Lecture 2: Linear Perturbation Theory

Wayne Hu
Trieste, June 2002

Outline

- Covariant Perturbation Theory
- Scalar, Vector, Tensor Decomposition
- Linearized Einstein-Conservation Equations
- Dark (Multi) Components
- Gauge
- Applications:

Bardeen Curvature Baryonic wiggles

Scalar Fields Parameterizing dark components

Transfer function Massive neutrinos

Sachs-Wolfe Effect Dark energy

COBE normalization

Covariant Perturbation Theory

- Covariant = takes same form in all coordinate systems
- Invariant = takes the same value in all coordinate systems
- Fundamental equations: Einstein equations, covariant conservation of stress-energy tensor:

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$
$$\nabla_{\mu} T^{\mu\nu} = 0$$

• Preserve general covariance by keeping all degrees of freedom: 10 for each symmetric 4×4 tensor

1	2	3	4
	5	6	7
		8	9
			10

Metric Tensor

Expand the metric tensor around the general FRW metric

$$g_{00} = -a^2, \qquad g_{ij} = a^2 \gamma_{ij} .$$

where the "0" component is conformal time $\eta = dt/a$ and γ_{ij} is a spatial metric of constant curvature $K = H_0^2(\Omega_{\text{tot}} - 1)$.

• Add in a general perturbation (Bardeen 1980)

$$g^{00} = -a^{-2}(1 - 2A),$$

 $g^{0i} = -a^{-2}B^{i},$
 $g^{ij} = a^{-2}(\gamma^{ij} - 2H_{L}\gamma^{ij} - 2H_{T}^{ij}).$

• (1) $A \equiv$ a scalar potential; (3) B^i a vector shift, (1) H_L a perturbation to the spatial curvature; (6) H_T^{ij} a trace-free distortion to spatial metric = (10)

Matter Tensor

• Likewise expand the matter stress energy tensor around a homogeneous density ρ and pressure p:

$$T^{0}_{0} = -\rho - \delta \rho,$$
 $T^{0}_{i} = (\rho + p)(v_{i} - B_{i}),$ $T^{i}_{0} = -(\rho + p)v^{i},$ $T^{i}_{j} = (p + \delta p)\delta^{i}_{j} + p\Pi^{i}_{j},$

- (1) $\delta \rho$ a density perturbation; (3) v_i a vector velocity, (1) δp a pressure perturbation; (5) Π_{ij} an anisotropic stress perturbation
- So far this is fully general and applies to any type of matter or coordinate choice including non-linearities in the matter, e.g. cosmological defects.

Counting DOF's

- Variables (10 metric; 10 matter)
- -10 Einstein equations
 - −4 Conservation equations
 - +4 Bianchi identities
 - -4 Gauge (coordinate choice 1 time, 3 space)
 - 6 Degrees of freedom
- Without loss of generality these can be taken to be the 6 components of the matter stress tensor
- For the background, specify p(a) or equivalently $w(a) \equiv p(a)/\rho(a)$ the equation of state parameter.

Scalar, Vector, Tensor

- In linear perturbation theory, perturbations may be separated by their transformation properties under rotation and translation.
- The eigenfunctions of the Laplacian operator form a complete set

$$\nabla^{2}Q^{(0)} = -k^{2}Q^{(0)} \qquad \mathbf{S},
\nabla^{2}Q_{i}^{(\pm 1)} = -k^{2}Q_{i}^{(\pm 1)} \qquad \mathbf{V},
\nabla^{2}Q_{ij}^{(\pm 2)} = -k^{2}Q_{ij}^{(\pm 2)} \qquad \mathbf{T},$$

and functions built out of covariant derivatives and the metric

$$Q_{ij}^{(0)} = -k^{-1}\nabla_{i}Q^{(0)},$$

$$Q_{ij}^{(0)} = (k^{-2}\nabla_{i}\nabla_{j} - \frac{1}{3}\gamma_{ij})Q^{(0)},$$

$$Q_{ij}^{(\pm 1)} = -\frac{1}{2k}[\nabla_{i}Q_{j}^{(\pm 1)} + \nabla_{j}Q_{i}^{(\pm 1)}],$$

