Secondary CMB Anisotropy

I: Reionization

Wayne Hu Cabo, January 2009

Outline

Cabo Lectures

- Reionization
- B-modes
 - Gravitational Lensing
- Cosmic Acceleration

Outline

Cabo Lectures

- Reionization
- B-modes
 - Gravitational Lensing
- Cosmic Acceleration

Recent Reviews

- Primary and Secondary Anisotropy: Hu & Dodelson ARAA 40 171 (2002)
- Lensing: Lewis & Challinor Phys Rep. 429 1 (2006)
- Secondary Anisotropy: Aghanim, Majumdar, Silk Rep. Prog. Phys. 71 066902 (2008)
- Reionization: Zaldarriaga et al, CMBpol White Paper (2008)

Outline

Cabo Lectures (not all inclusive!)

- Reionization
- B-modes
 - Gravitational Lensing
- Cosmic Acceleration

Recent Reviews

- Primary and Secondary Anisotropy: Hu & Dodelson ARAA 40 171 (2002)
- Lensing: Lewis & Challinor Phys Rep. 429 1 (2006)
- Secondary Anisotropy: Aghanim, Majumdar, Silk Rep. Prog. Phys. 71 066902 (2008)
- Reionization: Zaldarriaga et al, CMBpol White Paper (2008)

Physics of Secondary Anisotropies

Primary Anisotropies

Scattering Secondaries

Gravitational Secondaries

Reionization

Across the Horizon

Hu & White (2004); artist:B. Christie/SciAm; available at http://background.uchicago.edu

Anisotropy Suppression

 A fraction τ~0.1 of photons rescattered during reionization out of line of sight and replaced statistically by photon with random temperature flucutuation - suppressing anisotropy as e^{-τ}

Why Are Secondaries So Smalll?

- Original anisotropy replaced by new secondary sources
- Late universe more developed than early universe

Density fluctuations nonlinear not 10^{-5}

Velocity field 10^{-3} not not 10^{-5}

- Shouldn't $\Delta T/T \sim \tau v \sim 10^{-4}$?
- Limber says no!
- Spatial and angular dependence of sources contributing and cancelling broadly in redshift

Integral Solution

- Formal solution to the radiative transfer or Boltzmann equation involves integrating sources across line of sight
- Linear solution describes the decomposition of the source S_l^(m) with its local angular dependence and plane wave spatial dependence as seen at a distance x = Dn̂.
- Proceed by decomposing the angular dependence of the plane wave

$$e^{i\mathbf{k}\cdot\mathbf{x}} = \sum_{\ell} (-i)^{\ell} \sqrt{4\pi(2\ell+1)} j_{\ell}(kD) Y_{\ell}^{0}(\hat{\mathbf{n}})$$

• Recouple to the local angular dependence of G_{ℓ}^m

$$G_{\ell_s}^m = \sum_{\ell} (-i)^{\ell} \sqrt{4\pi (2\ell+1)} \alpha_{\ell_s \ell}^{(m)}(kD) Y_{\ell}^m(\hat{\mathbf{n}})$$

Integral Solution

• Projection kernels (monopole, temperature; dipole, doppler):

$$\ell_s = 0, \quad m = 0 \qquad \qquad \alpha_{0\ell}^{(0)} \equiv j_\ell$$
$$\ell_s = 1, \quad m = 0 \qquad \qquad \alpha_{1\ell}^{(0)} \equiv j'_\ell$$

• Integral solution: for $\Theta = \Delta T/T$

$$\frac{\Theta_{\ell}^{(m)}(k,0)}{2\ell+1} = \int_0^\infty dD e^{-\tau} \sum_{\ell_s} S_{\ell_s}^{(m)} \alpha_{\ell_s\ell}^{(m)}(kD)$$

• Power spectrum:

$$C_{\ell} = \frac{2}{\pi} \int \frac{dk}{k} \sum_{m} \frac{k^3 \langle \Theta_{\ell}^{(m)*} \Theta_{\ell}^{(m)} \rangle}{(2\ell+1)^2}$$

Solving for C_ℓ reduces to solving for the behavior of a handful of sources. Straightforward generalization to polarization.

Anisotropy Suppression and Regeneration

- Recombination sources obscured and replaced with secondary sources that suffer Limber cancellation from integrating over many wavelengths of the source
 - Net suppression despite substantially larger sources due to growth of structure except beyond damping tail <10'

Reionization Suppression

• Rescattering suppresses primary temperature and polarization anisotropy according to optical depth, fraction of photons rescattered

Tilt-τ Degeneracy

Only anisotropy at reionization (high k), not isotropic temperature fluctuations (low k) - is suppressed leading to effective tilt for WMAP (not Planck)

Doppler Effect

Scattering Secondaries

Doppler Effect in Limber Approximation

• Only fluctuations transverse to line of sight survive in Limber approx but linear Doppler effect has no contribution in this direction

Ostriker–Vishniac Effect

Inhomogeneous Ionization

• As reionization completes, ionization regions grow and fill the space

Zahn et al. (2006) [Mortonson et al (2009)]

Inhomogeneous Ionization

 Provides a source for modulated Doppler effect that appears on the scale of the ionization region

Secondary Polarization

WMAP Correlation

• Reionization polarization first detected in WMAP1 through temperature cross correlation at an anomalously high value

Polarization from Thomson Scattering

• Differential cross section depends on polarization and angle

 $\frac{d\sigma}{d\Omega} = \frac{3}{8\pi} |\hat{\varepsilon}' \cdot \hat{\varepsilon}|^2 \sigma_T$

Polarization from Thomson Scattering

Isotropic radiation scatters into unpolarized radiation

Polarization from Thomson Scattering

Quadrupole anisotropies scatter into linear polarization

aligned with cold lobe

Whence Quadrupoles?

