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Parameterizing Acceleration
• Cosmic acceleration, like the cosmological constant, can either be

viewed as arising from

Missing, or dark energy, with w ≡ p̄/ρ̄ < −1/3

Modification of gravity on large scales

Gµν = 8πG
(
TM
µν + TDE

µν

)
F (gµν) +Gµν = 8πGTM

µν

• Proof of principle models for both exist: quintessence, k-essence;
DGP braneworld acceleration, f(R) modified action

• Compelling models for either explanation lacking

• Study models as illustrative toy models whose features can be
generalized



Parameterized Post-Friedmann
Description

• Smooth dark energy parameterized description on small scales:
w(z) that completely defines expansion history, sound speed
defines structure formation

• Parameterized description of modified gravity acceleration

Many ad-hoc attempts violate energy-momentum conservation,
Bianchi identities, gauge invariance; others incomplete

Parameterize the degrees of freedom in the effective dark energy

F (gµν) = 8πGTDE
µν

retaining the metric structure of general relativity but with
component non-minimally dependent on metric, coupled to matter

Non-linear mechanism returns general relativity on small scales
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Three Regimes
• Three regimes defined by γ=−Φ/Ψ  BUT with different dynamics

• Examples f(R) and DGP braneworld acceleration

• Parameterized Post-Friedmann description 

• Non-linear regime follows a halo paradigm but a full parameterization
 still lacking and theoretical, workable, examples few

Hu & Sawicki (2007)
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Outline
• Horizon scales: conserved curvature

• Large scale structure: quasi-static scalar-tensor regime

• Dark matter halos & the Galaxy: restoration of General Relativity

• Collaborators:

• Wenjuan Fang

• Marcos Lima

• Hiro Oyaizu

• Hiranya Peiris

• Iggy Sawicki

• Yong-Seon Song

• Sheng (Wiley) Wang



Illustrative Toy Models



Modified Action f (R) Model
• R: Ricci scalar or “curvature”
• f(R): modified action (Starobinsky 1980; Carroll et al 2004)

S =

∫
d4x
√
−g
[
R + f(R)

16πG
+ Lm

]
• fR ≡ df/dR: additional propagating scalar degree of freedom

(metric variation)

• fRR ≡ d2f/dR2: Compton wavelength of fR squared, inverse
mass squared

• B: Compton wavelength of fR squared in units of the Hubble
length

B ≡ fRR
1 + fR

R′
H

H ′

• ′ ≡ d/d ln a: scale factor as time coordinate



Modified Einstein Equation
• In the Jordan frame, gravity becomes 4th order but matter remains

minimally coupled and separately conserved

Gαβ + fRRαβ −
(

f

2
−�fR

)
gαβ −∇α∇βfR = 8πGTαβ

• Trace can be interpreted as a scalar field equation for fR with a
density-dependent effective potential (p = 0)

3�fR + fRR− 2f = R− 8πGρ

• For small deviations, |fR| � 1 and |f/R| � 1,

�fR ≈
1

3
(R− 8πGρ)

the field is sourced by the deviation from GR relation between
curvature and density and has a mass

m2
fR
≈ 1

3

∂R

∂fR

=
1

3fRR



DGP Braneworld Acceleration
• Braneworld acceleration (Dvali, Gabadadze & Porrati 2000)

S =

∫
d5x
√
−g
[

(5)R

2κ2
+ δ(χ)

(
(4)R

2µ2
+ Lm

)]
with crossover scale rc = κ2/2µ2

• Influence of bulk through Weyl tensor anisotropy - solve master
equation in bulk (Deffayet 2001)

• Matter still minimally coupled and conserved

• Exhibits the 3 regimes of modified gravity
• Weyl tensor anisotropy dominated conserved curvature regime
r > rc (Sawicki, Song, Hu 2006; Cardoso et al 2007)

• Brane bending scalar tensor regime r∗ < r < rc (Lue, Soccimarro,
Starkman 2004; Koyama & Maartens 2006)

