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Covariant Perturbation Theory

Covariant= takes samé&rm in all coordinate systems
Invariant= takes the samealuein all coordinate systems

Fundamental equationkinstein equationgovariantconservation
of stress-energy tensor:

G, = 8nG1,,
v, 1" = 0

Preserve general covariance by keepinglatirees of freedoniO
for each symmetric 44 tensor
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Metric Tensor

Expand the metric tensor around thpeneral FRW metric

2 2
Joo = —a-, i = @ Vij -

where the “0” component isonformal timen = dt/a and~;; is a
spatial metric of constant curvatuié = HZ (Qior — 1).

Add in a general perturbatiom{rdeen 198)

g* = —a*(1-24),
gOi _  _g 2B |
g7 = a0 = 2Hy7 — 201).
A = a scalaipotentia] ~ B! avectorshift, = H; a

perturbation to the spatiarvature ~ HY atrace-freadistortion
to spatial metric =




Matter Tensor

Likewise expand the mattatress energiensor around a
homogeneous densipyand pressure:

TOO — —pP— 5p7
T = (p+p)v— Bi),
TOi — _(IO —I_p)vi?

T = (p+dp)d’; + pIl',,
(1) 0p adensity perturbation(3) v; a vectorvelocity, (1) op a
pressure perturbatioib) II;; ananisotropic stresgerturbation

So far this isfully generaland applies to any type of matter or
coordinate choice including non-linearities in the matter, e.g.
cosmological defects.



Counting DOF’s

20  Variables (10 metric; 10 matter)
—10  EInstein equations
—4  Conservation eqguations
+4  Bianchi identities
—4  Gauge (coordinate choice 1 time, 3 space

6  Degrees of freedom

Without loss of generality these can be taken to besthe
component®f the matter stress tensor

For the background, specipf(a) or equivalently
w(a) = pla)/p(a) theequation of statparameter.



Scalar, Vector, Tensor

In linear perturbation theoryerturbations may be separated by
theirtransformation propertiagnder rotation and translation.

The eigenfunctions of thieaplacian operatdiorm a complete set

V2Q(O) N sz(O) 7
VQQ(il) _ _kQQ(il)
V2Q(i2 _ kQQ(i2

and functions built out of covariant derivatives and the metric

QZ(O) _ _k—lviQ(O)

_ 1
QY = (k72V,V; - g%‘j)Q(O)a

1
Q" = —o Vi + V0,



Spatially Flat Case

For a spatially flat background metric, harmonics are related to
plane waves

QY = exp(ik-x)
(£1) —% ., . .
- = —(e; tiey)exp(tk - x
Qz \/i( 1 2) p( )
3
Sﬁ) = —\/;(él + ’Lég)z(él + zég)]exp(zk . X)
wheree; || k.

For vectors, the harmonic points in a direction orthogonl to
suitable for thevortical componenof a vector

For tensors, the harmonic is transverse and traceless as appropri
for the decompositon ajravitational waves



Perturbation:-Modes

For thekth eigenmode, thecalar componentsecome

Ax) = AK)QY,  Hr(x) = Hr(k)QY,
op(x) = 6p(k)Q®,  dp(x) = dp(k)QO,
thevectors componentsecome

Bi(x) = iBW(k)@W vi(x) = iv<m><k>@§m%

and thetensors components

2
HT'L'j(X) — Z Hém)(k)Qf;;n)a

m=—2

2
M;(x) = Y O™&) QY

m=—2



Homogeneous Einstein Equations

Einstein (Friedmann) equations:

1@ ° (G
a dt 3 P

1 d*a 4G
= - 3
so thatw = p/p < for acceleration

Conservation equatiow”T),, = 0 implies

P =301 +w)=
0 a



Homogeneous Einstein Equations

Counting exercise:

20  Variables (10 metric; 10 matter)
—17  Homogeneity and Isotropy

—2  Einstein equations

—1  Conservation equations

+1  Bianchi identities

1  Degree of freedom

without loss of generality choose ratio of homogeneous & isotropit
component of the to the densityiw(a) = p(a)/p(a).