Spatially Flat Case

• For a spatially flat background metric, harmonics are related to plane waves:

$$Q^{(0)} = \exp(i\mathbf{k} \cdot \mathbf{x})$$

$$Q_i^{(\pm 1)} = \frac{-i}{\sqrt{2}}(\hat{\mathbf{e}}_1 \pm i\hat{\mathbf{e}}_2)_i \exp(i\mathbf{k} \cdot \mathbf{x})$$

$$Q_{ij}^{(\pm 2)} = -\sqrt{\frac{3}{8}}(\hat{\mathbf{e}}_1 \pm i\hat{\mathbf{e}}_2)_i (\hat{\mathbf{e}}_1 \pm i\hat{\mathbf{e}}_2)_j \exp(i\mathbf{k} \cdot \mathbf{x})$$

where $\hat{\mathbf{e}}_3 \parallel \mathbf{k}$.

- For vectors, the harmonic points in a direction orthogonal to k suitable for the vortical component of a vector
- For tensors, the harmonic is transverse and traceless as appropriate for the decomposition of gravitational waves

Perturbation *k*-Modes

• For the kth eigenmode, the scalar components become

$$A(\mathbf{x}) = A(k) Q^{(0)}, \qquad H_L(\mathbf{x}) = H_L(k) Q^{(0)},$$

$$\delta \rho(\mathbf{x}) = \delta \rho(k) Q^{(0)}, \qquad \delta p(\mathbf{x}) = \delta p(k) Q^{(0)},$$

the vectors components become

$$B_i(\mathbf{x}) = \sum_{m=-1}^{1} B^{(m)}(k) Q_i^{(m)}, \quad v_i(\mathbf{x}) = \sum_{m=-1}^{1} v^{(m)}(k) Q_i^{(m)},$$

and the tensors components

$$H_{Tij}(\mathbf{x}) = \sum_{m=-2}^{2} H_{T}^{(m)}(k) Q_{ij}^{(m)},$$
 $\Pi_{ij}(\mathbf{x}) = \sum_{m=-2}^{2} \Pi^{(m)}(k) Q_{ij}^{(m)},$

Homogeneous Einstein Equations

• Einstein (Friedmann) equations:

$$\left(\frac{1}{a}\frac{da}{dt}\right)^2 = \frac{8\pi G}{3}\rho$$

$$\frac{1}{a}\frac{d^2a}{dt^2} = -\frac{4\pi G}{3}(\rho + 3p)$$

so that $w \equiv p/\rho < -1/3$ for acceleration

• Conservation equation $\nabla^{\mu}T_{\mu\nu} = 0$ implies

$$\frac{\dot{\rho}}{\rho} = -3(1+w)\frac{\dot{a}}{a}$$

Homogeneous Einstein Equations

Counting exercise:

- Variables (10 metric; 10 matter)
- -17 Homogeneity and Isotropy
 - -2 Einstein equations
 - -1 Conservation equations
 - +1 Bianchi identities

- 1 Degree of freedom
- without loss of generality choose ratio of homogeneous & isotropic component of the stress tensor to the density $w(a) = p(a)/\rho(a)$.

Covariant Scalar Equations

• Einstein equations (suppressing 0) superscripts (Hu & Eisenstein 1999):

$$\begin{split} (k^2 - 3K) [H_L + \frac{1}{3} H_T + \frac{\dot{a}}{a} \frac{1}{k^2} (kB - \dot{H}_T)] \\ &= 4\pi G a^2 \left[\delta \rho + 3 \frac{\dot{a}}{a} (\rho + p) (v - B) / k \right] \,, \quad \text{Poisson Equation} \\ k^2 (A + H_L + \frac{1}{3} H_T) + \left(\frac{d}{d\eta} + 2 \frac{\dot{a}}{a} \right) (kB - \dot{H}_T) \\ &= 8\pi G a^2 p \Pi \,, \\ \frac{\dot{a}}{a} A - \dot{H}_L - \frac{1}{3} \dot{H}_T - \frac{K}{k^2} (kB - \dot{H}_T) \\ &= 4\pi G a^2 (\rho + p) (v - B) / k \,, \\ \left[2 \frac{\ddot{a}}{a} - 2 \left(\frac{\dot{a}}{a} \right)^2 + \frac{\dot{a}}{a} \frac{d}{d\eta} - \frac{k^2}{3} \right] A - \left[\frac{d}{d\eta} + \frac{\dot{a}}{a} \right] (\dot{H}_L + \frac{1}{3} kB) \\ &= 4\pi G a^2 (\delta p + \frac{1}{3} \delta \rho) \,. \end{split}$$