• Strong coupling General Relativistic regime r < r∗ = (r2
crg)

1/3

where rg = 2GM (Dvali 2006)



DGP Field Equations
• DGP field equations

Gµν = 4r2cfµν − Eµν

where fµν is a tensor quadratic in the 4-dimensional Einstein and
energy-momentum tensors

fµν ≡
1
12
AAµν −

1
4
AαµAνα +

1
8
gµν

(
AαβA

αβ − A2

3

)
Aµν ≡ Gµν − µ2Tµν

and Eµν is the bulk Weyl tensor

• Background metric yields the modified Friedmann equation

H2 ∓ H

rc
=
µ2ρ

3

• For perturbations, involves solving metric perturbations in the bulk
through the “master equation”



Conserved Curvature Regime



Curvature Conservation
• On superhorizon scales, energy momentum conservation and

expansion history constrain the evolution of metric fluctuations
(Bertschinger 2006)

• For adiabatic perturbations in a flat universe, conservation of
comoving curvature applies ζ ′ = 0 where ′ ≡ d/d ln a (Bardeen 1980)

• Gauge transformation to Newtonian gauge

ds2 = −(1 + 2Ψ)dt2 + a2(1 + 2Φ)dx2

yields (Hu & Eisenstein 1999)

Φ′′ −Ψ′ − H ′′

H ′ Φ
′ −
(
H ′

H
− H ′′

H ′

)
Ψ = 0

• Modified gravity theory supplies the closure relationship
Φ = −γ(ln a)Ψ between and expansion history H = ȧ/a supplies
rest.



Linear Theory for f (R)
• In f(R) model, “superhorizon” behavior persists until Compton

wavelength smaller than fluctuation wavelength B1/2(k/aH) < 1

• Once Compton wavelength becomes larger than fluctuation

B1/2(k/aH) > 1

perturbations are in scalar-tensor regime described by γ = 1/2.



Linear Theory for f (R)
• In f(R) model, “superhorizon” behavior persists until Compton

wavelength smaller than fluctuation wavelength B1/2(k/aH) < 1

• Once Compton wavelength becomes larger than fluctuation

B1/2(k/aH) > 1

perturbations are in scalar-tensor regime described by γ = 1/2.

• Small scale density growth enhanced and

8πGρ > R

low curvature regime with order unity deviations from GR

• Transitions in the non-linear regime where the Compton
wavelength can shrink via chameleon mechanism

• Given kNL/aH � 1, even very small fR have scalar-tensor regime



Deviation Parameter
• Express the 4th order nature of equations as a deviation parameter

Φ′′ −Ψ′ − H ′′

H ′ Φ
′ −
(
H ′

H
− H ′′

H ′

)
Ψ =

(
k

aH

)2

Bε

• Einstein equation become a second order equation for ε

f(R) = −M2+2n/Rn



Deviation Parameter
• Express the 4th order nature of equations as a deviation parameter

Φ′′ −Ψ′ − H ′′

H ′ Φ
′ −
(
H ′

H
− H ′′

H ′

)
Ψ =

(
k

aH

)2

Bε

• Einstein equation become a second order equation for ε

• In high redshift, high curvature R limit this is

ε′′ +

(
7

2
+ 4

B′

B

)
ε′ +

2

B
ε =

1

B
× metric sources

B =
fRR

1 + fR

R′ H

H ′

• R→∞, B → 0 and for B < 0 short time-scale tachyonic
instability appears making previous models not cosmologically
viable

f(R) = −M2+2n/Rn



Hu, Huterer & Smith (2006)

Potential Growth
•	 On the stable B>0 branch, potential evolution reverses from decay
	 to growth as wavelength becomes smaller than Compton scale
•	 Quasistatic equilibrium reached in linear theory with γ=−Φ/Ψ=1/2
	 until non-linear effects restore γ=1

