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viewed as arising from

Missing, or dark energy, with w ≡ p̄/ρ̄ < −1/3

Modification of gravity on large scales

• Proof of principle models for both exist: quintessence, k-essence;
DGP braneworld acceleration, f(R) modified action

• Compelling models for either explanation lacking

• Dark energy parameterized description on small scales: smooth
component with a w(z) that completely defines expansion history

• Parameterized description of modified gravity acceleration?

• Previous ad-hoc attempts violate basic principles like
energy-momentum conservation
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PPF Description
• Parallel treatment of parameterizeddark energybeyond a

quintessence scalar field

• Demand that the model satisfies(Hu 1998)

Given Background Expansion

Gauge Invariance

Energy-Momentum Conservation

and the phenomenogically desirable property that the dark energy
does not cluster with the dark matter→ sound horizon

• Larger scales: energy-momentum conservation requires
conservation of the comoving curvature(Bardeen 1980)

• Smaller scales: dark energy spatial perturbations negligible and
observable phenomena depend onexpansion historyonly
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PPF Description
• Implement with a parameterized model: the sound speed in the

dark energy rest frame. Quintessence sound speed cs = 1

• Parameterization later shown to describe k-essence with modified
scalar field kinetic term (Garriga & Mukhanov 1999)

L = F (X,φ) X = −1

2
∇µφ∇µφ

with a sound speed

c2s =
∂F/∂X

2(∂2F/∂X2)X + (∂F/∂X)

• Beyond single scalar fields: parameterize multiple internal degrees
of freedom to allow an evolution across w = −1 phantom divide
(Hu 2004)



PPF Description
• Modified gravity models of acceleration

• Demand that the model satisfies

Given Background Expansion History

Bianchi Identities / (FRW) Metric Theory

Energy-Momentum Conservation

and that modifications reach quasi-static Newtonian limit on small
scales: time derivatives neglected compared with spatial gradients

• PPF description can be used to test general relativity on
cosmological scales and distinguish modified gravity from smooth
dark energy



PPF Description
• Modified gravity models of acceleration

• Demand that the model satisfies

Given Background Expansion History

Bianchi Identities / (FRW) Metric Theory

Energy-Momentum Conservation

and that modifications reach quasi-static Newtonian limit on small
scales: time derivatives neglected compared with spatial gradients

• PPF description can be used to test general relativity on
cosmological scales and distinguish modified gravity from smooth
dark energy

• In addition non-linear effects must bring gravity stably back to
general relativity on small scales to satisfy solar system tests.
Beyond the scope of this talk.
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PPF Description
• On superhorizon scales, energy momentum conservation and

expansion history constrain the evolution of metric fluctuations
(Bertschinger 2006)

• For adiabatic perturbations in a flat universe, conservation of
comoving curvature applies ζ ′ = 0 where ′ ≡ d/d ln a (Bardeen 1980)

• Gauge transformation to Newtonian gauge

ds2 = −(1 + 2Ψ)dt2 + a2(1 + 2Φ)dx2

yields (Hu & Eisenstein 1999)

Φ′′ −Ψ′ − H ′′

H ′ Φ
′ −
(
H ′

H
− H ′′

H ′

)
Ψ = 0

• Modified gravity theory supplies the closure relationship between
Φ and Ψ and expansion history H = ȧ/a supplies rest.
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A Worked Example: DGP Gravity
• Braneworld acceleration (Dvali, Gabadadze & Porrati 2000)

S =
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• Influence of bulk through Weyl tensor anisotropy - solve master
equation in bulk (Deffayet 2001; see also Sawicki’s talk)

• Matter still minimally coupled and conserved

• Satisfies PFF requirements



A Worked Example: DGP Gravity
• Braneworld acceleration (Dvali, Gabadadze & Porrati 2000)

S =

∫
d5x

√
−g
[

(5)R

2κ2
+ δ(χ)

