Fang, Hu, Lewis 2009), dark energy PCs
(Mortonson, Hu, Huterer 2009) cascading gravity (Afshordi, Geshnizjani, Khoury 2008)



Three Regimes
• Three regimes with different dynamics

• Examples f(R) and DGP braneworld acceleration

• Parameterized Post-Friedmann description 

• Non-linear regime return to General Relativity / Newtonian dynamics
  

 

r* rc

Scalar-Tensor
Regime

Conserved-Curvature
Regime

General Relativistic
Non-Linear Regime

r
halos, galaxy large scale structure CMB



Worked Examples



Modified Action f(R) Model
• R: Ricci scalar or “curvature”
• f(R): modified action (Starobinsky 1980; Carroll et al 2004)

S =

�
d

4
x
√
−g

�
R + f(R)

16πG
+ Lm

�

• fR ≡ df/dR: additional propagating scalar degree of freedom
(metric variation)

• fRR ≡ d
2
f/dR

2: Compton wavelength of fR squared, inverse
mass squared

• B: Compton wavelength of fR squared in units of the Hubble
length

B ≡ fRR

1 + fR
R

� H

H �

• � ≡ d/d ln a: scale factor as time coordinate



Modified Einstein Equation
• In the Jordan frame, gravity becomes 4th order but matter remains
minimally coupled and separately conserved

Gαβ + fRRαβ −
�

f

2
−�fR

�
gαβ −∇α∇βfR = 8πGTαβ

• Trace can be interpreted as a scalar field equation for fR with a
density-dependent effective potential (p = 0)

3�fR + fRR− 2f = R− 8πGρ

• For small deviations, |fR| � 1 and |f/R| � 1,

�fR ≈
1

3
(R− 8πGρ)

the field is sourced by the deviation from GR relation between
curvature and density and has a mass

m
2
fR
≈ 1

3

∂R

∂fR
=

1

3fRR



DGP Braneworld Acceleration
• Braneworld acceleration (Dvali, Gabadadze & Porrati 2000)

S =

�
d

5
x
√
−g

�
(5)

R

2κ2
+ δ(χ)

�
(4)

R

2µ2
+ Lm

��

with crossover scale rc = κ
2
/2µ2

• Influence of bulk through Weyl tensor anisotropy - solve master
equation in bulk (Deffayet 2001)

• Matter still minimally coupled and conserved

• Exhibits the 3 regimes of modified gravity
• Weyl tensor anisotropy dominated conserved curvature regime

r > rc (Sawicki, Song, Hu 2006; Cardoso et al 2007)

• Brane bending scalar tensor regime r∗ < r < rc (Lue, Soccimarro,
Starkman 2004; Koyama & Maartens 2006)

• Strong coupling General Relativistic regime r < r∗ = (r2
crg)1/3

where rg = 2GM (Dvali 2006)



DGP Field Equations
• DGP field equations

Gµν = 4r
2
cfµν − Eµν

where fµν is a tensor quadratic in the 4-dimensional Einstein and
energy-momentum tensors

fµν ≡
1
12

AAµν −
1
4
A

α
µAνα +

1
8
gµν

�
AαβA

αβ − A
2

3

�

Aµν ≡ Gµν − µ
2
Tµν

and Eµν is the bulk Weyl tensor

• Background metric yields the modified Friedmann equation

H
2 ∓ H

rc
=

µ
2
ρ

3
• For perturbations, involves solving metric perturbations in the bulk

through the “master equation”



Into the Bulk
• Calculation of the metric ratio g=Φ+Ψ/Φ−Ψ requires solving for
 the propagation of metric fluctuations into the bulk
• Encapsulated in the off brane gradient which closes the system
 (e.g. normal branch g=-1/(2Hrc+1) until deep in de Sitter)
 

Sawicki, Song, Hu (2007); Cardoso et al (2008)

Seehra & Hu (in prep)



f (R) Expansion History



Engineering f (R) Models
• Mimic ΛCDM at high redshift

• Accelerate the expansion at low redshift without a cosmological
constant

• Sufficient freedom to vary expansion history within
observationally allowed range

• Contain the phenomenology of ΛCDM in both cosmology and
solar system tests as a limiting case for the purposes of
constraining small deviations

• Suggests

f(R) ∝ Rn

Rn + const.

such that modifications vanish as R→ 0 and go to a constant as
R→∞



Form of f(R) Models 
•	 Transition from zero to constant across an adjustable curvature scale
•	 Slope n controls the rapidity of transition, field amplitude fR0 position
•	 Background curvature stops declining during acceleration epoch
	 and thereafter behaves like cosmological constant

Hu & Sawicki (2007) R/m2

| f
(R

)| 
/m

2  
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Expansion History
•	 Effective equation of state
	 weff scales with field amplitude fR0