Covariant Scalar Equations

Einstein equationésuppressing) superscriptsHu & Eisenstein 199)

1 a1 .
(k* = 3K)[Hy, + 5 Hr + — 25 (kB — Hr),

= 4rGa? [5,0 - 3%(,0 +p)(v — B)/k] ,

1 d .
K2(A+ Hy + -Hr) + (— + 29) (kB — Hr)

3 dm a
= 87rGa’pll,
a : 1. K :
—-A—-H;, —-Hr— —<(kB—H
a bogtt k2( 2

= 4nGa*(p + p)(v — B)/k,

. e\ 2 . 2

2 _qlC) Le8 &

a a adn 3
5 1

= AnGa”(op + §5p).

d al, .- 1
A—|—+—-|(Hr+ kB
[dn—l—a]( L—|—3 )




Covariant Scalar Equations

Conservation equationsontinuityandNavier Stokes

. . |
[_+39] Sp+320p = —(p+p)(kv+3H1),
dn a a
d (v - B) 2 L€
& 4,2 = dp— =(1—-3=)pIl A
[d?7+ a] [(p+p) ; ] Pl e

Equations are not independent sinceG*” = 0 via theBianchi
identities

Related to the ability to choosecaordinate systerar “gaugé to
represent the perturbations.



Covariant Scalar Equations

DOF counting exercise

8  Variables (4 metric; 4 matter)
—4  Einstein equations
—2  Conservation equations
+2  Bianchi identities
—2  Gauge (coordinate choice 1 time, 1 space

2 Degrees of freedom

without loss of generality choose scalar components of ir:2
op, I1 .



Covariant Vector Equations

Einstein equations

1 — 2K /k2) (kB — b
T
= 167Ga?*(p + p)(v'FY — BEDY /|

d :
28] e —

— —8rGa’pll*+Y .

Conservation Equations

d 1 1
42| o+ P - B

1
—5(1- 2K /k2)pIIEY

Gravity providesno sourcdo vorticity — decay



Covariant Vector Equations

DOF counting exercise

8  Variables (4 metric; 4 matter)
—4  Einstein equations
—2  Conservation equations
+2  Bianchi identities
—2  Gauge (coordinate choice 1 time, 1 space

2 Degrees of freedom

without loss of generality choose vector components ot (1
[I+D.



Covariant Tensor Equation

Einstein equation

d? a d 5 (£2) 2. 17(£2)
d—772+2ad—77+(k +2K)| Hy ™/ = 8rGa pll'=~ .

DOF counting exercise

4 Variables (2 metric; 2 matter)
—2  Einstein equations
—(0  Conservation equations
+0  Bianchi identities
—0  Gauge (coordinate choice 1 time, 1 space

2  Degrees of freedom

wlog choose tensor components of e I (E2).



Arbitrary Dark Components

Total stress energy tensor can be broken upimievidual pieces

Dark componentsteract only through gravity and so satisfy
separate conservation equations

Einstein equation source remains the sum of components.

To specify an arbitrary dark component, give the behavior of the
stress tensoi6 componentsdp, 119, wherei = —2, ..., 2.

Many types of dark components (dark matter, scalar fields,
massive neutrinos,..) hagemple formsfor their stress tensor in
terms of the energy density, i.e. describedeyations of state

An equation of state for the background= p/p is not sufficient
to determine the behavior of the perturbations.



Gauge

Metric and matter fluctuations take driferent valuesn different
coordinate system

No such thing as a “gauge invariant” density perturbation!

Generalkoordinate transformation:

n = n+1T
P = '+ L

free to choos€T’, L') to simplify equations or physics.
Decompose these into scalar and vector harmonics.

