Probing the Dark Side

of Structure Formation

Wayne Hu

The Dark Side of Structure Formation

• The Dark Side

All components that contributes to the expansion rate that do not couple to ordinary matter at the present

The Dark Side of Structure Formation

• The Dark Side

All components that contributes to the expansion rate that do not couple to ordinary matter at the present

• The Usual Suspects

Cold dark matter, dark baryons, cosmological constant, spatial curvature

- Establishing the basic cosmological framework at high redshifts through sub–degree scale CMB anisotropies
- Achieving precision with large-scale structure from galaxy surveys, lensing...
- Constructing consistency tests between these measures, distance measures...

The Dark Side of Structure Formation

• The Dark Side

All components that contributes to the expansion rate that do not couple to ordinary matter at the present

• The Usual Suspects

Cold dark matter, dark baryons, cosmological constant, spatial curvature

- Establishing the basic cosmological framework at high redshifts through sub–degree scale CMB anisotropies
- Achieving precision with large-scale structure from galaxy surveys, lensing...
- Constructing consistency tests between these measures, distance measures...

Other Shady Characters

Massive neutrinos, scalar fields, decaying dark matter, background neutrinos...

• Observationally testing the properties of the dark sector combining low and high redshift information

Collaborators Past & Present

 Microwave Background Emory Bunn Asantha Cooray Andrei Gruzinov Douglas Scott Uros Seljak Joe Silk Naoshi Sugiyama Martin White Matias Zaldarriaga Large-Scale Structure Rupert Croft Romeel Dave Daniel Eisenstein Jim Peebles Alex Szalay Max Tegmark

Collaborators Past & Present

 Microwave Background Emory Bunn Asantha Cooray Andrei Gruzinov Douglas Scott Uros Seljak Joe Silk Naoshi Sugiyama Martin White Matias Zaldarriaga Large-Scale Structure Rupert Croft Romeel Dave Daniel Eisenstein Jim Peebles Alex Szalay Max Tegmark

• Presentation

http://www.sns.ias.edu/~whu/yukawa.pdf

Part I: Establishing the Cosmological Framework

Begin with the CMB because...

- Linearity observed: $\Delta T/T \sim 10^{-5}$
- Simple Physics Gravity
 Fluid Dynamics
 Geometry
- Rich Features Acoustic Peaks

CMB Anisotropies

Tegmark, de Oliviera Costa, Devlin, Netterfield, & Page (1996)

Current CMB Quilt

Projected Planck Errors

Thermal History

• $z > 1000; T_{\gamma} > 3000K$

Hydrogen ionized Free electrons glue photons to baryons

Photon–baryon fluid Potential wells that later form structure

Thermal History

• $z > 1000; T_{\gamma} > 3000K$

Hydrogen ionized Free electrons glue photons to baryons

Photon–baryon fluid Potential wells that later form structure z ~ 1000; T_γ ~ 3000K Recombination Fluid breakdown

 z < 1000; T_γ < 3000K Gravitational redshifts & lensing Reionization; rescattering

Angular Diameter Distance

Standardized ruler Measure angular extent Ruler & comoving distance scale (except for Λ) Infer curvature

Sound horizon \rightarrow Peak spacing **Diffusion scale** \rightarrow **Damping tail**

Hu & White (1996)

Curvature and the Cosmological Constant

The Acoustic Peaks

- Acoustic Oscillations
- Peak Positions
- Baryon Drag
- Radiation Driving
- Diffusion Damping

- Photon pressure resists compression in potential wells
- Acoustic oscillations

Peebles & Yu (1970)

- Photon pressure resists compression in potential wells
- Acoustic oscillations
- Gravity displaces zero point $\Theta \equiv \delta T/T = -\Psi$

• Oscillation amplitude = initial displacement from zero pt. $\Theta - (-\Psi) = 1/3\Psi$

Peebles & Yu (1970)