•	 Crosses the phantom divide at
	 a redshift that decreases with n

•	 Signature of degrees of freedom
	 in dark energy beyond standard
	 kinetic and potential energy of
	 k-essence or quintessence
	 or modified gravity
	

Hu & Sawicki (2007)
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DGP Expansion History



Hu, Huterer & Smith (2006)

DGP Expansion History
•	 Matching the DGP expansion history to a dark energy model
	 with the same expansion history 
•	 Effective equation of state w(z) [w0~-0.85, wa~0.35]

redshift z
Song, Sawicki & Hu (2006)
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Hu, Huterer & Smith (2006)

DGP Expansion History
•	 Crossover scale rc fit to SN relative distance from z=0: H0DA

redshift z
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Song, Sawicki & Hu (2006)



DGP Normal Branch
• On the normal branch, expansion does not self-accelerate and dark

energy in the form of a brane tension or scalar field necessary

H2 +
H

rc
=
µ2

3
(ρm + ρDE)

• Gravity is still modified as in the self-accelerated branch (but with
attractive forces)

• Ghost free in the quantum theory

• Can choose ρDE to match any desired expansion history including
flat ΛCDM

H2 ≡ µ2

3
(ρm + ρΛ)→ ρDE

• Separate out geometrical and dynamical tests of acceleration



Conserved Curvature Regime



Curvature Conservation
• On superhorizon scales, energy momentum conservation and
expansion history constrain the evolution of metric fluctuations
(Bertschinger 2006)

• For adiabatic perturbations in a flat universe, conservation of
comoving curvature applies ζ

� = 0 where � ≡ d/d ln a (Bardeen 1980)

• Gauge transformation to Newtonian gauge

ds
2 = −(1 + 2Ψ)dt

2 + a
2(1 + 2Φ)dx

2

yields (Hu & Eisenstein 1999)

Φ�� −Ψ� − H
��

H � Φ
� −

�
H

�

H
− H

��

H �

�
Ψ = 0

• Modified gravity theory supplies the closure relationship
Φ = −γ(ln a)Ψ between and expansion history H = ȧ/a supplies
rest.



Linear Theory for f(R)
• In f(R) model, “superhorizon” behavior persists until Compton
wavelength smaller than fluctuation wavelength B

1/2(k/aH) < 1

• Once Compton wavelength becomes larger than fluctuation

B
1/2(k/aH) > 1

perturbations are in scalar-tensor regime described by γ = 1/2.

• Small scale density growth enhanced and

8πGρ > R

low curvature regime with order unity deviations from GR

• Transitions in the non-linear regime where the Compton
wavelength can shrink via chameleon mechanism

• Given kNL/aH � 1, even very small fR have scalar-tensor regime



Hu, Huterer & Smith (2006)

PPF f(R) Description
Metric and matter evolution well-matched by PPF description
Standard GR tools apply (CAMB), self-consistent, gauge invar.

 

Hu & Sawicki (2007); Hu (2008)
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Integrated Sachs-Wolfe Effect
•��� CMB photons transit gravitational potentials of large-scale structure
•��� If potential decays during transit, gravitational blueshift of infall
��� not cancelled by gravitational redshift of exit
•��� Spatial curvature of gravitational potential leads to additional
��� effect  ∆T/T = −∆(Φ−Ψ)



Integrated Sachs-Wolfe Effect
•��� CMB photons transit gravitational potentials of large-scale structure
•��� If potential decays during transit, gravitational blueshift of infall
��� not cancelled by gravitational redshift of exit
•��� Spatial curvature of gravitational potential leads to additional
��� effect  ∆T/T = −∆(Φ−Ψ)



ISW Quadrupole
Reduction of large angle anisotropy for B0~1 for same expansion 

 history and distances as CDM
Well-tested small scale anisotropy unchanged 
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ISW-Galaxy Correlation
•��� Decaying potential: galaxy positions correlated with CMB

•��� Growing potential: galaxy positions anticorrelated with CMB

•��� Observations  indicate correlation 



Hu, Huterer & Smith (2006)

Galaxy-ISW Anti-Correlation
Large Compton wavelength B1/2 creates potential growth which can

 anti-correlate galaxies and the CMB
In tension with detections of positive correlations across a range

 of redshifts

Song, Peiris & Hu (2007); Lombriser et al (2010) B0<0.43

B0=5

B0=0



Hu, Huterer & Smith (2006)

DGP Horizon Scales
Metric and matter evolution well-matched by PPF description
Standard GR tools apply (CAMB), self-consistent, gauge invar.

