Dark Energy Probes

•

light of the CMB

Wayne Hu Tuscon, March 2004

Dark Energy Tests

- Standard Candles
- Standard Ruler

Sound horizon (2%); matter radiation horizon (8%) Angular $\rightarrow D_A(z)$ - galaxy/cluster $C_l(z)$ Radial $\rightarrow H(z)$ - galaxy/cluster P(k, z)Ratio (standard sphere): Alcock-Pacynski test

Standard Fluctuation

Initial amplitude at $k = 0.05 \text{ Mpc}^{-1} (\delta \tau \%)$

Cosmic Shear

Galaxy-galaxy lensing + clustering (self-calibrating bias)

Cluster abundance (even z = 0 gives cosmology; requires standard masses)

Initial amplitude near horizon scale: ISW (polarization; lensing)

Forecasting Philosophy

- Equal (but optimistic...) footing
- Planck+ext-like CMB priors τ : 0.5%; $\Omega_m h^2$: 1%; flat
- 4000 deg² optical survey with photometric redshifts of $\Delta z = 0.1$ out to z = 1
- Need for accurate calibration (starting with the CMB example) complementarity/statistical precision is not enough!
- Recent Collaborators
 - Zoltan Haiman
 - Bhuvnesh Jain
 - Andrey Kravtsov
 - Marcos Lima

• WMAP + small scale temperature and polarization measures provides self-calibrating standards for the dark energy probes

• Relative heights of the first 3 peaks calibrates sound horizon and matter radiation equality horizon

• Relative heights of the first 3 peaks calibrates sound horizon and matter radiation equality horizon

 Cross checked with damping scale (diffusion during horizon time) and polarization (rescattering after diffusion): self-calibrated and internally cross-checked

WMAP: Bennett et al (2003)

• Standard ruler used to measure the angular diameter distance to recombination (z~1100; currently 2-4%) or any redshift for which acoustic phenomena observable

WMAP: Bennett et al (2003)

 Standard fluctuation: absolute power determines initial fluctuations in the regime 0.01-0.1 Mpc⁻¹

 Standard fluctuation: precision mainly limited by reionization which lowers the peaks as e^{-2τ}; self-calibrated by polarization, cross checked by CMB lensing in future

WMAP: Bennett et al (2003)

Polarization Power Spectrum

 Most of the information on ionization history is in the polarization (auto) power spectrum - two models with same optical depth but different ionization fraction - model independent measure 1%

- Determination of the normalization during the acceleration epoch, even σ₈, measures the dark energy with negligible uncertainty from other parameters
- Approximate scaling (flat, negligible neutrinos: Hu & Jain 2003)

$$\begin{aligned} \sigma_8(z) &\approx \frac{\delta_{\zeta}}{5.6 \times 10^{-5}} \left(\frac{\Omega_b h^2}{0.024}\right)^{-1/3} \left(\frac{\Omega_m h^2}{0.14}\right)^{0.563} (3.12h)^{(n-1)/2} \\ &\times \left(\frac{h}{0.72}\right)^{0.693} \frac{G(z)}{0.76} \,, \end{aligned}$$

• $\delta_{\zeta}, \Omega_b h^2, \Omega_m h^2, n$ all well determined; eventually to $\sim 1\%$ precision

- $h = \sqrt{\Omega_m h^2 / \Omega_m} \propto (1 \Omega_{\rm DE})^{-1/2}$ measures dark energy density
- *G* measures dark energy dependent growth rate

 Standard fluctuation: large scale - ISW effect; correlation with large-scale structure; clustering of dark energy; low multipole anomalies? polarization

- Fixed distance to recombination $D_A(z\sim1100)$
- Fixed initial fluctuation $G(z \sim 1100)$
- Constant $w = w_{DE}$; (Ω_{DE} adjusted one parameter family of curves)

• Other cosmological test, e.g. volume, SNIa distance constructed as linear combinations

- Three parameter dark energy model: $w(z=0)=w_0$; $w_a=-dw/da$; Ω_{DE}
- w_a sensitivity; (fixed $w_0 = -1$; Ω_{DE} adjusted)

- Three parameter dark energy model: $w(z=0)=w_0$; $w_a=-dw/da$; Ω_{DE}
- H_0 fixed (or Ω_{DE}); remaining w_0 - w_a degeneracy
- Note: degeneracy does not preclude ruling out $\Lambda(w(z)\neq -1 \text{ at some } z)$

Standard Rulers

Local Test: H₀

- Locally $D_A = \Delta z/H_0$, and the observed power spectrum is isotropic in *h* Mpc⁻¹ space
- Template matching the features yields the Hubble constant