Covariant Scalar Equations

Conservation equations: continuity and Navier Stokes

$$\left[\frac{d}{d\eta} + 3\frac{\dot{a}}{a}\right] \delta\rho + 3\frac{\dot{a}}{a} \delta p = -(\rho + p)(kv + 3\dot{H}_L),$$

$$\left[\frac{d}{d\eta} + 4\frac{\dot{a}}{a}\right] \left[(\rho + p)\frac{(v - B)}{k}\right] = \delta p - \frac{2}{3}(1 - 3\frac{K}{k^2})p\Pi + (\rho + p)A,$$

- Equations are not independent since $\nabla_{\mu}G^{\mu\nu}=0$ via the Bianchi identities.
- Related to the ability to choose a coordinate system or "gauge" to represent the perturbations.

Covariant Scalar Equations

DOF counting exercise

- 8 Variables (4 metric; 4 matter)
- -4 Einstein equations
- −2 Conservation equations
- +2 Bianchi identities
- −2 Gauge (coordinate choice 1 time, 1 space)
 - 2 Degrees of freedom
- without loss of generality choose scalar components of the stress tensor δp , Π .

Covariant Vector Equations

Einstein equations

$$(1 - 2K/k^{2})(kB^{(\pm 1)} - \dot{H}_{T}^{(\pm 1)})$$

$$= 16\pi G a^{2}(\rho + p)(v^{(\pm 1)} - B^{(\pm 1)})/k,$$

$$\left[\frac{d}{d\eta} + 2\frac{\dot{a}}{a}\right](kB^{(\pm 1)} - \dot{H}_{T}^{(\pm 1)})$$

$$= -8\pi G a^{2} p\Pi^{(\pm 1)}.$$

Conservation Equations

$$\left[\frac{d}{d\eta} + 4\frac{\dot{a}}{a}\right] \left[(\rho + p)(\mathbf{v}^{(\pm 1)} - \mathbf{B}^{(\pm 1)})/k \right]$$
$$= -\frac{1}{2} (1 - 2K/k^2) p \Pi^{(\pm 1)},$$

Gravity provides no source to vorticity → decay

Covariant Vector Equations

DOF counting exercise

- 8 Variables (4 metric; 4 matter)
- -4 Einstein equations
- -2 Conservation equations
- +2 Bianchi identities
- −2 Gauge (coordinate choice 1 time, 1 space)
 - 2 Degrees of freedom
- without loss of generality choose vector components of the stress tensor $\Pi^{(\pm 1)}$.

Covariant Tensor Equation

Einstein equation

$$\left[\frac{d^2}{d\eta^2} + 2\frac{\dot{a}}{a}\frac{d}{d\eta} + (k^2 + 2K) \right] H_T^{(\pm 2)} = 8\pi G a^2 p \Pi^{(\pm 2)}.$$

DOF counting exercise

- 4 Variables (2 metric; 2 matter)
- −2 Einstein equations
- -0 Conservation equations
- +0 Bianchi identities
- **−0** Gauge (coordinate choice 1 time, 1 space)
 - 2 Degrees of freedom
- wlog choose tensor components of the stress tensor $\Pi^{(\pm 2)}$.

Arbitrary Dark Components

- Total stress energy tensor can be broken up into individual pieces
- Dark components interact only through gravity and so satisfy separate conservation equations
- Einstein equation source remains the sum of components.
- To specify an arbitrary dark component, give the behavior of the stress tensor: 6 components: δp , $\Pi^{(i)}$, where i=-2,...,2.
- Many types of dark components (dark matter, scalar fields, massive neutrinos,..) have simple forms for their stress tensor in terms of the energy density, i.e. described by equations of state.
- An equation of state for the background $w = p/\rho$ is *not* sufficient to determine the behavior of the perturbations.

Gauge

- Metric and matter fluctuations take on different values in different coordinate system
- No such thing as a "gauge invariant" density perturbation!
- General coordinate transformation:

$$\tilde{\eta} = \eta + T$$
 $\tilde{x}^i = x^i + L^i$

free to choose (T, L^i) to simplify equations or physics. Decompose these into scalar and vector harmonics.