 

Hu & Sawicki (2007); Hu (2008)
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   DGP CMB Large-Angle Excess
Extra dimension modify gravity on large scales
4D universe bending into extra dimension alters gravitational 

 redshifts in cosmic microwave background
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Hu, Huterer & Smith (2006)

CMB in DGP
Adding cut off as an epicycle can fix distances, ISW problem
Suppresses polarization in violation of EE data - cannot save DGP!

Fang et al (2008)



Hu, Huterer & Smith (2006)

CMB in DGP
Adding cut off as an epicycle can fix distances, ISW problem
Suppresses polarization in violation of EE data - cannot save DGP!

Fang et al (2008)



DGP Normal Branch
• Brane tension (cosmological constant) on normal branch allows
 models to pass ISW test
• Joint expansion history constraints require Hrc>3 at 95% CL
 

Lombriser et al (2009)
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Linear Scalar Tensor Regime



Three Regimes
• Metric: ds2 = −(1 + 2Ψ)dt2 + a2(1 + 2Φ)dx2

• Superhorizon regime: ζ =const., g(a) = (Φ + Ψ)/(Φ−Ψ)

• Linear regime - closure↔ “smooth” dark energy density:

∇2(Φ−Ψ)/2 = −4πGa2∆ρ

G can be promoted to G(a), G(a, k) but for scalar degrees of
freedom conformal invariance requires G = GN and

• Non-linear regime:

∇2(Φ−Ψ)/2 = −4πGa2∆ρ

∇2Ψ = 4πGa2∆ρ+
1

2
∇2φ

with non-linearity in the field equation

∇2φ = glin(a)a2 (8πG∆ρ−N [φ])

waynehu
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Linear Power Spectrum
Linear real space power spectrum enhanced on small scales
Degeneracy with galaxy bias and lack of non-linear predictions

 leave constraints from shape of power spectrum 

0.001 0.01 0.1

k (h/Mpc)

P
L
(k

) (
M

pc
/h

)3

104

103

   
B0
1

0.1
0.01

0.001
0 ( CDM) 



Redshift Space Distortion
Relationship between velocity and density field given by continuity

 with modified growth rate (fv = dlnD/dlna)
Redshift space power spectrum further distorted by Kaiser effect
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Lensing v Dynamical Comparison 
• Gravitational lensing around galaxies vs. linear velocity field
 (through redshift space distortions and galaxy autocorrelation)
• Consistent with GR + smooth dark energy beginning to test 
 interesting models 
 

Zhang et al (2007); Jain & Zhang (2008)

Reyes et al (2010); Lombriser et al (2010)
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DGP Power Spectrum
• Constant suppression in the linear regime for self-acceleration

Lue, Scoccimarro, Starkman (2004); Hu & Sawicki (2007)



Non-Linear GR Regime



Three Regimes
• Fully worked f(R) and DGP examples show 3 regimes

• Superhorizon regime: ζ =const., g(a)

• Linear regime - closure condition - analogue of “smooth” dark
energy density:

∇2(Φ−Ψ)/2 = −4πGa2∆ρ

g(a,x) ↔ g(a, k)

G can be promoted to G(a) but conformal invariance relates
fluctuations to field fluctuation that is small

• Non-linear regime:

∇2(Φ−Ψ)/2 = −4πGa2∆ρ

∇2Ψ = 4πGa2∆ρ− 1

2
∇2φ
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Nonlinear Interaction
Non-linearity in the field equation

∇2φ = glin(a)a2 (8πG∆ρ−N [φ])

recovers linear theory if N [φ]→ 0

• For f(R), φ = fR and

N [φ] = δR(φ)

a non-linear function of the field

Llinked to gravitational potential

• For DGP, φ is the brane-bending mode and

N [φ] =
r2
c

a4

[
(∇2φ)2 − (∇i∇jφ)2

]
a non-linear function of second derivatives of the field

Linked to density fluctuation



Non-Linear Chameleon
• For f(R) the field equation

∇2
fR ≈

1

3
(δR(fR)− 8πGδρ)

is the non-linear equation that returns general relativity

• High curvature implies short Compton wavelength and suppressed
deviations but requires a change in the field from the background
value δR(fR)

• Change in field is generated by density perturbations just like
gravitational potential so that the chameleon appears only if

∆fR ≤
2

3
Φ ,

else required field gradients too large despite δR = 8πGδρ being
the local minimum of effective potential



Non-Linear Dynamics
• Supplement that with the modified Poisson equation

∇2Ψ =
16πG

3
δρ− 1

6
δR(fR)

• Matter evolution given metric unchanged: usual motion of matter
in a gravitational potential Ψ

• Prescription for N -body code

• Particle Mesh (PM) for the Poisson equation

• Field equation is a non-linear Poisson equation: relaxation method
for fR

• Initial conditions set to GR at high redshift



Hu, Huterer & Smith (2006)

