Priming the BICEP

Wayne Hu
Chicago, March 2014

A BICEP Primer

- How do gravitational waves affect the CMB temperature and polarization spectrum?
- What is a *B* mode?
- Why does inflation predict nearly scale invariant gravitational wave power?
- Why does measuring B determine the inflationary energy scale?
- What is r? and how is it related to tilt(s)
- Can the consistency relation be tested in the near future?
- Why does $r \sim 0.2$ imply that the inflaton rolls super-Planckian distances?
- Are the temperature and B mode power spectra compatible with inflation? simplest scale-free models?

CMB and Gravitational Waves

Gravitational Waves in Cosmology

- During deceleration epoch gravity waves are frozen outside the horizon
- Oscillate inside the horizon and decay or redshift as radiation

Quadrupoles from Gravitational Waves

- Changing transverse traceless distortion of space, aka gravitational waves, creates quadrupole CMB anisotropy
- Gravitational waves are frozen when larger than the horizon and oscillate and decay as radiation inside horizon

ISW Effect from Tensors

- Each tensor mode that crosses horizon imprints quadrupole temperature distortion
- Modes that cross before recombination: effect erased by rescattering
- Modes that cross after recombination: project along the line of sight
 - tensor ISW previously the best constraints on tensors

ISW Effect from Tensors

- Each tensor mode that crosses horizon imprints quadrupole temperature distortion
- Modes that cross before recombination: effect erased by rescattering
- Modes that cross after recombination: project along the line of sight
 - tensor ISW previously the best constraints on tensors

Polarization from Thomson Scattering

Differential cross section depends on polarization and angle

$$\frac{d\sigma}{d\Omega} = \frac{3}{8\pi} |\hat{\epsilon}' \cdot \hat{\epsilon}|^2 \sigma_T$$

Polarization from Thomson Scattering

• Isotropic radiation scatters into unpolarized radiation

Polarization from Thomson Scattering

Quadrupole anisotropies scatter into linear polarization

aligned with cold lobe

Quadrupoles from Gravitational Waves

- Transverse-traceless distortion provides temperature quadrupole
- Gravitational wave polarization picks out direction transverse to wavevector

How do Scalars Differ?

- Temperature inhomogeneities in a medium
- Photons arrive from different regions producing an anisotropy

Azimuthally symmetric around wavevector

Whence Polarization Anisotropy?

- Observed photons scatter into the line of sight
- Polarization arises from the projection of the quadrupole on the transverse plane

Polarization Multipoles

- Mathematically pattern is described by the tensor (spin-2) spherical harmonics [eigenfunctions of Laplacian on trace-free 2 tensor]
- Correspondence with scalar spherical harmonics established via Clebsch-Gordon coefficients (spin x orbital)
- Amplitude of the coefficients in the spherical harmonic expansion are the multipole moments; averaged square is the power

Gravitational Wave Pattern

- Projection of the quadrupole anisotropy gives polarization pattern
- Transverse polarization of gravitational waves breaks azimuthal symmetry

gravitational wave

Electric & Magnetic Polarization

(a.k.a. gradient & curl)

 Alignment of principal vs polarization axes (curvature matrix vs polarization direction)

Kamionkowski, Kosowsky, Stebbins (1997) Zaldarriaga & Seljak (1997)

Recombination B-Modes

 Rescattering of quadrupoles at recombination yield a peak in B-modes

Polarized Landscape

Two scattering epochs: recombination and reionization leave two imprints on B-modes

Polarized Landscape

• Two scattering epochs: recombination and reionization leave two imprints on B-modes

Gravitational Waves and Inflation

Gravitational Waves during Inflation

- During acceleration epoch gravity waves behave oppositely to deceleration epoch
- Oscillate inside the horizon and freeze when crossing horizon

Gravitational Waves

- Gravitational wave amplitude $h_{+,\times}$ satisfies same Klein-Gordon equation as scalars
- Just like inflaton ϕ , quantum fluctuations freeze out at horizon crossing with power per $\ln k$ given by the Hubble scale H

$$\Delta_{\delta\phi}^2 = \frac{H^2}{(2\pi)^2}; \quad \Delta_{+,\times}^2 = \frac{2}{M_{\rm pl}^2} \frac{H^2}{(2\pi)^2}$$