(
(4)R

2µ2
+ Lm

)]
with crossover scale rc = κ2/2µ2

• Influence of bulk through Weyl tensor anisotropy - solve master
equation in bulk (Deffayet 2001; see also Sawicki’s talk)

• Matter still minimally coupled and conserved

• Satisfies PFF requirements

• Dominance of Weyl tensor anisotropy over other components and
matter sets closure relation during self acceleration Ψ → Φ

• Transition to this limit leads to enhancement of potential decay and
large angle CMB anisotropy



DGP Expansion History



Hu, Huterer & Smith (2006)

DGP Expansion History
•	 Matching the DGP expansion history to a dark energy model
	 with the same expansion history 
•	 Effective equation of state w(z) [w0~-0.85, wa~0.35]

redshift z
Song, Sawicki & Hu (2006)

0.1

-0.8

-0.6

-0.4

1 10 100

w(z)



Hu, Huterer & Smith (2006)

DGP Expansion History
•	 Crossover scale rc fit to SN relative distance from z=0: H0DA
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Leveraging the CMB
•	 Relative heights of the first 3 peaks calibrates sound horizon and
	 matter radiation equality horizon: measures Ωmh2 currently 8%
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Standard Ruler
• Standard ruler used to measure the angular diameter distance to 
 recombination (z~1100; currently 2%) or any redshift for which 
 acoustic phenomena observable

WMAP: Bennett et al (2003)
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Hu, Huterer & Smith (2006)

DGP Expansion History
•	 Crossover scale rc fit to SN relative distance from z=0: H0DA

•	 Mismatch to CMB absolute distance DA requires curvature
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DGP Expansion History
•	 Crossover scale rc fit to SN relative distance from z=0: H0DA

•	 Mismatch to CMB absolute distance DA requires curvature
•	 Difference in expansion history appears as a change in 
	 local distances or the Hubble constant: H0
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Hu, Huterer & Smith (2006)

DGP Expansion History
•	 Crossover scale rc fit to SN relative distance from z=0: H0DA

•	 Mismatch to CMB absolute distance DA requires curvature
•	 Compromise between SN and H0 measures

redshift z

di
st

an
ce

 c
ha

ng
e

0.1 1 10 100

-0.2

0

0.2

SNe: rc

CMB:ΩK

DA

H0DA

H0=81

Song, Sawicki & Hu (2006)



DGP Example
•	 DGP modified gravity is in tension with distance measures alone:
	 CMB & SNe distances cannot be jointly satisfied in a flat universe
•	 Even fitting out curvature, Hubble constant is too high for
	 Key Project measurement (and baryon oscillations)
•	 Joint maximization leads to a poorer fit even with extra curvature
	 parameter

WMAP3yr+SNLS WMAP3yr+SNLS+KP

flat DGP

open DGP
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Prospects for Percent H0

• Improving the distance ladder  (~3-5%, Riess 2005; Macri et al 2006) 

• Water maser proper motion, acceleration (~3%, VLBA Condon & Lo 2005; 

 ~1% SKA, Greenhill 2004)

• Gravity wave sirens  (~2% - 3x Adv. LIGO + GRB sat, Dalal et al 2006)

• Combination of dark energy tests: e.g. SNIa relative distances:

 H0D(z) and baryon acoustic oscillations D(z)



Flat Universe Precision
•	 Planck acoustic peaks, 1% H0, SNAP SNe to z=1.7 in a flat universe

Hu, Huterer & Smith (2006)
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Forecasts for CMB+H0
•	 To complement CMB observations with Ωmh2 to 1%, an H0 of
	 ~1% enables constant w measurement to ~2% in a flat universe 	
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Dark Energy Equation of State
•	 Marginalizing curvature degrades 68% CL area by 4.8 
•	 CMB lensing information from SPTpol (~3% B-mode power)
	 fully restores constraints

Hu, Huterer & Smith (2006)
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DGP Metric Evolution



DGP Potential Evolution
•	 Difference in expansion history gives excess decay of grav. potential 
	 on subhorizon scales (Lue, Scoccimarro, Starkmann 2004; Koyama & Maartins 2005)