• $G_{\mu\nu}$ and $T_{\mu\nu}$ transform as tensors, so components in different frames can be related

Gauge Transformation

Scalar Metric:

$$\tilde{A} = A - \dot{T} - \frac{\dot{a}}{a}T,$$

$$\tilde{B} = B + \dot{L} + kT,$$

$$\tilde{H}_{L} = H_{L} - \frac{\dot{k}}{3}L - \frac{\dot{a}}{a}T,$$

$$\tilde{H}_{T} = H_{T} + kL,$$

• Scalar Matter (*J*th component):

$$\delta \tilde{\rho}_{J} = \delta \rho_{J} - \dot{\rho}_{J} T,$$

$$\delta \tilde{p}_{J} = \delta p_{J} - \dot{p}_{J} T,$$

$$\tilde{v}_{J} = v_{J} + \dot{L},$$

• Vector:

$$\tilde{B}^{(\pm 1)} = B^{(\pm 1)} + \dot{L}^{(\pm 1)}, \ \tilde{H}_{T}^{(\pm 1)} = H_{T}^{(\pm 1)} + kL^{(\pm 1)}, \ \tilde{v}_{J}^{(\pm 1)} = v_{J}^{(\pm 1)} + \dot{L}^{(\pm 1)},$$

Gauge Dependence of Density

• Background evolution of the density induces a density fluctuation from a shift in the time coordinate

- A coordinate system is fully specified if there is an explicit prescription for (T, L^i) or for scalars (T, L)
- Newtonian:

$$ilde{B} = ilde{H}_T = 0$$
 $\Psi \equiv ilde{A}$ (Newtonian potential)
 $\Phi \equiv ilde{H}_L$ (Newtonian curvature)
 $L = -H_T/k$
 $T = -B/k + \dot{H}_T/k^2$

Good: intuitive Newtonian like gravity; matter and metric algebraically related; commonly chosen for analytic CMB and lensing work

Bad: numerically unstable

Example: Newtonian Reduction

• In the general equations, set $B=H_T=0$:

$$(k^{2} - 3K)\Phi = 4\pi Ga^{2} \left[\frac{\delta \rho}{\delta \rho} + 3\frac{\dot{a}}{a}(\rho + p)v/k \right]$$
$$k^{2}(\Psi + \Phi) = 8\pi Ga^{2}p\Pi$$

so $\Psi = -\Phi$ if anisotropic stress $\Pi = 0$ and

$$\begin{bmatrix} \frac{d}{d\eta} + 3\frac{\dot{a}}{a} \end{bmatrix} \delta \rho + 3\frac{\dot{a}}{a} \delta p = -(\rho + p)(k\mathbf{v} + 3\dot{\Phi}),
\begin{bmatrix} \frac{d}{d\eta} + 4\frac{\dot{a}}{a} \end{bmatrix} (\rho + p)\mathbf{v} = k\delta p - \frac{2}{3}(1 - 3\frac{K}{k^2})p k\Pi + (\rho + p) k\Psi,$$

 Competition between stress (pressure and viscosity) and potential gradients

Relativistic Term in Continuity

- Continuity equation contains relativistic term from changes in the spatial curvature – perturbation to the scale factor
- For w=0 (matter), simply density dilution; for w=1/3 (radiation) density dilution plus (cosmological) redshift

• a.k.a. ISW effect – photon redshift from change in grav. potential

Comoving:

$$ilde{B} = ilde{v} \quad (T_i^0 = 0)$$
 $H_T = 0$
 $\xi = ilde{A}$
 $\zeta = ilde{H}_L \quad ext{(Bardeen curvature)}$
 $T = (v - B)/k$
 $L = -H_T/k$

Good: ζ is conserved if stress fluctuations negligible, e.g. above the horizon if $|K| \ll H^2$

$$\dot{\zeta} + Kv/k = \frac{\dot{a}}{a} \left[-\frac{\delta p}{\rho + p} + \frac{2}{3} \left(1 - \frac{3K}{k^2} \right) \frac{p}{\rho + p} \Pi \right] \to 0$$

Bad: explicitly relativistic choice

Synchronous:

$$\tilde{A} = \tilde{B} = 0$$

$$\eta_L \equiv -\tilde{H}_L - \frac{1}{3}\tilde{H}_T$$

$$h_T = \tilde{H}_T \text{ or } h = 6H_L$$

$$T = a^{-1} \int d\eta aA + c_1 a^{-1}$$

$$L = -\int d\eta (B + kT) + c_2$$

Good: stable, the choice of numerical codes

Bad: residual gauge freedom in constants c_1 , c_2 must be specified as an initial condition, intrinsically relativistic.