Song, Hu & Sawicki  (2006)
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PPF Correspondence
• On large scales, Bianchi identity requires covariant conservation of

effective dark energy leaving:

Metric ratio of Newtonian gravitational potentials
g(a, k) = (Φ + Ψ)/(Φ−Ψ)

First relationship with the matter fluctuations fζ(a)

• On linear scales, time-derivatives of metric can be dropped leading
to a Poisson-like equation with:

Metric ratio g(a, k) = (Φ + Ψ)/(Φ−Ψ)

Second relationship with the matter fluctuations fG(a)

• On non-linear scales associated with collapsed objects, acceptable
modifications must return general relativity

Transition between linear “2 halo” and non-linear “1 halo” regime



Hu, Huterer & Smith (2006)

PPF f(R) Description
• Metric and matter evolution well-matched by PPF description
• Standard GR tools apply (CAMB), self-consistent, gauge invar.
 

Hu & Sawicki (2007); Hu (2008)
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Integrated Sachs-Wolfe Effect
•	 CMB photons transit gravitational potentials of large-scale structure
•	 If potential decays during transit, gravitational blueshift of infall
	 not cancelled by gravitational redshift of exit
•	 Spatial curvature of gravitational potential leads to additional
	 effect  ∆T/T = −∆(Φ−Ψ)
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Hu, Huterer & Smith (2006)

ISW Quadrupole
• Reduction of potential decay can eliminate the ISW effect at the
 quadrupole for B0~3/2
• In conjunction with a change in the initial power spectrum can
 also bring the total quadrupole closer in ensemble average to
 the observed quadrupole

Song, Hu & Sawicki  (2006)
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ISW Quadrupole
• Reduction of large angle anisotropy for B0~1 for same expansion 
 history and distances as ΛCDM
• Well-tested small scale anisotropy unchanged 
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ISW-Galaxy Correlation
•	 Decaying potential: galaxy positions correlated with CMB

•	 Growing potential: galaxy positions anticorrelated with CMB

•	 Observations  indicate correlation 



Hu, Huterer & Smith (2006)

Galaxy-ISW Anti-Correlation
• Large Compton wavelength B1/2 creates potential growth which can
 anti-correlate galaxies and the CMB
• In tension with detections of positive correlations across a range
 of redshifts

Song, Peiris & Hu (2007)
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Hu, Huterer & Smith (2006)

PPF DGP Description
• Metric and matter evolution well-matched by PPF description
• Standard GR tools apply (CAMB), self-consistent, gauge invar.
 

Hu & Sawicki (2007); Hu (2008)
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Hu, Huterer & Smith (2006)

CMB in DGP
• Flat DGP and flat ΛCDM have same number of parameters
• Two problems: SNe+CMB distances, CMB ISW: ∆χ2eff = 28

Fang et al (2008)



Hu, Huterer & Smith (2006)

DGP Expansion History
•	 Matching the DGP expansion history to a dark energy model
	 with the same expansion history 
•	 Effective equation of state w(z) [w0~-0.85, wa~0.35]

redshift z
Song, Sawicki & Hu (2006)
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Hu, Huterer & Smith (2006)

DGP Expansion History
•	 Crossover scale rc fit to SN relative distance from z=0: H0DA
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Hu, Huterer & Smith (2006)

DGP Expansion History
•	 Crossover scale rc fit to SN relative distance from z=0: H0DA

•	 Mismatch to CMB absolute distance DA requires curvature
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Hu, Huterer & Smith (2006)

DGP Expansion History
•	 Crossover scale rc fit to SN relative distance from z=0: H0DA

•	 Mismatch to CMB absolute distance DA requires curvature
•	 Difference in expansion history appears as a change in 
	 local distances or the Hubble constant: H0
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Hu, Huterer & Smith (2006)

CMB in DGP
• Adding curvature as an epicycle can fix distances, quintessence 
• CMB ISW problem remains, compromise: ∆χ2eff = 23

Fang et al (2008)



Hu, Huterer & Smith (2006)

CMB in DGP
• Adding cut off as an epicycle can fix distances, ISW problem
• Suppresses polarization in violation of EE data - cannot save DGP!