By the Friedmann equation

$$H^2 = \frac{\rho}{3M_{\rm pl}^2} \approx \frac{V(\phi)}{3M_{\rm pl}^2}$$

Measurement of B-modes determines energy scale $E_i = V^{1/4}$

$$B_{\rm peak} \approx 0.024 \left(\frac{E_i}{10^{16} {\rm GeV}}\right)^2 \mu {\rm K}$$

- Unlike gravitational waves, inflaton fluctuations determine when inflation ends in a given patch, changing the scale factor or curvature
- Curvature power is enhanced by the slowness of the roll

$$\mathbf{\epsilon} = rac{\dot{\phi}^2}{2H^2M_{
m pl}^2} \qquad \qquad \Delta_{\mathcal{R}}^2 = rac{H^2}{8\pi^2M_{
m pl}^2\mathbf{\epsilon}}$$

- Unlike gravitational waves, inflaton fluctuations determine when inflation ends in a given patch, changing the scale factor or curvature
- Curvature power is enhanced by the slowness of the roll

$$\mathbf{\epsilon} = \frac{\dot{\phi}^2}{2H^2M_{\mathrm{pl}}^2}$$

$$\Delta_{\mathcal{R}}^2 = \frac{H^2}{8\pi^2M_{\mathrm{pl}}^2\mathbf{\epsilon}}$$

• Tensor-scalar ratio *r*

$$r \equiv 4\frac{\Delta_+^2}{\Delta_R^2} = 16\epsilon$$

• A large r implies a large ϵ and a large roll

$$\epsilon = \frac{1}{2M_{\rm pl}^2} \left(\frac{d\phi}{d\ln a}\right)^2$$

• Observable scales span $d \ln a = d \ln k \sim 5$ so

$$\Delta \phi \approx 5 \frac{d\phi}{d \ln a} = 5(r/8)^{1/2} M_{\rm pl} \approx 0.6(r/0.1)^{1/2} M_{\rm pl}$$

- For r=0.2 the field must roll by at least $M_{\rm pl}$
- Difficult to protect the flat potential across this large a range in field space

$n_S - r$ Plane

Scalar tilt

$$\frac{d \ln \Delta_{\mathcal{R}}^2}{d \ln k} \equiv n_S - 1$$

$$= 2 \frac{d \ln H}{d \ln k} - \frac{d \ln \epsilon}{d \ln k} = -2\epsilon - \frac{d \ln \epsilon}{d \ln k}$$

- Measuring both $n_S 1$ and r constrain the inflationary model
- In slow roll, related to derivatives of potential

$$\epsilon \approx \frac{M_{\rm pl}^2}{2} \left(\frac{V'}{V}\right)^2$$

$$\frac{d \ln \epsilon}{d \ln k} = 4\epsilon - 2M_{\rm pl}^2 \frac{V''}{V}$$

- Monomial, scale free, potentials $V(\phi) \sim \phi^n$ have both terms comparable and related
- Value depends position on potential efolds to end of inflation
- Planck temperature based constraints applicable to these models where scalar spectrum is a power law

Tensor Temperature Excess

• r=0.2 and fixed acoustic peaks produces an excess in temperature power spectrum that is not observed (limits r<0.11 95% CL)

Running of the Tilt

- Introducing scale by running tilt changes inferences from temperature spectrum, weakening upper limit on *r*
- r=0.2 requires a large running of order the tilt, not compatible with rolling on simple scale-free potentials

Tensor Temperature Excess

- Prefers sharper change than running, suppression over 1efold (excess exists even without tensors)
- Steps in power from steps in ε (or sound speed)

Tension with BICEP2

- Tension between temperature and polarization inferences can be alleviated if scalar spectrum is not scale free
- Large running tilt or feature that removes scalar power larger than the horizon at recombination

Polarized Landscape

• Two scattering epochs: recombination and reionization leave two imprints on B-modes

Reionization B-Bump

- *r*=0.2, Planck has sensitivity to detect reionization B, even internally, provide first check of scale invariance (consistency relation)
- Signal depends on reionization history but enough information to disentangle

A BICEP Primer

- How do gravitational waves affect the CMB temperature and polarization spectrum?
- What is a *B* mode?
- Why does inflation predict nearly scale invariant gravitational wave power?
- Why does measuring B determine the inflationary energy scale?
- What is r? and how is it related to tilt(s)
- Can the consistency relation be tested in the near future?
- Why does $r \sim 0.2$ imply that the inflaton rolls super-Planckian distances?
- Are the temperature and B mode power spectra compatible with inflation? simplest scale-free models?