Spatially Unperturbed:

$$ilde{H}_L = ilde{H}_T = 0$$
 $L = -H_T/k$
 $ilde{A}, ilde{B} = ext{metric perturbations}$
 $T = \left(\frac{\dot{a}}{a}\right)^{-1} \left(H_L + \frac{1}{3}H_T\right)$

Good: eliminates spatial metric in evolution equations; useful in inflationary calculations (Mukhanov et al)

Bad: intrinsically relativistic.

• Caution: perturbation evolution is governed by the behavior of stress fluctuations and an isotropic stress fluctuation δp is gauge dependent.

Hybrid "Gauge Invariant" Approach

- With the gauge transformation relations, express variables of one gauge in terms of those in another allows a mixture in the equations of motion
- Example: Newtonian curvature above the horizon. Conservation of the Bardeen-curvature ζ =const. implies:

$$\Phi = \frac{3+3w}{5+3w}\zeta$$

e.g. calculate ζ from inflation determines Φ for any choice of matter content or causal evolution.

• Example: Scalar field ("quintessence" dark energy) equations in comoving gauge imply a sound speed $\delta p/\delta \rho = 1$ independent of potential $V(\phi)$. Solve in synchronous gauge (Hu 1998).

Transfer Function Example

• Example: Transfer function transfers the initial Newtonian curvature to its value today (linear response theory)

$$T(k) = \frac{\Phi(k, a = 1)}{\Phi(k, a_{\text{init}})}$$

- Conservation of Bardeen curvature: Newtonian curvature is a constant when stress perturbations are negligible: above the horizon during radiation and dark energy domination, on all scales during matter domination
- When stress fluctuations dominate, perturbations are stabilized by the Jeans mechanism
- Hybrid Poisson equation: Newtonian curvature, comoving density perturbation $\Delta \equiv (\delta \rho/\rho)_{\rm com}$ implies Φ decays

$$(k^2 - 3K)\Phi = 4\pi G\rho\Delta \sim \eta^{-2}\Delta$$

Transfer Function Example

• Freezing of Δ stops at $\eta_{\rm eq}$

$$\Phi \sim (k\eta_{\rm eq})^{-2}\Delta_H \sim (k\eta_{\rm eq})^{-2}\Phi_{\rm init}$$

• Transfer function has a k^{-2} fall-off beyond $k_{
m eq} \sim \eta_{
m eq}^{-1}$

Gauge and the Sachs-Wolfe Effect

 Going from comoving gauge, where the CMB temperature perturbation is initially negligible by the Poisson equation, to the Newtonian gauge involves a temporal shift

$$\frac{\delta t}{t} = \Psi$$

 Temporal shift implies a shift in the scale factor during matter domination

$$\frac{\delta a}{a} = \frac{2}{3} \frac{\delta t}{t}$$

- CMB temperature is cooling as $T \propto a$
- Induced temperature fluctuation

$$\frac{\delta T}{T} = -\frac{\delta a}{a} = -\frac{2}{3}\Psi$$

Gauge and the Sachs-Wolfe Effect

 Add the gravitational redshifta photon suffers climbing out of the gravitational potential

$$\left(\frac{\delta T}{T}\right)_{\mathrm{obs}} = \Psi + \frac{\delta T}{T} = \frac{1}{3}\Psi$$

COBE Normalization

 Sachs-Wolfe Effect relates the COBE detection to the gravitational potential on the last scattering surface

Decompose the angular and spatial information into normal modes:
 spherical harmonics for angular, plane waves for spatial

$$G_{\ell}^{m}(\hat{\mathbf{n}}, \mathbf{x}, \mathbf{k}) = (-i)^{\ell} \sqrt{\frac{4\pi}{2\ell + 1}} Y_{\ell}^{m}(\hat{\mathbf{n}}) e^{i\mathbf{k}\cdot\mathbf{x}}.$$

COBE Normalization cont.