- Photon pressure resists compression in potential wells
- Acoustic oscillations
- Gravity displaces zero point $\Theta = \delta T/T = -\Psi$

- Oscillation amplitude = initial displacement from zero pt.
 Θ-(-Ψ)=1/3Ψ
- Gravitational redshift: observed $(\delta T/T)_{obs} = \Theta + \Psi$ oscillates around zero

Peebles & Yu (1970)

- Photon pressure resists compression in potential wells
- Acoustic oscillations
- Gravity displaces zero point $\Theta = \delta T/T = -\Psi$

- Oscillation amplitude = initial displacement from zero pt. $\Theta - (-\Psi) = 1/3\Psi$
- Gravitational redshift: observed $(\delta T/T)_{obs} = \Theta + \Psi$ oscillates around zero

Peebles & Yu (1970)

Harmonic Peaks

- Oscillations frozen at last scattering
- Wavenumbers at extrema = peaks
- Sound speed c_s

Harmonic Peaks

- Oscillations frozen at last scattering
- Wavenumbers at extrema = peaks
- Sound speed c_s

• Frequency $\omega = kc_s$; conformal time η

• Phase
$$\propto k$$
; $\phi = \int_0^{\text{last scattering}} d\eta \ \omega = k \text{ sound} horizon$

• Harmonic series in sound horizon $\phi_{\mathbf{n}} = \mathbf{n}\pi \rightarrow k_{\mathbf{n}} = \mathbf{n}\pi / \frac{\text{sound}}{\text{horizon}}$

Baryon Drag

- Baryons provide inertia
- Relative momentum density

 $\boldsymbol{R} = (\boldsymbol{\rho}_{\mathrm{b}} + \boldsymbol{p}_{\mathrm{b}}) \boldsymbol{V}_{\mathrm{b}} / (\boldsymbol{\rho}_{\gamma} + \boldsymbol{p}_{\gamma}) \boldsymbol{V}_{\gamma} \propto \boldsymbol{\Omega}_{\mathrm{b}} h^{2}$

• Effective mass $m_{\rm eff} = (1 + R)$

Baryon Drag

- Baryons provide inertia
- Relative momentum density $R = (\rho_{b} + p_{b})V_{b} / (\rho_{\gamma} + p_{\gamma})V_{\gamma} \propto \Omega_{b}h^{2}$
- Effective mass $m_{\text{eff}} = (1 + R)$

- Baryons drag photons into potential wells → zero point ↑
- Amplitude ↑
- Frequency $\downarrow (\omega \propto m_{\rm eff}^{-1/2})$
- Constant *R*, Ψ : $(1+R)\ddot{\Theta} + (k^2/3)\Theta = -(1+R)(k^2/3)\Psi$ $\Theta + \Psi = [\Theta(0) + (1+R)\Psi(0)] \cos [k\eta/\sqrt{3}(1+R)] - R\Psi$

Baryon Drag

- Baryons provide inertia
- Relative momentum density $R = (\rho_{b} + p_{b})V_{b} / (\rho_{\gamma} + p_{\gamma})V_{\gamma} \propto \Omega_{b}h^{2}$
- Effective mass $m_{\text{eff}} = (1 + R)$

- Baryons drag photons into potential wells → zero point ↑
- Amplitude ↑
- Frequency $\downarrow (\omega \propto m_{\rm eff}^{-1/2})$
- Constant *R*, Ψ : $(1+R)\ddot{\Theta} + (k^2/3)\Theta = -(1+R)(k^2/3)\Psi$ $\Theta + \Psi = [\Theta(0) + (1+R)\Psi(0)] \cos [k\eta/\sqrt{3}(1+R)] - R\Psi$

Baryons in the CMB

Driving Effects and Matter/Radiation

- Potential perturbation:
- Radiation \rightarrow Potential:

