The Physics of CMB Anisotropies

and their
Cosmological Implications




CMB Isotropy

Actual Temperature Data

COBE 1992



Dipole Anisotropy

our motion
1 part in 1000

COBE 1992



Large—Angle Anisotropies

10°-90° anisotropy
1 part in 100000

COBE 1992



Precision Cosmology
COBE
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Acoustic Oscillations



A Brief Thermal History
CMB photons hotter at high redhift z

At z~1000, T~3000K: photons 10nize hydrogen

Microwaves

Cosmological
Redshift

Recombination : (WU
z~1000; T~3000K /

Photon-Baryon
Plasma



A Brief Thermal History
At z>1000, photon-baryon plasma: perfect fluid

Photons provide pressure; baryons add inertia

@ /e Coulomb Interactions

/\/\%Thomson Scattering

Pertect Fluid



Gravitational Ringing
Potential wells = inflationary seeds of structure

FHuid falls into wells, pressure resists. acoustic
oscillations

Gravity




Plane Waves
Potential wells: part of afluctuation spectrum

Plane wave decomposition
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Harmonic Modes
Frequency proportional to wavenumber: w=Kkc,

Twice the wavenumber = twice the frequency
of oscillation




Extrema=Peaks

First peak = mode that just compresses

Second peak = mode that compresses then
rarefies: twice the wavenumber

Harmonic peaks: 1:2:3 in wavenumber
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Seeing Sound

Oscillations frozen at recombination

Compression=nhot spots, Rarefaction=cold spots

Extrema are harmonics of distance sound travels




Peaks in Angular Power

Oscillations frozen at recombination

Distant hot and cold spots appear as temperature
anisotropies




Basic Structure
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The First Peak



First Peak Precisely Measured
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Spatial Curvature

Physical scale of peak = distance sound travels

Angular scale measured: comoving angular
diameter distance test for curvature

Flat

N

Closed



Curvature 1n the Power Spectrum

Features scale with angular diameter distance

Angular location of the first peak
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A (Nearly?!) Flat Universe
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Hubble constant! Baryons: calibrate rulers



What Makes It Flat?
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Info on Hy, Q2,,,, or 2, breaks degeneracy

Hy: currently by assuming flatness, future by measuring Q42



Concordance!?
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Consistent and requires missing “dark™ energy



The Second Peak



What 1s 1t Good For

Acoustic nature: beyond reasonable doubt

Inflation: superhorizon potential perturbations
defects already strongly disfavored: narrow first peak
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What 1s 1t Good For

Current: second peak unresolved

Amplitude: constrained to be low

100 -l BOOMERanG
[ MA.

80 [

60 F

40

20

10



Baryon & Inertia

Bal‘yOnS add | nert' d tO Low Baryons High Baryons
the fluid

Equivalent to adding mass
ona Spn ng Initial Conditions

(Maximal Rarefaction)

Same initial conditions A

Even
Peaks

Same null 1n fluctuations AT=0

Odd

Unequal amplitudes of
extrema Comprl'o_n ‘




A Baryon-meter

Baryons drag the fluid into potential wells

Enhance compressional peaks (odd) over
rarefaction peaks (even)

e.g. suppression of second peak

AT

\< time

Low Baryons




A Baryon-meter

Baryons drag the fluid into potential wells

Enhance compressional peaks (odd) over
rarefaction peaks (even)

e.g. suppression of second peak
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A Baryon-meter

Baryons drag the fluid into potential wells

Enhance compressional peaks (odd) over
rarefaction peaks (even)

e.g. suppression of second peak
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Baryons 1n the Power Spectrum

High
Baryons
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Second Peak

Second peak 1s (too?) suppressed

At least as many baryons as nucleosynthesis
(50% more preferred

BBN consistent at 95% CL 1nclud1ng variations in other parameters, e. g spectrum tilt)
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Higher Peaks



Radiation and Dark Matter

Radiation domination:
potential wells created by CMB itself

Pressure support [ potential decay L1 driving

Heights measures when dark matter dominates
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Radiation and Dark Matter

Radiation domination:
potential wells created by CMB itself

Pressure support [ potential decay L1 driving

Heights measures when dark matter dominates

Decay
and
Gravitational Driving




Radiation and Dark Matter

Radiation domination:
potential wells created by CMB itself

Pressure support [ potential decay L1 driving

Heights measures when dark matter dominates

Decay
and
Gravitational Driving




Dark Matter in the Power Spectrum

Low
Matter
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Damping Tail in the Power Spectrum

Photon diffusion exponentially damps
oscillations

Calibrate the standard rulers in curvature test
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Diffusion Damping
Diffusion inhibited by baryons

Random walk length scale depends on time to
diffuse: horizon scale at recombination

m Coulomb Interactions

%Thomson Scattering

Low Baryons High Baryons



Damping Consistency Tests

Additional measure of baryons and dark matter

Baryons Dark Matter

L L lllllll L L lllllll L L L L L L L lllllll L L lllllll
W.Hu 11700 | W.Hu 11700 |




Beyond the Peaks




Degeneracies

Multiple cosmological parameters have (nearly)
degenerate effects on the power spectrum

Example: reionization and gravity waves
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Polarization

Thomson of quadrupole temperature anisotropy

Linear polarization:

Quadrupole
Anisotropy
Thomson
> Scattering
N
Linear

Polarization



Polarization Generation

Quadrupole anisotropies generated in optically
thin regime

Anisotropies <10% polarized

S




Polarization Patterns

Pattern reflects the projection of quadrupole
anisotropies

Three types: density, vorticity, gravity waves

Potential to 1solate gravity waves

Density Vorticity Gravity Waves
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Power 1n Secondaries

Gravitational

ISW (redshift) Effect

Weak Lensing

Scattering
Doppler Effect
Vishniac Effect
Kinetic SZ Effect

Patchy Reilonization
Thermal SZ Effect

Separation
Arcminute Scales
Spectrum
Non-Gaussianity

10_9 :_ LILIL

10-10F

10-12 g

10-13 E

primary
nonlin
S7Z E
linear ]
o ]
w -
o v—
-
<
B
BES
g 1
S .
&\Q&/’ 7 7
'\\,Q 4 E
Y ]
A -
IIIII IIII 1 I/IIIII 1 1 IIII-
10 100 1000



Summary

Age of precision cosmology

Sound waves: inflationary/initial perturbations

First peak nailed: (nearly?) flat universe
(11 Gyr young universe preferred)

Second peak constrained: baryonic dark matter
(50% more baryons preferred)

Degeneracies and ambiguities:
dark energy: complementary measures
dark matter: higher peaks
gravity waves: polarization
reionization: polarization & secondaries
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