Fang et al (2008)
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Parameterized Post-Friedmann
• Parameterizing the degrees of freedom associated with metric
 modification of gravity that explain cosmic acceleration
• Simple models that add in only one extra scale to explain
 acceleration tend to predict substantial changes near horizon
 and hence ISW
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Linear Scalar Tensor Regime



Three Regimes
• Three regimes defined by γ=−Φ/Ψ  BUT with different dynamics

• Examples f(R) and DGP braneworld acceleration

• Parameterized Post-Friedmann description 

• Non-linear regime follows a halo paradigm but a full parameterization
 still lacking and theoretical, workable, examples few

Hu & Sawicki (2007)
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Linear Power Spectrum
• Linear real space power spectrum enhanced on small scales
• Degeneracy with galaxy bias and lack of non-linear predictions
 leave constraints from shape of power spectrum 
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Hu, Huterer & Smith (2006)

Power Spectrum Data
• Linear power spectrum enhancement fits SDSS LRG data better
 than ΛCDM but
• Shape expected to be altered by non-linearities 

Song, Peiris & Hu (2007)
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Redshift Space Distortion
• Relationship between velocity and density field given by continuity
 with modified growth rate (fv = dlnD/dlna)
• Redshift space power spectrum further distorted by Kaiser effect
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Non-Linear GR Regime



Three Regimes
• Three regimes defined by γ=−Φ/Ψ  BUT with different dynamics

• Examples f(R) and DGP braneworld acceleration

• Parameterized Post-Friedmann description 

• Non-linear regime follows a halo paradigm but a full parameterization
 still lacking and theoretical, workable, examples few

Hu & Sawicki (2007)

r* rc

Scalar-Tensor
Regime

Conserved-Curvature
Regime

General Relativistic
Non-Linear Regime

r
halos, galaxy large scale structure CMB



Hu, Huterer & Smith (2006)

PPF Halo Model
• Two halo term behaves as in linear PPF description
• One halo term interpolates back to GR with same expansion history
 

Hu & Sawicki  (2007)
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N-body
• For f(R) the field equation

∇2fR ≈
1

3
(δR(fR)− 8πGδρ)

is the non-linear equation that returns general relativity.

• Supplement that with the modified Poisson equation

∇2Ψ =
16πG

3
δρ− 1

6
δR(fR)

and the usual motion of matter in a gravitational potential Ψ

• Prescription for N -body code

• PM for the Poisson equation, relaxation method for fR

• Initial conditions set to GR at high redshift



Hu, Huterer & Smith (2006)

Halos in f(R)
• Interactions between halos and accretion at outskirts enhanced 
• Dynamics inside large halos shows no deviation from GR

Oyaizu et al (2008)
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Hu, Huterer & Smith (2006)

N-body Power Spectrum
• 5123 PM-relaxation code resolves the chameleon transition to GR
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N-body Power Spectrum
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Hu, Huterer & Smith (2006)

4

N-body Power Spectrum
• Chameleon transition weakens with higher field amplitude
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Summary
• Lessons from f(R) and DGP braneworld examples – 3 regimes:

• large scales: conservation determined

• intermediate scales: scalar-tensor

• small scales: non-linear or GR

• Large and intermediate scales parameterized by metric ratio γ or
g = (Φ + Ψ)/(Φ−Ψ) as in PPN but with different dynamics

• Order unity modifications of Friedmann eqn suggest problematic
order unity deviations in horizon scale physics (e.g. DGP) unless a
second scale exists (e.g. f(R))

• Small scales: non-linear mechanism and modified halo model

• N -body (PM-relaxation) simulations with non-linear chameleon
mechanism show strongest deviations at intermediate scales