 $k^2 \Psi = -4\pi G a^2 \delta \rho$ generated by radiation inside sound horizon $\delta \rho / \rho$ pressure supported $\delta \rho$ hence Ψ decays with expansion

Driving Effects and Matter/Radiation

- Potential perturbation:
- Radiation \rightarrow Potential:
- Potential \rightarrow Radiation:

 $k^2 \Psi = -4\pi G a^2 \delta \rho$ generated by radiation inside sound horizon $\delta \rho / \rho$ pressure supported $\delta \rho$ hence Ψ decays with expansion Ψ -decay timed to drive oscillation

- $-2\Psi + (1/3)\Psi = -(5/3)\Psi \rightarrow 5x \text{ boost}$
- Feedback stops at matter domination

Hu & Sugiyama (1995)

Driving Effects and Matter/Radiation

- Potential perturbation:
- Radiation \rightarrow Potential:
- Potential \rightarrow Radiation:

 $k^2 \Psi = -4\pi G a^2 \delta \rho$ generated by radiation inside sound horizon $\delta \rho / \rho$ pressure supported $\delta \rho$ hence Ψ decays with expansion Ψ -decay timed to drive oscillation

- $-2\Psi + (1/3)\Psi = -(5/3)\Psi \rightarrow 5x \text{ boost}$
- Feedback stops at matter domination

Hu & Sugiyama (1995)

Matter Density in the CMB

Dissipation / Diffusion Damping

- Imperfections in the coupled fluid \rightarrow mean free path λ_{C} in the baryons
- Random walk over diffusion scale: geometric mean of mfp & horizon $\lambda_D \sim \lambda_C \sqrt{N} \sim \sqrt{\lambda_C} \eta \gg \lambda_C$
- Overtake wavelength: $\lambda_D \sim \lambda$; second order in λ_C / λ
- Viscous damping for *R*<1; heat conduction damping for *R*>1

Dissipation / Diffusion Damping

- Rapid increase at recombination as mfp \uparrow
- Independent of (robust to changes in) perturbation spectrum
- Robust physical scale for angular diameter distance test ($\Omega_{\rm K}, \Omega_{\Lambda}$)

• Fluid + Gravity

 $\rightarrow \text{alternating peaks} \\ \rightarrow \text{photon-baryon ratio} \\ \rightarrow \Omega_{\text{b}}h^2$

• Fluid + Gravity

- \rightarrow alternating peaks
- \rightarrow photon-baryon ratio
- $\rightarrow \Omega_{\rm b} h^2$
- \rightarrow driven oscillations
- \rightarrow matter-radiation ratio
- $\rightarrow \Omega_{\rm m} h^2$

• Fluid + Gravity

- \rightarrow alternating peaks
- \rightarrow photon-baryon ratio
- $\rightarrow \Omega_{\rm b} h^2$
- \rightarrow driven oscillations
- → matter-radiation ratio
- $\rightarrow \Omega_{\rm m} h^2$
- Fluid Rulers
 → sound horizon
 - \rightarrow damping scale

Physical Decomposition & Information

• Fluid + Gravity

- \rightarrow alternating peaks \rightarrow photon-baryon ratio
- \rightarrow photon-baryon ratio
- $\rightarrow \Omega_{\rm b} h^2$
- \rightarrow driven oscillations
- \rightarrow matter-radiation ratio
- $\rightarrow \Omega_{\rm m} h^2$
- Fluid Rulers
 - \rightarrow sound horizon
 - \rightarrow damping scale

• Geometry

$$\label{eq:angular} \begin{split} & \to \text{angular diameter} \\ & \text{distance } f(\Omega_\Lambda, \Omega_{\mathrm{K}}) \\ & + \text{flatness or no } \Omega_\Lambda, \\ & \to \Omega_\Lambda \text{ or } \Omega_{\mathrm{K}} \end{split}$$