Eisenstein, Hu & Tegmark (1998)

Cosmological Distances

Modes perpendicular to line of sight measure angular diameter distance

Cooray, Hu, Huterer, Joffre (2001)

Cosmological Distances

• Modes parallel to line of sight measure the Hubble parameter

Eisenstein (2003); Seo & Eisenstein (2003) [also Blake & Glazebrook 2003; Linder 2003; Matsubara & Szalay 2002]

$D_A(z)$ and H(z)

- Shifts at moderate redshift are comparable to deviation in *w*
- High- $z D_A$, H fixed by CMB in a flat universe fixes Ω_m given w
- Future: analysis of surveys with power spectrum shape fixed
 replace band powers with bands in *D*_A and *H*

Hu & Haiman (2003)

- Complementary D_A measures at z < 1 requires photo-z $\delta z < 0.1$
- Complementary *H* measures at z<2 requires good redshifts δz<0.01 (approaching possible with cluster photo-z)

Hu & Haiman (2003)

Information Density

- Information density in *k*-space sets requirements for the redshifts
- A cluster based example

Haiman & Hu (2003)

Projected Power

- Information density in *k*-space sets requirements for the redshifts
- Purely angular limit corresponds to a low-pass k_{||} redshift survey in the fundamental mode set by redshift resolution

Haiman & Hu (2003)

Angular Power Spectra

• Wiggles preserved at high redshift even for thick redshift shells; destroyed by non-linear effects, *N*(*M*)

Angular Power Spectrum

- Purely geometric constraint, absolutely calibrated at all z
- Combine with CMB distance $[\Omega_m h^2 1\%]$ with constant w

Angular Power Spectrum

- Purely geometric constraint
- Degeneracy in w(z) remains

Standard Fluctuations

Local Abundance

- Local abundance constrains constant w in a flat universe in the same direction as $D_A(z=1100)$; consistency check on flatness, $m_V <<1eV$
- CMB distance power spectrum priors only + current X-ray sample:

Caveat Emptor!

- Empirical calibration of $M-T_X$ relation would imply inconsistency
- Without cross checks, infer wrong *w* from complementary probes
- Accurate calibration of mass-observable relations will be required

Mass-Observable Relation

- Relationship between halos of given mass and observables sets mass threshold and scatter around threshold
- Clusters largely avoid $N(M_h)$ problem with multiple objects in halo

Cluster Abundance

• Powerful probe of growth rate combined with CMB high-z normalization and distance $[\tau - 0.5\%, \Omega_m h^2 - 1\%]$

Cluster Abundance

• Power law evolution in mass-observable relation

Cluster Abundance

• Self calibration with variance of counts

Galaxy-Shear Power Spectra

• Auto and cross power spectra of galaxy density and shear in multiple redshift bins

Galaxy-Shear Correlations

• Galaxy-shear cross spectrum and galaxy-galaxy power spectrum allow for a calibration of galaxy bias hence measure growth

Shear-Shear Correlations

• Cosmic shear statistical forecast:

Naive Interpretation?

 No long-wavelength power? cut off near horizon scale k=0.005 Mpc⁻¹ - problematic due to ISW & polarization

Temperature v. Polarization

- Quadrupole in polarization originates from a tight range of scales around the current horizon
- Quadrupole in temperature gets contributions from 2 decades in scale

Hu & Okamoto (2003)

Exotic Dark Energy?

Modify the clustering of the dark energy to eliminate low-*l* ISW effect - helps moderately, leaves polarization unaffected

Chance Cancellation?

 Small physical scale ISW fluctuations happen to cancel large scale SW fluctuations locally - polarization unaffected

Dark Energy Clustering

- Cross correlation with CMB lensing maps eventually can provide a cosmic variance limited measurement on large scales where ISW maximized and test the smoothness of the dark energy
- Quintessence vs k-essence

Summary

- CMB directly impacts structure-based dark energy probes
- CMB provides an absolutely calibrated template for the shape of P(k) limited $\Omega_m h^2$ from > 2nd peak and polarization
- CMB provides a reionization limited measurement of the initial amplitude on large-scale structure scales
- CMB calibrations imply accurate measurement of P(k) shape or amplitude at any z < 2 constrains dark energy (including z = 0)
- Multiple redshifts allow for separation of $w_0 w_a$, dark energy evolution or evolution of dark energy
- But other tests must match or exceed the CMB calibration uncertainty of < 1%
- ISW effect may hold hints beyond phenomenological models and will be assisted by polarization and CMB lensing in the future