G, and7),, transform asensorsso components in different
frames can be related



Gauge Transformation

Scalar Metric:

A = A-17-27,
a
B = B+ L+kT,
_ L :
H, = H,—-L-27,
3 a
Hr = Hrp+kL,

Scalar Matter {th component):

5ﬁ.] — 5IOJ _ pJTa
opy = opy;—pjT,
Vg = vUJ —I—L,

\Vector:

B(jzl) _ B(:I:l) 4 L(:I:l), ]j]r}il) _ H,%tl) 4+ kL(:tl), @Sil) _ ’USil) 4 L(:tl))



Gauge Dependence of Density

Background evolution of the density induces a density fluctuation
from a shift in the time coordinate



Common Scalar Gauge Choices

A coordinate system i&Illy specifiedif there is an explicit
prescription for(T’, ') or for scalargT, L)

Newtonian:
B = Hr=0
v = A
¢ = ﬁL
L = —Hp/k
T = —B/k+ Hp/k?

Intuitive Newtonian like gravity; matter and metric

algebraically related; commonly chosen foralytic CMBand
lensingwork

numericallyunstable



Example: Newtonian Reduction

In the general equations, sBt= Hy = O:

(k* —=3K)® = 4nGa* ldp + 3%(,0 +p)v/k]
(U + @) = 8rGa’pll

soV = —& If anisotropic stres$l = 0 and

d ¢ ' .
[—+39] Sp+326p = —(p+p)(kv—+3D),

dn a a

d & 2 K

— 4= = kép— =(1—3—)pkll kW
[dn+ a](pﬂ?)v Bl 2 PRI+ (p +p) KT,

Competition betweentresqpressure and viscosity) ampdtential
gradients



Relativistic Term 1n Continuity

Continuity equation contains relativistic term from changes in the
O spatial curvature — perturbation to the scale factor

For w=0 (matter), simply density dilution; for w=1/3 (radiation)
O density dilution plus (cosmological) redshift

a.k.a. ISW effect — photon redshift from change in grav. potential



Common Scalar Gauge Choices

Comoving:
B = o (T?=0)
Hr = 0
¢ = A
¢ = Hg
T = (w—DB)/k
L = —Hrp/k

C Is conservedf stress fluctuations negligible, e.g. above
the horizon if| K| < H*

. al op 2 3K\ p
Kv/k=-|-———+2(1- 11
o a[ p+p+3< kQ) ]HO

explicitly relativistic choice



Common Scalar Gauge Choices

Synchronous:
A = B=0
- 1 -~
nL = —HL—§HT
hr = I:[T or h=6H;

A— a_l/dnaAJrcla_l
L = —/dn(B+kT)—|—02

stable, the choice of numerical codes

residualgauge freedorm constants;, c; must be
specified as an initial condition, intrinsically relativistic.



Common Scalar Gauge Choices
Spatially Unperturbed:

H, = Hr=0
L = —Hr/k
A,B = metric perturbations
a\ 1
= (o) (e ge)
a 3

eliminates spatial metric in evolution equations; useful in
Inflationary calculationgviukhanov et a)

Intrinsically relativistic.
perturbation evolution is governed by the behavior of

stress fluctuations and an isotropic stress fluctuatias gauge
dependent.



Hybrid “Gauge Invariant” Approach

With the gauge transformation relations, express variables®f
gaugen terms of those imnother allows a mixture in the
equations of motion

Newtonian curvature above the horizon. Conservation o
the Bardeen-curvatuke=const. implies:

3+3
b = i C
5+ 3
e.g. calculate from inflation determine® for any choice of
matter content or causal evolution.

Scalar field (“guintessence” dark energy) equations in
comoving gauge imply aound speedp/dp = 1 independent of
potentiall’(¢). Solve in synchronous gaugeu(1999.



Transfer Function Example

Transfer functiortransfers the initial Newtonian
curvature to its value today (linear response theory)

b(k,a=1)

(I)(k, ainit)

Conservation of Bardeen curvature: Newtonian curvature is a
constantwhenstress perturbations are negligibébove the

horizon during radiation and dark energy domination, on all scale:
during matter domination

T(k) =

When stress fluctuations dominate, perturbations are stabilized b
theJeans mechanism

Hybrid Poisson equatiarNewtonian curvature, comoving density
perturbationA = (0p/p)com iMmplies® decays

(k* — 3K)® = 47GpA ~ n A



Transfer Function Example
Freezingof A stops aty.,

d ~ ( 77eq)_2AH ~ ( Ueq)_2¢init

Transfer function has & - fall-off beyondk., ~ 7./

i p=—

UL g :