•	 Energy-momentum conservation and dominance of Weyl anisotropy
	 leads to further decay
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Integrated Sachs-Wolfe Effect
•	 CMB photons transit gravitational potentials of large-scale structure
•	 If potential decays during transit, gravitational blueshift of infall
	 not cancelled by gravitational redshift of exit
•	 Spatial curvature of gravitational potential leads to additional
	 effect  ∆T/T = −∆(Φ−Ψ)
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DGP Example
•	 Excess decay leads to enhanced large angle CMB anisotropy
•	 Requires either breaking of initial scale invariance or missing
	 physics beyond Weyl tensor at ~rc/10 to be compatible with 
	 observations
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A Worked Example:f (R) Gravity
• Modify theEinstein-Hilbertaction(Starobinsky 1980; Carroll et al 2004)

S =

∫
d4x

√
−g
[
R + f(R)

2µ2
+ Lm

]
• In theJordan frame, gravity becomes 4th order but matter remains

minimally coupledand separatelyconserved

• SatisifiesPPF requirements



A Worked Example:f (R) Gravity
• Modify theEinstein-Hilbertaction(Starobinsky 1980; Carroll et al 2004)

S =

∫
d4x

√
−g
[
R + f(R)

2µ2
+ Lm

]
• In theJordan frame, gravity becomes 4th order but matter remains

minimally coupledand separatelyconserved

• SatisifiesPPF requirements

• Expansion history parameterization:Friedmann equationbecomes

H2 − fR(HH ′ +H2) +
1

6
f +H2fRRR

′ =
µ2ρ

3

wherefR = df/dR, fRR = d2f/dR2

• For any desiredH, solve a2nd order diffeqto findf(R)



PPF Functions



Hu, Huterer & Smith (2006)

Expansion History Family of f(R)
•	 Each expansion history, matched by dark energy model [w(z),ΩDE,H0]
	 corresponds to a family of f(R) models due to its 4th order nature
•	 Parameterized by B ∝  fRR = d2f/dR2 evaluated at z=0 

Song, Hu & Sawicki  (2006)
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Expansion History Family of f(R)
•	 Each expansion history, matched by dark energy model [w(z),ΩDE,H0]
	 corresponds to a family of f(R) models due to its 4th order nature
•	 Parameterized by B ∝  fRR = d2f/dR2 evaluated at z=0 
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Expansion History Family of f(R)
•	 Each expansion history, matched by dark energy model [w(z),ΩDE,H0]
	 corresponds to a family of f(R) models due to its 4th order nature
•	 Parameterized by B ∝  fRR = d2f/dR2 evaluated at z=0 
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Hu, Huterer & Smith (2006)

Expansion History Family of f(R)
•	 Each expansion history, matched by dark energy model [w(z),ΩDE,H0]
	 corresponds to a family of f(R) models due to its 4th order nature
•	 Parameterized by B ∝  fRR = d2f/dR2 evaluated at z=0 
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f (R) Metric Evolution



Deviation Parameter
• Express the 4th order nature of equations as a deviation parameter

Φ′′ −Ψ′ − H ′′

H ′ Φ
′ −
(
H ′

H
− H ′′

H ′

)
Ψ =

(
k

aH

)2

Bε

• Einstein equation become a second order equation for ε

f(R) = −M2+2n/Rn



Deviation Parameter
• Express the 4th order nature of equations as a deviation parameter

Φ′′ −Ψ′ − H ′′

H ′ Φ
′ −
(
H ′

H
− H ′′

H ′

)
Ψ =

(
k

aH

)2

Bε

• Einstein equation become a second order equation for ε

• In high redshift, high curvature R limit this is

ε′′ +

(
7

2
+ 4

B′

B

)
ε′ +

2

B
ε =

1

B
× metric sources

B =
fRR

1 + fR

R′ H

H ′

• R→∞, B → 0 and for B < 0 short time-scale tachyonic
instability appears making previous models not cosmologically
viable

f(R) = −M2+2n/Rn



Hu, Huterer & Smith (2006)