Multipole moment decomposition for each k

$$\Theta(\mathbf{n}, \mathbf{x}) = \int \frac{d^3k}{(2\pi)^3} \sum_{\ell m} \Theta_{\ell}^{(m)}(k) G_{\ell}^{m}(\mathbf{x}, \mathbf{k}, \mathbf{n})$$

Power spectrum is the integral over k modes

$$C_{\ell} = 4\pi \int \frac{d^3k}{(2\pi)^3} \sum_{m} \frac{\left\langle \Theta_{\ell}^{(m)*} \Theta_{\ell}^{(m)} \right\rangle}{(2\ell+1)^2}$$

Fourier transform Sachs-Wolfe source

$$[\Theta + \Psi](\hat{\mathbf{n}}, \mathbf{x}) = \frac{1}{3} \int \frac{d^3k}{(2\pi)^3} \Psi(k, \eta_*) e^{i\mathbf{k}\cdot(D\hat{\mathbf{n}} + \mathbf{x})}$$

Decompose plane wave

$$\exp(i\mathbf{k}\boldsymbol{D}\cdot\hat{\mathbf{n}}) = \sum_{\ell} (-i)^{\ell} \sqrt{4\pi(2\ell+1)} j_{\ell}(k\boldsymbol{D}) Y_{\ell}^{0}(\mathbf{n}),$$

COBE Normalization cont.

Extract multipole moment, assume a constant potential

$$\frac{\Theta_{\ell}^{(0)}}{2\ell+1} = \frac{1}{3}\Psi(k,\eta_*)j_{\ell}(kD)$$

$$= \frac{1}{3}\Psi(k,\eta_0)j_{\ell}(kD)$$

Construct angular power spectrum

$$C_{\ell} = 4\pi \int \frac{dk}{k} j_{\ell}^{2}(kD) \frac{1}{9} \Delta_{\Psi}^{2}$$

• For scale invariant potential (n=1), integral reduces to

$$\int_0^\infty \frac{dx}{x} j_\ell^2(x) = \frac{1}{2\ell(\ell+1)}$$

Log power spectrum = Log potential spectrum / 9

$$\frac{\ell(\ell+1)}{2\pi}C_{\ell} = \frac{1}{9}\Delta_{\Psi}^{2} \quad (n=1)$$

COBE Normalization cont.

• Relate to density fluctuations: Poisson equation and Friedmann eqn.

$$k^{2}\Psi = -4\pi G a^{2} \delta \rho$$
$$= -\frac{3}{2} H_{0}^{2} \Omega_{m}^{2} \delta$$

Power spectra relation

$$\Delta_{\Psi}^{2} = \frac{9}{4} \left(\frac{H_0}{k} \right)^4 \Omega_m^2 \Delta_{\delta}^{2}$$

In terms of density fluctuation at horizon and transfer function

$$\Delta_{\delta}^{2} \equiv \delta_{H}^{2} \left(\frac{k}{H_{0}}\right)^{n+3} T^{2}(k)$$

For scale invariant potential

$$\frac{\ell(\ell+1)}{2\pi}C_{\ell} = \frac{1}{4}\Omega_m^2 \delta_H^2 \quad (n=1)$$

COBE Normalization cont.

Some numbers

$$\frac{\ell(\ell+1)}{2\pi} C_{\ell} = \frac{1}{4} \Omega_{m}^{2} \delta_{H}^{2} \quad (n=1)$$

$$= \left(\frac{28\mu K}{2.726 \times 10^{6} \mu K}\right)^{2} \approx 10^{-10}$$

$$\delta_{H} \approx (2 \times 10^{-5}) \Omega_{m}^{-1}$$

 Detailed calculation from Bunn & White (1997) including decay of potential in low density universe and tilt

$$\delta_H = 1.94 \times 10^{-5} \Omega_m^{-0.785 - 0.05 \ln \Omega_m} e^{-0.95(n-1) - 0.169(n-1)^2}$$

Matter Power Spectrum

Combine the transfer function with the COBE normalization

Matter Power Spectrum

• Usually plotted as the power spectrum, not log-power spectrum

Galaxy Power Spectrum Data

• Galaxy clustering tracks the dark matter – but as a biased tracer

Galaxy Power Spectrum Data

• Each galaxy population has different linear bias in linear regime

Acoustic Oscillations

- Example: Stabilization accompanied by acoustic oscillations
- Photon-baryon system under rapid scattering

$$\left[\frac{d}{d\eta} + 3\frac{\dot{a}}{a}\right] \delta \rho_{\gamma b} + 3\frac{\dot{a}}{a} \delta p_{\gamma b} = -(\rho_{\gamma b} + p_{\gamma b})(k v_{\gamma b} + 3\dot{\Phi}),$$

$$\left[\frac{d}{d\eta} + 4\frac{\dot{a}}{a}\right] \left[(\rho_{\gamma b} + p_{\gamma b})v_{\gamma b}/k\right] = \delta p_{\gamma b} + (\rho + p)\Psi,$$

or with $\Theta = \delta \rho_{\gamma}/4\rho_{\gamma}$ and $R = 3\rho_b/4\rho_{\gamma}$

$$\dot{\Theta} = -\frac{k}{3}v_{\gamma b} - \dot{\Phi}$$

$$\dot{v}_{\gamma b} = -\frac{\dot{R}}{1+R}v_{\gamma b} + \frac{1}{1+R}k\Theta + k\Psi$$