- Temperature inhomogeneities in a medium
- Photons arrive from different regions producing an anisotropy

(Scalar) Temperature Inhomogeneity

Hu & White (1997)

CMB Anisotropy

• WMAP map of the CMB temperature anisotropy

Whence Polarization Anisotropy?

- Observed photons scatter into the line of sight
- Polarization arises from the projection of the quadrupole on the transverse plane

Polarization Multipoles

- Mathematically pattern is described by the tensor (spin-2) spherical harmonics [eigenfunctions of Laplacian on trace-free 2 tensor]
- Correspondence with scalar spherical harmonics established via Clebsch-Gordan coefficients (spin x orbital)
- Amplitude of the coefficients in the spherical harmonic expansion are the multipole moments; averaged square is the power

E-tensor harmonic

Modulation by Plane Wave

- Amplitude modulated by plane wave \rightarrow higher multipole moments
- Direction detemined by perturbation type \rightarrow E-modes

A Catch-22

- Polarization is generated by scattering of anisotropic radiation
- Scattering isotropizes radiation
- Polarization only arises in optically thin conditions: reionization and end of recombination
- Polarization fraction is at best a small fraction of the 10^{-5} anisotropy: $\sim 10^{-6}$ or μK in amplitude

WMAP 3yr Data

Temperature Inhomogeneity

- Temperature inhomogeneity reflects initial density perturbation on large scales
- Consider a single Fourier moment:

Locally Transparent

• Presently, the matter density is so low that a typical CMB photon will not scatter in a Hubble time (~age of universe)

Reversed Expansion

• Free electron density in an ionized medium increases as scale factor *a*-³; when the universe was a tenth of its current size CMB photons have a finite (~10%) chance to scatter

Polarization Anisotropy

• Electron sees the temperature anisotropy on its recombination surface and scatters it into a polarization

Temperature Correlation

 Pattern correlated with the temperature anisotropy that generates it; here an *m*=0 quadrupole

Instantaneous Reionization

- WMAP data constrains optical depth for instantaneous models of τ =0.087±0.017
- Upper limit on gravitational waves weaker than from temperature

Why Care?

- Early ionization is puzzling if due to ionizing radiation from normal stars; may indicate more exotic physics is involved
- Reionization screens temperature anisotropy on small scales making the true amplitude of initial fluctuations larger by e^τ
- Measuring the growth of fluctuations is one of the best ways of determining the neutrino masses and the dark energy
- Offers an opportunity to study the origin of the low multipole statistical anomalies
- Presents a second, and statistically cleaner, window on gravitational waves from the early universe

Distance Predicts Growth

• With smooth dark energy, distance predicts scale-invariant growth to a few percent - a falsifiable prediction

Mortonson, Hu, Huterer (2008)

Ionization History

• Two models with same optical depth τ but different ionization history

Kaplinghat et al. (2002); Hu & Holder (2003)

Distinguishable History

 Same optical depth, but different coherence - horizon scale during scattering epoch

Transfer Function

Linearized response to delta function ionization perturbation $T_{\ell i} \equiv rac{\partial \ln C_{\ell}^{EE}}{\partial x(z_i)}, \qquad \delta C_{\ell}^{EE} = C_{\ell}^{EE} \sum_i T_{\ell i} \delta x(z_i)$ $z_i = 25$ 0.4 0.2 $z_i = 8$ 0

10

100

Principal Components

• Eigenvectors of the Fisher Matrix

Capturing the Observables

• First 5 modes have the information content and most of optical depth

Representation in Modes

- Truncation at 5 modes leaves a low pass filtered of ionization history
- Ionization fraction allowed to go negative (Boltzmann code has negative sources)

Representation in Modes

 Reproduces the power spectrum with sum over >3 modes more generally 5 modes suffices: e.g. total τ=0.1375 vs 0.1377

Total Optical Depth

- Optical depth measurement unbiased
- Ultimate errors set by cosmic variance here 0.01
- Equivalently 1% measure of initial amplitude, impt for dark energy

WMAP5 Ionization PCs

• Only first two modes constrained, $\tau = 0.101 \pm 0.017$

Mortonson & Hu (2008)

Model-Independent Reionization

- All possible ionization histories at z < 30
- Detections at 20 < l < 30 required to further constrain general ionization which widens the τn_s degeneracy allowing $n_s = 1$
- Quadrupole & octopole predicted to better than cosmic variance test ACDM for anomalies

Mortonson & Hu (2008)

Large Scale Anomalies

Large Angle Anomalies

- Low planar quadrupole aligned with planar octopole
- More power in south ecliptic hemisphere
- Non-Gaussian spot

Polarization Tests

Matching polarization anomalies if cosmological

Dvorkin, Peiris, Hu (2007)

Polarization Bumps

• If features in the temperature spectrum reflect features in the power spectrum (inflationary potential), reflected in polarization with little ambiguity from reionization

Summary: Lecture I

- Reionization suppresses primary anisotropy as $e^{-\tau}$ so the precision of initial normalization and growth rate measurements depends on τ precision
- In temperature spectrum, suppression acts on small scales and looks like tilt for WMAP (not Planck)
- Linear Doppler effect highly suppressed on small scales, leading order term is modulated effect: OV, kSZ, patchy reionization
- Rescattering of quadrupole anisotropy leads to linear polarization at large angles
- Shape of polarization spectrum carries sufficient information to measure \(\tau\) independently of ionization history (through PCs)
- If large angle anomalies are cosmological, they will be reflected in polarization