0.01

0.0001 0.001 0.01 0.1 1



Gauge and the Sachs-Wolfe Effect

Going fromcomoving gaugewhere the CMB temperature
perturbation is initially negligible by the Poisson equation, to the
Newtoniangauge involves a temporal shift

ot
|
t
Temporal shift implies a shift in thecale factoduring matter

domination

oa 0t
a t
CMB temperature isoolingas? « a

Inducedtemperature fluctuation

of _ _oa
T a

—— U



Gauge and the Sachs-Wolfe Effect

Add thegravitational redshi#t photon suffers climbing out of the
gravitational potential



COBE Normalization

Sachs-Wolfe Effect relates the COBE detection to the gravitational
potential on the last scattering surface

Last Scattering Surface

Decompose the angular and spatial information into normal modes:
spherical harmonics for angular, plane waves for spatial

m( » . Am m(~\ tk-x
GPOxk) = (i) V()




COBE Normalization cont.

Multipole moment decomposition for each k

dk o)
27T Z@e Ge X, k )

O, x)

Power spectrum 1s the integral over k modes

(m)* o (m)
Ce=4ﬂ/d3kz<@ o >

(2m)3 20 4+ 1)2

Fourier transform Sachs-Wolfe source

1 [ &3k o
A _ ik-(D " +x)
O+ (%) =3 [ Gy ke

Decompose plane wave

exp(ikD- 1) = Y (=i)%/4m(2¢ + 1) (kD)YL(1),



COBE Normalization cont.

Extract multipole moment, assume a constant potential

o 1
= =W (k,n)0(kD

= U m)jelkD)

Construct angular power spectrum

dk
Cyp=4m | —357(kD)=A3
0 n 2 Je( )9
For scale invariant potential (n=1), integral reduces to

0 AT 1

/0 2 @) = g

Log power spectrum = Log potential spectrum /9

00+ 1) L
2 Ce 9 v (n )




COBE Normalization cont.

Relate to density fluctuations: Poisson equation and Friedmann eqn.

KU = —AnGa®dp
= SO

Power spectra relation

H. 4
o3 ()

In terms of density fluctuation at horizon and transfer function
% n+3

A3 = 62 (—) T%(k
5 1\ H, (k)
For scale invariant potential

00+ 1) 1, _




COBE Normalization cont.

Some numbers
1

|
e, _ Ly oy
2T !

2
_ 28/’LK ~ 10—10
2.726 x 106K

5H ~ (2 X 10_5)Q

—1
m

Detailed calculation from Bunn & White (1997) including decay of
potential in low density universe and tilt

Oy = 1.94 x 10—597;0.785—0.051an o —0-95(n—1)-0.169(n—1)’



Matter Power Spectrum

Combine the transfer function with the COBE normalization

101 |

non-linear
scale

1011

10_2 E

010-3

0.01 0.1 1



Matter Power Spectrum

Usually plotted as the power spectrum, not log-power spectrum
105 —————r

104 |

103 |

0.01 0.1 1



Galaxy Power Spectrum Data

Galaxy clustering tracks the dark matter — but as a biased tracer
105 : 1 I 1 I UL |

B 2dF
B PSCz
B <1994 |

104 |

103 |

0.01 0.1 1



Galaxy Power Spectrum Data

Each galaxy population has different linear bias in linear regime
105 : 1 I 1 I UL |

B 2dF
B PSCz
B <1994 |

104 |
i norm

adjusted

108 =

0.01 0.1 1



Acoustic Oscillations

Stabilization accompanied lacoustic oscillations

Photon-baryosystem - under rapid scattering

d & a -
[% 1 351 0y +3=0pyp = —(pyp +pys) (kv + 3@),
d
[ it 4@] [(pyo +Pp)vp/k] = dppw+(p+p)¥,

or with® = dp, /4p, and R = 3p/4p,

. I .
. R 1
Uyp = 1+RU75—|— ﬁk@—kkqj

Forced oscillatoequation — see Zaldarriaga’s talks

Anisotropic stresseand entropy generation througbn-adiabatic
stressSilk dampsdfluctuationssiik 1968



