The Physics of CMB Anisotropies

Cosmological Implications

Wayne Hu

CMB Isotropy

Actual Temperature Data

Dipole Anisotropy

our motion 1 part in 1000

Large-Angle Anisotropies

10°–90° anisotropy
1 part in 100000

Precision Cosmology

Ringing in the New Cosmology

Acoustic Oscillations

A Brief Thermal History

- CMB photons hotter at high redhift z
- At z~1000, T~3000K: photons ionize hydrogen

Microwaves

Cosmological Redshift

Recombination z~1000; T~3000K

Photon-Baryon Plasma

A Brief Thermal History

- At z>1000, photon-baryon plasma: perfect fluid
- Photons provide pressure; baryons add inertia

Perfect Fluid

Gravitational Ringing

- Potential wells = inflationary seeds of structure
- Fluid falls into wells, pressure resists: acoustic oscillations

Plane Waves

- Potential wells: part of a fluctuation spectrum
- Plane wave decomposition

Harmonic Modes

- Frequency proportional to wavenumber: $\omega = kc_s$
- Twice the wavenumber = twice the frequency of oscillation

Extrema=Peaks

- First peak = mode that just compresses
- Second peak = mode that compresses then rarefies: twice the wavenumber
- Harmonic peaks: 1:2:3 in wavenumber

Seeing Sound

- Oscillations frozen at recombination
- Compression=hot spots, Rarefaction=cold spots
- Extrema are harmonics of distance sound travels

Peaks in Angular Power

- Oscillations frozen at recombination
- Distant hot and cold spots appear as temperature anisotropies

Basic Structure

First Peak Precisely Measured

Spatial Curvature

- Physical scale of peak = distance sound travels
- Angular scale measured: comoving angular diameter distance test for curvature

Curvature in the Power Spectrum

- Features scale with angular diameter distance
- Angular location of the first peak

A (Nearly?!) Flat Universe

• Hubble constant! Baryons: calibrate rulers

What Makes It Flat?

• Info on H_0 , Ω_m , or Ω_Λ breaks degeneracy H_0 : currently by assuming flatness, future by measuring $\Omega_m h^2$

Concordance!?

Consistent and requires missing "dark" energy

What is it Good For

- Acoustic nature: beyond reasonable doubt
- Inflation: superhorizon potential perturbations defects already strongly disfavored: narrow first peak

What is it Good For

- Current: second peak unresolved
- Amplitude: constrained to be low

Baryon & Inertia

- Baryons add inertia to the fluid
- Equivalent to adding mass on a spring
- Same initial conditions
- Same null in fluctuations

 Unequal amplitudes of extrema

A Baryon-meter

- Baryons drag the fluid into potential wells
- Enhance compressional peaks (odd) over rarefaction peaks (even)

e.g. suppression of second peak

A Baryon-meter

- Baryons drag the fluid into potential wells
- Enhance compressional peaks (odd) over rarefaction peaks (even)

e.g. suppression of second peak

A Baryon-meter

- Baryons drag the fluid into potential wells
- Enhance compressional peaks (odd) over rarefaction peaks (even)

e.g. suppression of second peak

Baryons in the Power Spectrum

Second Peak

- Second peak is (too?) suppressed
- At least as many baryons as nucleosynthesis
 (50% more preferred

BBN consistent at 95% CL including variations in other parameters, e.g. spectrum tilt)

Radiation and Dark Matter

- Radiation domination:
 potential wells created by CMB itself
- Pressure support \Rightarrow potential decay \Rightarrow driving
- Heights measures when dark matter dominates

Radiation and Dark Matter

- Radiation domination:
 potential wells created by CMB itself
- Pressure support \Rightarrow potential decay \Rightarrow driving
- Heights measures when dark matter dominates

Decay and Gravitational Driving

Radiation and Dark Matter

- Radiation domination:
 potential wells created by CMB itself
- Pressure support \Rightarrow potential decay \Rightarrow driving
- Heights measures when dark matter dominates

Decay and Gravitational Driving

Dark Matter in the Power Spectrum

Damping Tail in the Power Spectrum

- Photon diffusion exponentially damps oscillations
- Calibrate the standard rulers in curvature test

Diffusion Damping

- Diffusion inhibited by baryons
- Random walk length scale depends on time to diffuse: horizon scale at recombination

Damping Consistency Tests

Additional measure of baryons and dark matter

Beyond the Peaks

Degeneracies

- Multiple cosmological parameters have (nearly)
 degenerate effects on the power spectrum
- Example: reionization and gravity waves

Polarization

- Thomson of quadrupole temperature anisotropy
- Linear polarization:

Polarization Generation

- Quadrupole anisotropies generated in optically thin regime
- Anisotropies <10% polarized

Polarization Patterns

- Pattern reflects the projection of quadrupole anisotropies
- Three types: density, vorticity, gravity waves
- Potential to isolate gravity waves

Secondary Anisotropies

• CMB photons traverse the large-scale structure of the universe

Scattering (~few%), gravitational redshift,

lensing

Power in Secondaries

- Gravitational ISW (redshift) Effect Weak Lensing
- Scattering
 Doppler Effect
 Vishniac Effect
 Kinetic SZ Effect
 Patchy Reionization
 Thermal SZ Effect
- Separation
 Arcminute Scales
 Spectrum
 Non-Gaussianity

Summary

- Age of precision cosmology
- Sound waves: inflationary/initial perturbations
- First peak nailed: (nearly?) flat universe (11 Gyr young universe preferred)
- Second peak constrained: baryonic dark matter (50% more baryons preferred)
- Degeneracies and ambiguities:
 dark energy: complementary measures
 dark matter: higher peaks
 gravity waves: polarization
 reionization: polarization & secondaries