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Closed Universe
• A spherical perturbation of radiusr behaves as aclosed universe

• Radiusr ∝ a → 0, collapse in finite time

• Friedman equationin a closed universe

1

a

da

dt
= H0

(
Ωma−3 + (1− Ωm)a−2

)1/2

• Parametric solution in terms of adevelopment angle
θ = H0η(Ωm − 1)1/2, scaled conformal timeη

r(θ) = A(1− cos θ)

t(θ) = B(θ − sin θ)

whereA = r0Ωm/2(Ωm − 1), B = H−1
0 Ωm/2(Ωm − 1)3/2.

• Turn around atθ = π, r = 2A, t = Bπ.

• Collapse atθ = 2π, r → 0, t = 2πB



Spherical Collapse
• Parametric Solution:
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Correspondence
• Eliminate cosmological correspondence inA andB in terms of

enclosed massM

M =
4π

3
r3
0Ωmρc =

4π

3
r3
0Ωm

3H2
0

8πG

• Related asA3 = GMB2, and to initial perturbation

lim
θ→0

r(θ) = A
(

1

2
θ2 − 1

4
θ4
)

lim
θ→0

t(θ) = B
(

1

6
θ3 − 1

120
θ5
)

• Leading Order:r = Aθ2/2, t = Bθ3/6

r =
A

2

(
6t

B

)2/3

• Unperturbed matter dominated expansionr ∝ a ∝ t2/3



Next Order
• Iterater andt solutions

lim
θ→0

t(θ) =
θ3
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• Substitute back intor(θ)

r(θ) = A
θ2

2

(
1− θ2
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Density Correspondence
• Density

ρm =
M

4
3
πr3

=
1

6πt2G

[
1 +

3

20

(
6t

B

)2/3
]

• Density perturbation

δ ≡ ρm − ρ̄m

ρ̄m

≈ 3

20

(
6t

B

)2/3

• Time→ scale factor

t =
2

3H0Ω
1/2
m

a3/2

δ =
3

20
a
(
4BH0Ω

1/2
m

)2/3



Spherical Collapse Relations
• A andB constants→ initial cond.

B =
1

2H0Ω
1/2
m

(
3

5

ai

δi

)3/2

A =
3

10

ri

δi

• Scale factora ∝ t2/3

a =
(

3

4

)2/3 (3

5

ai

δi

)
(θ − sin θ)2/3

• At collapseθ = 2π

acol =
(

3

4

)2/3 (3

5

ai

δi

)
(2π)2/3 ≈ 1.686

ai

δi

• Perturbation collapses whenlinear theorypredictsδc ≡ 1.686



Virialization
• A real density perturbation is neither spherical nor homogeneous

• Shell crossingif δi doesn’t monotonically decrease

• Collapse does not proceed to a point but reachesvirial equilibrium

U = −2K

E = U + K = U(rmax) =
1

2
U(rvir)

rvir =
1

2
rmax

sinceU ∝ r−1. Thusθvir = 3
2
π

• Overdensityat virialization

ρm(θ = 3π/2)

ρ̄m(θ = 2π)
= 18π2 ≈ 178

• Threshold∆v = 178 often used to define acollapsed object



Virialization
• Schematic Picture:
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The Mass Function
• Spherical collapsepredicts the end state as virializedhalosgiven

an initial density perturbation

• Initial density perturbation is aGaussian random field

• Compare the variance in the linear density field tothreshold
δc = 1.686 to determine collapse fraction

• Combine to form themass function, the number density of halos in
a rangedM aroundM .

• Halo density defined entirely by linear theory

• Fudge the result to get the right answer compared with simulations
(a la Press-Schechter)!



Press-Schechter Formalism
• Smoothlinear density density field on mass scaleM with tophat

R =
(

3M

4π

)1/3

• Result is a Gaussian random field withvarianceσ2(M)

• Fluctuations above the thresholdδc correspond tocollapsed
regions. The fraction in halos> M becomes

1√
2πσ(M)

∫ ∞
δc

dδ exp

(
− δ2

2σ2(M)

)
=

1

2
erfc

(
ν√
2

)

whereν ≡ δc/σ(M)

• Problem:even asσ(M) →∞, ν → 0, collapse fraction→ 1/2 –
only overdense regionsparticipate in spherical collapse.

• Multiply by an ad hoc factor of 2!