Environment Dependent Force
Chameleon suppresses extra force (scalar field) in high density, 

 deep potential regions
 

Oyaizu, Lima, Hu (2008)



Hu, Huterer & Smith (2006)

Environment Dependent Force
For large background field, gradients in the scalar prevent the

 chameleon from appearing
 

Oyaizu, Lima, Hu (2008)



Hu, Huterer & Smith (2006)

N-body Power Spectrum
5123 PM-relaxation code resolves the chameleon transition to GR:

 greatly reduced non-linear effect
 

Oyaizu, Lima, Hu (2008) k (h/Mpc)
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Hu, Huterer & Smith (2006)

N-body Power Spectrum
Artificially turning off the chameleon mechanism restores much of

 enhancement
 

Oyaizu, Lima, Hu (2008) k (h/Mpc)
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Hu, Huterer & Smith (2006)

N-body Power Spectrum
Models where the chameleon absent today (large field models)

 show residual effects from a high redshift chameleon
 

Oyaizu, Lima, Hu (2008) k (h/Mpc)
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Hu, L, Huterer & Smith (2006)

Mass Function
Enhanced abundance of rare dark matter halos (clusters) with

 extra force
 

Schmidt, Lima, Oyaizu, Hu (2008)
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Hu, L, Huterer & Smith (2006)

Mass Function
Local cluster abundance (Chandra sample) current best cosmological
constraint (~4 orders of magnitude better than ISW)

 

Schmidt, Vikhlinin, Hu (2009)



Halo Bias
• Halos at a fixed mass less rare and less highly biased

Schmidt, Lima, Oyaizu, Hu (2008)



Halo Mass Correlation
• Enhanced forces vs lower bias

Schmidt, Lima, Oyaizu, Hu (2008)



Hu, Huterer & Smith (2006)

Halo Model
Power spectrum trends also consistent with halos and modified 

 collapse 
 

Schmidt, Lima, Oyaizu, Hu (2008)
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Nonlinear Interaction
Non-linearity in the field equation

∇2φ = glin(a)a2 (8πG∆ρ−N [φ])

recovers linear theory if N [φ]→ 0

• For f(R), φ = fR and

N [φ] = δR(φ)

a non-linear function of the field

Llinked to gravitational potential

• For DGP, φ is the brane-bending mode and

N [φ] =
r2
c

a4

[
(∇2φ)2 − (∇i∇jφ)2

]
a non-linear function of second derivatives of the field

Linked to density fluctuation
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Newtonian Potential Brane Bending Mode

DGP N-Body
• DGP nonlinear derivative interaction solved by relaxation
 revealing the Vainshtein mechanism  

Schmidt (2009); Chan & Scoccimarro (2009) (cf. Khoury & Wyman 2009)
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Apparent Equivalence Prinicple Violation
• Self-field of a “test mass” can saturate an external field
 (for f(R) in the gradient, for DGP in the second derivatives)  

Hui, Nicolis, Stubbs (2009); Hu (2009)



Summary
• Lessons from the f(R) and DGP worked examples – 3 regimes:

• large scales: conservation determined

• intermediate scales: scalar-tensor

• small scales: GR in high density regions, modified in low

• Large scales: expansion history and metric ratio
g = (Φ + Ψ)/(Φ−Ψ) through curvature conservation

• Intermediate scales: scalar tensor modified Newtonian regime, g
and Poisson equation

• Small scales: nonlinear interaction of modification field makes g
depend on local environment (not scale) - density or potential -
suppressing deviations

• N -body (PM-relaxation) simulations show halo model framework
can describe observables in the nonlinear regime



Solar System Tests



Solar Profile
•	 Density profile of Sun is not a constant density sphere - interior
	 photosphere, chromosphere, corona
•	 Density drops by ~25 orders of magnitude - does curvature follow?

Hu & Sawicki (2007) r/r

ρ 
(g

 c
m

-3
)
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Field Solution
•	 Field solution smoothly relaxes from exterior value
	 to high curvature interior value fR~0, minimizing potential + kinetic
•	 Juncture is where thin-shell criterion is satisfied |∆fR|  ~ ∆Φ

Hu & Sawicki (2007) r/r
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Solar Curvature
•	 Curvature drops suddenly as field moves slightly from zero
•	 Enters into low curvature regime where R<8πGρ 

Hu & Sawicki (2007) r/r
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Solar System Constraint
Cassini constraint on PPN | -1|<2.3x10-5

Easily satisfied if galactic field is at potential minimum
 |fRg|<4.9x10-11

Allows even order unity cosmological fields

Hu & Sawicki (2007) r/r
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