- Forced oscillator equation see Zaldarriaga's talks
- Anisotropic stresses and entropy generation through non-adiabatic stress Silk damps fluctuations Silk 1968

Acoustic Peaks in the Matter

- Baryon density & velocity oscillates with CMB
- Baryons decouple at $\tau/R \sim 1$, the end of Compton drag epoch
- Decoupling: $\delta_{\rm b}({\rm drag}) \sim V_{\rm b}({\rm drag})$, but not frozen
- Continuity: $\delta_b = -kV_b$
- Velocity Overshoot Dominates: $\delta_b \sim V_b(\text{drag}) \text{ k} \eta >> \delta_b(\text{drag})$
- Oscillations $\pi/2$ out of phase with CMB
- Infall into potential wells (DC component)

Features in the Power Spectrum

- Features in the linear power spectrum
- Break at sound horizon
- Oscillations at small scales; washed out by nonlinearities

Combining Features in LSS + CMB

- Consistency check on thermal history and photon—baryon ratio
- Infer physical scale $l_{\text{peak}}(\text{CMB}) \rightarrow k_{\text{peak}}(\text{LSS})$ in Mpc⁻¹

Combining Features in LSS + CMB

- Consistency check on thermal history and photon—baryon ratio
- Infer physical scale $l_{\text{peak}}(\text{CMB}) \rightarrow k_{\text{peak}}(\text{LSS})$ in Mpc-1
- Measure in redshift survey $k_{\text{peak}}(\text{LSS})$ in $h \text{ Mpc}^{-1} \rightarrow h$

Parameterizing Dark Components

Prototypes:

- Cold dark matter (WIMPs)
- Hot dark matter (light neutrinos)
- Cosmological constant (vacuum energy)

Exotica:

- Quintessence (slowly-rolling scalar field)
- Decaying dark matter (massive neutrinos)
- Radiation backgrounds (rapidly-rolling scalar field, NBR)
- Ultra-light fuzzy dark mat.

equation of state W_g	sound speed $c_{\rm eff}^2$	viscosity $c_{ m vis}^{\ 2}$
0	0	0
	1/3→0	
-1	arbitrary	arbitrary

variable	1	0	
$1/3 \rightarrow 0 \rightarrow 1/3$			
1/3	1/3	0→1/3	
0	scale dependent	0	

Massive Neutrinos

- Relativistic stresses of a light neutrino slow the growth of structure
- Neutrino species with cosmological abundance contribute to matter as $\Omega_{\nu}h^2 = m_{\nu}/94\text{eV}$, suppressing power as $\Delta P/P \approx -8\Omega_{\nu}/\Omega_m$

Massive Neutrinos

• Current data from 2dF galaxy survey indicates $m_V < 1.8 \text{eV}$ assuming a Λ CDM model with parameters constrained by the CMB.

Dark Energy Stress & Smoothness

- Raising equation of state increases redshift of dark energy domination and raises large scale anisotropies
- Lowering the sound speed increases clustering and reduces ISW effect at large angles

Lensing-CMB Temperature Correlation

- Any correlation is a direct detection of a smooth energy density component through the ISW effect
- Show dark energy smooth >5-6 Gpc scale, test quintesence

Summary

- In linear theory, evolution of fluctuations is completely defined once the stresses in the matter fields are specified.
- Stresses and their effects take on simple forms in particular coordinate or gauge choices, e.g. the comoving gauge.
- Gauge covariant equations can be used to take advantage of these simplifications in an arbitrary frame.
- Curvature (potential) fluctuations remain constant in the absence of stresses.
- Evolution can be used to test the nature of the dark components, e.g. massive neutrinos and the dark energy by measuring the matter power spectrum.
- Problem: luminous tracers of the matter clustering are biased next lecture.