Press-Schechter Mass Function
• Differentiatein M to find fraction in rangedM and multiply by

ρm/M the number density of halos if all of the mass were
composed of such halos→ differential number densityof halos

dn

d ln M
=

ρm

M

d

d ln M
erfc

(
ν√
2

)

=

√
2

π

ρm

M

d ln σ−1

d ln M
ν exp(−ν2/2)

• High mass:exponential cut offaboveM∗ whereσ(M∗) = δc

M∗ ∼ 1013h−1M� today

• Low massdivergence: (too manyfor the observations?)

dn

d ln M
∝∼ M−1



Observational Mass Functions
• SDSSoptically identifiedclusters(assumingM/L; Bahcall et al 2002)

with clusterX-ray temp. function, sensitive topower amplitudeσ2
8



Counting Halos→ Dark Energy
• Halo abundance exponentially sensitive togrowth rate



Projected Constraints
� Studies of M>2.5 x 1014 M	 (Haiman et al. 2000; Hu & Kravstov)• 
� All other parameters known• 

0.6 0.65
–1

–0.8

–0.6

–0.4

w

ΩDE

zmax=3
zmax=1.0
zmax=0.7



Projected Constraints
� Studies of M>2.5 x 1014 M	 (Haiman et al. 2000; Hu & Kravstov)• 
� Local halo abundance known + present day cosmological params• 
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Projected Constraints
� Studies of M>2.5 x 1014 M	 (Haiman et al. 2000; Hu & Kravstov)• 
� Present day cosmological parameters• 
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Projected Constraints
� Studies of M>2.5 x 1014 M	 (Haiman et al. 2000; Hu & Kravstov)• 
� Present day cosmological parameters + sample variance• 
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Extended Press-Schechter Formalism
• A region that isunderdensewhen smoothed on the scaleM may

beoverdenseon a scale of alargerM

• If smoothing is a tophat ink-space, independence ofk-modes
implies fluctuation executes arandom walk

δc

δ

R(M)
M2

Press-Schechter prescription

collapsed

uncollapsed



Extended Press-Schechter Formalism
• For each trajectory that lies above threshold atM2, there is an

equivalent trajectorythat is its mirror image reflected aroundδc

• Press-Schechter ignored this branch. It supplies themissing factor
of 2

δc

δ

R(M)
M2 M1

equal probability

collapsed

uncollapsed

first upcrossing



Conditional Mass Function
• Extended Press-Schechter also gives theconditional mass

function, useful formerger histories.

• Given a halo of massM1 exists atz1, what is the probability that it
was part of a halo of massM2 at z2

(1+z1)δc

(1+z2)δcδ

R(M)
M2 M1



Conditional Mass Function
• Same as before but with theorigin translated.

• Conditional mass function is mass function withδc andσ2(M)

shifted

(1+z1)δc

(1+z2)δcδ

R(M)
M2 M1



Merger Simulation
• Simulationby Andrey Kravstov



Magic “2” resolved?
• Spherical collapse is defined for areal-spacenotk-space

smoothing. Random walk is only aqualitative explanation.

• Modern approach: think of spherical collapse as motivating a
fitting form for the mass function

ν exp(−ν2/2) → A[1 + (aν2)−p]
√

aν2 exp(−aν2/2)

Sheth-Torman 1999, a = 0.75, p = 0.3. or a completely empirical
fitting

dn

d ln M
= 0.301

ρm

M

d ln σ−1

d ln M
exp[−| ln σ−1 + 0.64|3.82]

Jenkins et al 2001. Choice is tied up with the question:what is the
mass of a halo?



Numerical Mass Function
• Example of difference inmass definition(from Hu & Kravstov 2002)
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Halo Bias
• If halos are formed without regard to the underlying density

fluctuation and move under thegravitational fieldthen their
number density is anunbiased tracerof the dark matter density
fluctuation (

δn

n

)
halo

=

(
δρ

ρ

)

• Howeverspherical collapsesays the probability of forming a halo
depends on theinitial density field

• Large scale densityfield acts as “background” enhancement of
probability of forming a halo or “peak”

• Peak-BackgroundSplit (Mo & White 1997)



Peak-Background Split
• Schematic Picture:
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Perturbed Mass Function
• Density fluctuationsplit

δ = δb + δp

• Lowersthethresholdfor collapse

δcp = δc − δb

so thatν = δcp/σ

• Taylor expandnumber densitynM ≡ dn/d ln M

nM +
dnM

dν

dν

dδb

δb . . . = nM

[
1 +

(ν2 − 1)

σν

]
if mass function is given byPress-Schechter

nM ∝ ν exp(−ν2/2)



Halo Bias
• Halos arebiased tracersof the “background” dark matter field with

a biasb(M) that is given by spherical collapse and the form of the
mass function

δnM

nM

= [1 + b(M)] δ

• For Press-Schechter

b(M) = 1 +
ν2 − 1

δc

• Improved by the Sheth-Torman mass function

b(M) = 1 +
aν2 − 1

δc

+
2p

δc[1 + (aν2)p]

with a = 0.75 andp = 0.3 to match simulations.