Acoustic Peaks 1n the Matter

Baryon density & velocity oscillates with CMB

Baryons decouple at T/R ~ 1, the end of Compton drag epoch
Decoupling: 0, (drag) [V, (drag), but not frozen

Continuity: Bb =—kV,

Velocity Overshoot Dominates: ¢, L1V, (drag) kn >> 0, (drag)
Oscillations 172 out of phase with CMB

Infall into potential wells (DC component)

&9

End of Drag Epoch Velocity Overshoot + Infall

Hu & Sugiyama (1996)



Features 1in the Power Spectrum

Features 1n the linear power spectrum
Break at sound horizon

Oscillations at small scales; washed out by nonlinearities

1 1 LU I 1 1 1 1 1 LILIL I 1 1
---------- ~
”I’ \\\
1 | ~ \\ _
- ’,/ \\\ _
= ,/ \\ -
N G . -
| - ~ nonlinear |
s S
: %\ scale
| l
= N -
\
\
\
= N -
A}
\
\
Y
. N d
\
\
\
\
\
\
0-1 — . . \\_
- ==—-- Eisenstein & Hu (1998) \]
\
| | | L1 1 I | | | | | L1 1 I |

0.01 0.1



Combining Features in LSS + CMB

Consistency check on thermal history and photon—baryon ratio
Infer physical scale | . (CMB) — Ky, (LSS) in

Eisenstein, Hu & Tegmark (1998)
Hu, Eisenstein, Tegmark & White (1998)




Combining Features in LSS + CMB

Consistency check on thermal history and photon—baryon ratio
Infer physical scale | . (CMB) — Ky, (LSS) in
Measure in redshift survey Ko, (LSS) in

Eisenstein, Hu & Tegmark (1998)
Hu, Eisenstein, Tegmark & White (1998)




Parameterizing Dark Components

Hu (1998)

Prototypes:

Cold dark matter
(WIMPs)

Hot dark matter
(light neutrinos)

Cosmological constant
(vacuum energy)

Exotica:

Quintessence
(slowly-rolling scalar field)

Decaying dark matter
(massive neutrinos)

Radiation backgrounds
(rapidly-rolling scalar field, NBR)
Ultra-light fuzzy dark mat.

equation of state  sound speed viscosity
0 0 0
1/3-0
-1 arbitrary  arbitrary
variable 1 0
1/3-0-1/3
1/3 1/3 0-1/3
scale
0 dependent 0



Massive Neutrinos

Relativisticstressesf a light neutrinoslow the growth of structure

Neutrino species withosmological abundan@®ntribute to matter
as,h* = m, /94eV, suppressing power d@sP/P ~ —8Q,/Q,,



Massive Neutrinos

Current data from 2dF galaxy survey indicates m,<1.8eV
assuming a ACDM model with parameters constrained by the
CMB.

105

104 £

103 |

0.01 0.1 1



Dark Energy Stress & Smoothness

Raising equation of state increases redshift of dark energy
domination and raises large scale anisotropies

L owering the sound speed increases clustering and reduces
|SW effect at large angles

1010 .

101

10+ o Cobleetal. (1997)
Hu (1998); Hu (2001) Caldwell et al. (1998)



Lensing—CMB Temperature Correlation

Any correlation isadirect detection of a smooth energy
density component through the |SW effect

Show dark energy smooth >5-6 Gpc scale, test quintesence

"Perfect"

i

10-10

11 o
e 10 100 1000

Hu (2001); Hu & Okamoto (2001)



Summary

In linear theory, evolution of fluctuations is completely defined
once thestressem the matter fields are specified.

Stresses and their effects take on simple forms in particular
coordinate ogauge choices.g. the comoving gauge.

Gaugecovariant equationsan be used to take advantage of these
simplifications in an arbitrary frame.

Curvatureg(potential) fluctuations remaiconstanin the absence
of stresses.

Evolution can be used to test the nature ofdhek components
e.g. massive neutrinoand thedark energyoy measuring the
matter power spectrum.

luminous tracers of the matter clustering arased-
next lecture.
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