Secondary Polarization

Reionization and Gravitational Lensing

Wayne Hu Minnesota, March 2003

Outline

• Reionization Bump

Model independent treatment of ionization history Linear response and the inverse problem Compact representation in principal components Unbiased measurement of initial amplitude

Outline

• Reionization Bump

Model independent treatment of ionization history Linear response and the inverse problem Compact representation in principal components Unbiased measurement of initial amplitude

• Gravitational Lensing

E-B correlation Minimum variance estimator Dark energy applications

Outline

Reionization Bump

Model independent treatment of ionization history Linear response and the inverse problem Compact representation in principal components Unbiased measurement of initial amplitude

• Gravitational Lensing

E-B correlationMinimum variance estimatorDark energy applications

• Collaborators:

Matt HedmanGil HolderTakemi OkamotoMatias Zaldarriaga

Reionization

Ionization History

• Two models with same optical depth τ but different ionization history

Kaplinghat et al. (2002); Hu & Holder (2003)

Distinguishable History

 Same optical depth, but different coherence - horizon scale during scattering epoch

Complete Basis

• Define a complete representation of the ionization history in the discrete (linear interpolation) approximation

Transfer Function

• Linearized response to delta function ionization perturbation $T_{\ell i} \equiv \frac{\partial \ln C_{\ell}^{EE}}{\partial x(z_{i})}, \qquad \delta C_{\ell}^{EE} = C_{\ell}^{EE} \sum_{i} T_{\ell i} \delta x(z_{i})$

Linear Response

• Worst case scenario: maximal perturbations from fiducial model

Linear Response

• Worst case scenario: maximal perturbations from fiducial model

Principal Components

• Eigenvectors of the Fisher Matrix

Principal Components

• Low modes robust to refinement of binning $\Delta z=0.5$ (small shift is due to lower z_{min})

Mode Representation

• Eigenvectors form a complete basis for a new representation

$$m_{\mu} = \sum_i S_{i\mu} \delta x_i$$

• Yields uncorrelated variance given by the inverse eigenvalue

$$\langle m_{\mu}m_{
u}
angle = \sigma_{\mu}^{2}\delta_{\mu
u}$$

- 1st mode: average high z ionization and low ℓ power
- 2nd mode: average low z ionization and high ℓ power
- 3rd-5th mode: z features and ringing in high ℓ power
- >5th mode: compensating ionization fluctuations in neighboring z and negligible ℓ power

Capturing the Observables

First 5 modes have the information content and most of optical depth

Representation in Modes

- Truncation at 5 modes leaves a low pass filtered of ionization history
- Ionization fraction allowed to go negative (Boltzmann code has negative sources)

Representation in Modes

 Reproduces the power spectrum with sum over >3 modes more generally 5 modes suffices: e.g. total τ=0.1375 vs 0.1377

Total Optical Depth

- Optical depth measurement unbiased
- Ultimate errors set by cosmic variance here 0.01
- Equivalently 1% measure of initial amplitude, impt for dark energy

Gravitational Lensing

DY AU

B-Mode Mapping

 Lensing warps polarization field and generates B-modes out of E-mode acoustic polarization - hence correlation

Temperature

E-polarization

B-polarization

Gravitational Lensing

• Lensing is a surface brightness conserving remapping of source to image planes by the gradient of the projected potential

$$\phi(\hat{\mathbf{n}}) = 2 \int_{\eta_*}^{\eta_0} d\eta \, \frac{(D_* - D)}{D \, D_*} \Phi(D\hat{\mathbf{n}}, \eta) \, .$$

such that the fields are remapped as

 $x(\hat{\mathbf{n}}) \to x(\hat{\mathbf{n}} + \nabla \phi),$

where $x \in \{\Theta, Q, U\}$ temperature and polarization.

 Taylor expansion leads to product of fields and Fourier convolution (or mode coupling) - features in damping tail

Lensing by a Gaussian Random Field

- Mass distribution at large angles and high redshift in in the linear regime
- Projected mass distribution (low pass filtered reflecting deflection angles): 1000 sq. deg

rms deflection 2.6' deflection coherence 10°

Lensing in the Power Spectrum

- Lensing smooths the power spectrum with a width $\Delta l \sim 60$
- Sharp feature of damping tail is best place to see lensing

Reconstruction from the CMB

- Correlation between Fourier moments reflect lensing potential $\kappa = \nabla^2 \phi$

 $\langle x(\mathbf{l})x'(\mathbf{l}')\rangle_{\text{CMB}} = f_{\alpha}(\mathbf{l},\mathbf{l}')\phi(\mathbf{l}+\mathbf{l}'),$

where $x \in$ temperature, polarization fields and f_{α} is a fixed weight that reflects geometry

- Each pair forms a noisy estimate of the potential or projected mass
 just like a pair of galaxy shears
- Fundamentally relies on features in the power spectrum as found in the damping tail

Ultimate (Cosmic Variance) Limit

- Cosmic variance of CMB fields sets ultimate limit
- Polarization allows mapping to finer scales (~10')

mass

temp. reconstruction EB pol. reconstruction 100 sq. deg; 4' beam; 1µK-arcmin

Hu & Okamoto (2001)

Matter Power Spectrum

 Measuring projected matter power spectrum to cosmic variance limit across whole linear regime 0.002< k < 0.2 h/Mpc

Matter Power Spectrum

 Measuring projected matter power spectrum to cosmic variance limit across whole linear regime 0.002< k < 0.2 h/Mpc

Hu & Okamoto (2001)

 $\sigma(w) \sim 0.06; 0.14$

Cross Correlation with Temperature

- Any correlation is a direct detection of a smooth energy density component through the ISW effect
- Dark energy smooth >5-6 Gpc scale, test scalar field nature

Hu & Okamoto (2002)

Contamination for Gravitational Waves

 Gravitational lensing contamination of B-modes from gravitational waves cleaned to *E*_i~0.3 x 10¹⁶ GeV Hu & Okamoto (2002) limits by Knox & Song (2002); Cooray, Kedsen, Kamionkowski (2002)

A (Partial) Catalogue of B Systematics

• Small scale systematics can leak to large scales due to the small, damping scale coherence of T and E modes

Hu, Hedman & Zaldarriaga (2002)

Summary

- Form of reionization bump depends on ionization history, mainly through horizon scale at scattering epoch
- Traditional approach of model-based parameterization added to likelihood chain is dangerous given the relative crudeness of reionization models

Summary

- Form of reionization bump depends on ionization history, mainly through horizon scale at scattering epoch
- Traditional approach of model-based parameterization added to likelihood chain is dangerous given the relative crudeness of reionization models
- Complete principal components show information in 5 modes
- Modes are a good meeting ground between observations, models
- Best modes can be precisely constrained but even the total optical depth, hence the initial amplitude of fluctuations to 1%

Summary

- Form of reionization bump depends on ionization history, mainly through horizon scale at scattering epoch
- Traditional approach of model-based parameterization added to likelihood chain is dangerous given the relative crudeness of reionization models
- Complete principal components show information in 5 modes
- Modes are a good meeting ground between observations, models
- Best modes can be precisely constrained but even the total optical depth, hence the initial amplitude of fluctuations to 1%
- Gravitational lensing of polarization can pin down the absolute amplitude of structure at intermediate redshifts
- Combination constrains the growth of structure and hence the high redshift properties of the dark energy