Potential Growth
•	 On the stable B>0 branch, potential evolution reverses from decay
	 to growth as a function of scale B1/2(k/aH)
•	 Newton constant G rescaled by 1+fR leading to different density and
	 potential growth functions
•	 On small scales, quasistatic equilibrium reached in linear theory
	 with Ψ=−2Φ requiring non-linear effects restore PPN expectations

Song, Hu & Sawicki  (2006)
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Hu, Huterer & Smith (2006)

ISW Quadrupole
•	 Reduction of potential decay can eliminate the ISW effect at the
	 quadrupole for B0~3/2
•	 In conjunction with a change in the initial power spectrum can
	 also bring the total quadrupole closer in ensemble average to
	 the observed quadrupole

Song, Hu & Sawicki  (2006)
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ISW Quadrupole
•	 Reduction of large angle anisotropy for B0~1 for same expansion 
	 history and distances as ΛCDM
•	 Well-tested small scale anisotropy unchanged 
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ISW-Galaxy Correlation
•	 Decaying potential: galaxy positions correlated with CMB

•	 Growing potential: galaxy positions anticorrelated with CMB

•	 Observations  indicate correlation 



ISW Galaxy Correlation
•   A 2-3σ detection of the ISW effect through galaxy correlations 

Boughn & Crittenden (2003); Nolte et al (2003); Fosalba & Gaztanaga (2003); Fosalba et al (2003); 
Afshordi et al (2003)
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Galaxy-ISW (Anti)Correlation
•	 Change in potential growth reduces galaxy-ISW correlation and
	 for high B0>1 predicts anticorrelation
•	 Reported positive detections place upper limit of B0<1
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Linear Power Spectrum
•	 Linear real space power spectrum enhanced on small scales
•	 Degeneracy with galaxy bias and lack of non-linear predictions
	 leave constraints from shape of power spectrum 
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Redshift Space Distortion
•	 Relationship between velocity and density field given by continuity
	 with modified growth rate
•	 Redshift space power spectrum further distorted by Kaiser effect
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PPF Description
• On superhorizon scales, metric evolution given by conservation

Φ′′ −Ψ′ − H ′′

H ′ Φ
′ −
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H ′

)
Ψ = 0

requiring a closure relation between the metric fluctuations

Ψ = −f1(a)Φ



PPF Description
• On superhorizon scales, metric evolution given by conservation

Φ′′ −Ψ′ − H ′′

H ′ Φ
′ −
(

H ′

H
− H ′′

H ′

)
Ψ = 0

requiring a closure relation between the metric fluctuations

Ψ = −f1(a)Φ

• Below parameterized transition scale, modified Poisson equation

k2

(
Φ−Ψ

2

)
=

1
2
f3(a)µ2a2ρ∆

with a potentially different closure relation

Ψ = −f2(a)Φ

and the usual quasistatic conservation laws

∆′ =
(

k

aH

)2

Hq , Hq′ = Ψ ,



Summary
• Parameterized description of acceleration: background expansion

history w(z) supplemented by

Transition scale where dark energy becomes smooth

Transition scale where modified gravity switches from
Friedmann dynamics to quasistatic Newtonian dynamics (and a
further non-linear transition to GR)

consistent with energy-momentum conservation and metric theory

• Test explanations of acceleration in absence of compelling models



Summary
• Parameterized description of acceleration: background expansion

history w(z) supplemented by

Transition scale where dark energy becomes smooth

Transition scale where modified gravity switches from
Friedmann dynamics to quasistatic Newtonian dynamics (and a
further non-linear transition to GR)

consistent with energy-momentum conservation and metric theory

• Test explanations of acceleration in absence of compelling models

• Expansion history alone tests specific models: e.g. DGP by H0

• PPF description of DGP shows disfavored enhanced ISW effect if
Weyl anisotropy dominates during self-acceleration

• PPF description of f(R) shows previous models unstable but
stable models do exist and are testable with linear phenomena