Numerical Bias
• Example ofhalo biasfrom a simulation (fromHu & Kravstov 2002)
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What is a Halo?
• Mass function and halo bias depend on the definition ofmass of a

halo

• Agreement with simulations depend on howhalos are identified

• Otherobservables(associated galaxies,X-ray, SZ) depend on the
details of the density profile

• Fortunately, simulations have shown that halos take on a near
universal formin their density profileat least on large scales.



NFW Halo
• Density profilewell-described by (Navarro, Frenk & White 1997)

ρ(r) =
ρs

(r/rs)(1 + r/rs)2
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Transforming the Masses
• NFW profile gives a way of transforming different mass definitions
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Lack of Concentration?
• NFW parameters may be recast intoMv, the mass of a halo out to

thevirial radiusrv where the overdensity wrt mean reaches
∆v = 180.

• Concentrationparameter

c ≡ rv

rs

• CDM predictsc ∼ 10 for M∗ halos.Too centrally concentratedfor
galactic rotation curves?

• Possible discrepancy has lead to the exploration ofdark matter
alternatives: warm (m ∼keV) dark matter, self-interacting
dark-matter, annihillating dark matter, ultra-light “fuzzy” dark
matter,. . .



Incredible, Extensible Halo Model
• An industry developed to buildsemi-analytic modelsfor wide

variety ofcosmological observablesbased on the halo model

• Idea: associate anobservable(galaxies, gas, ...) withdark matter
halos

• Let thehalo modeldescribe the statistics of the observable

• Theoverextendedhalo model?



The Halo Model
• NFW halos, of abundancenM given bymass function, clustered

according to thehalo biasb(M) and thelinear theoryP (k)

• Power spectrumexample:
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Weak Lensing and the Halo Model

• Power spectrum of shear divided into the halo masses that contribute

• Non-linear regime dominated by halo profile / individual halos
increased power spectrum variance and covariance
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Cooray, Hu, Miralda-Escude (2000)



Higher Order Statistics 

• Halo model for the bispectrum: S3 dominated by massive halos

Cooray & Hu (2001)
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Halo Temperature
• Motivate withisothermal distribution, correct from simulations

ρ(r) =
σ2

2πGr2

• Express in terms ofvirial massMv enclosed atvirial radiusrv

Mv =
4π

3
r3
vρm∆v =

2

G
rvσ

2

• Eliminaterv, temperatureT ∝ σ2 velocity dispersion2

• ThenT ∝ M2/3
v (ρm∆v)

1/3 or(
Mv

1015h−1M�

)
=

[
f

(1 + z)(Ωm∆v)1/3

T

1keV

]3/2

• Theory (X-ray weighted):f ∼ 0.75; observationsf ∼ 0.54.
Difference iscrucialin determining cosmology fromcluster
counts!



Clusters in the SZE
� Inverse Compton scattering of CMB off hot electrons• 

Carlstrom et al. (2001)



Clusters in Power Spectrum?
� Excess in arcminute scale CMB anisotropy from CBI• 
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Sensitivity of SZE Power
� Amplitude of fluctuations• 



Sensitivity of SZE Power
� Dark energy• 



Galaxy Clustering
• Associategalaxieswith halo of massM : N(M) (Seljak 2001)

Peacock (1997)
compilation
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• An explanation of the purepower law galaxy spectrum



Summary
• Dark matter simulationswell-understood and can be modelled

with dark matterhalos

• Halo formation modelled byspherical collapse, two magic
numbersδc = 1.686 and∆v = 178

• Halo abundance described by amassfunction withexponential
high mass cutoff –rare clustersextremely sensitive to power
spectrum amplitude andgrowth rate→ dark energy

Possibly too many small halos orsub-structure?

• Halo clustering modelled with peak-background split leading to
halo bias

• Halo profiledescribed by NFW halos

Possibly too high centralconcentration

• Associate anobservablewith a halo→ a halo model