Cosmological Parameters in the CMB

Baryon–Photon Ratio

Matter-Radiation Ratio

Curvature

Cosmological Constant

Part II: Complementarity: Achieving Precision through Large Scale Structure

• Acoustic oscillations in the matter power spectrum

- Isolating classical cosmological parameters
- Weak lensing by large scale structure
- Measuring the growth rate of perturbations

Acoustic Peaks in the Matter

- Baryon density & velocity oscillates with CMB
- Baryons decouple at $\tau/R \sim 1$, the end of Compton drag epoch
- Decoupling: $\delta_{b}(drag) \sim V_{b}(drag)$, but not frozen

Hu & Sugiyama (1996)

Acoustic Peaks in the Matter

- Baryon density & velocity oscillates with CMB
- Baryons decouple at $\tau/R \sim 1$, the end of Compton drag epoch
- Decoupling: $\delta_{b}(drag) \sim V_{b}(drag)$, but not frozen
- Continuity: $\delta_{\rm b} = -kV_{\rm b}$
- Velocity Overshoot Dominates: $\delta_b \sim V_b(drag) k\eta \gg \delta_b(drag)$
- Oscillations $\pi/2$ out of phase with CMB
- Infall into potential wells (DC component)

Hu & Sugiyama (1996)

Features in the Power Spectrum

- Features in the linear power spectrum
- Break at sound horizon
- Oscillations at small scales; washed out by nonlinearities

Features in the Power Spectrum

- Features in the linear power spectrum
- Break at sound horizon
- Oscillations at small scales; washed out by nonlinearities

Features in the Power Spectrum

- Features in the linear power spectrum
- Break at sound horizon
- Oscillations at small scales; washed out by nonlinearities

Combining Features in LSS + CMB

Consistency check on thermal history and photon–baryon ratio
 Infer physical scale l_{peak}(CMB) → k_{peak}(LSS) in Mpc⁻¹

Combining Features in LSS + CMB

- Consistency check on thermal history and photon–baryon ratio
- Infer physical scale $l_{\text{peak}}(\text{CMB}) \rightarrow k_{\text{peak}}(\text{LSS})$ in Mpc⁻¹
- Measure in redshift survey $k_{\text{peak}}(\text{LSS})$ in $h \text{ Mpc}^{-1} \rightarrow h$

Combining Features in LSS + CMB

- Consistency check on thermal history and photon–baryon ratio
- Infer physical scale $l_{\text{peak}}(\text{CMB}) \rightarrow k_{\text{peak}}(\text{LSS})$ in Mpc⁻¹
- Measure in redshift survey $k_{\text{peak}}(\text{LSS})$ in $h \text{ Mpc}^{-1} \rightarrow h$
- Robust to low redshift physics (e.g. quintessence, GDM)

MAP +P + SDSS $H_0 \pm 130 \pm 23 \pm 1.2$ $\Omega_m \pm 1.4 \pm 0.25 \pm 0.016$

Classical Cosmology

SDSS

Classical Cosmology

Many opportunities for consistency checks! (e.g. high-*z* SNIa)

Classical Cosmology

Eisenstein, Hu, Tegmark (1998)

Gravitational Lensing by LSS

- Shearing of galaxy images reliably detected in clusters
- Main systematic effects are instrumental rather than astrophysical

Cluster (Strong) Lensing: 0024+1654

Colley, Turner, & Tyson (1996)

Statistics of Weak Lensing by LSS

Efficient PM simulations to build statistics
 Tiling of hundreds of independent simulations

Convergence

 $6^{\circ} \times 6^{\circ}$ FOV; 2' Res.; 245–75 *h*⁻¹Mpc box; 480–145 *h*⁻¹kpc mesh; 2–70 10⁹ M_c

- Convergence power spectrum
- Sub-degree scale power from non-linear regime (*l* ≥100)

- Convergence power spectrum
- Sub-degree scale power from non-linear regime (*l* ≥100)
- Mean power matches density scaling prediction (PD96)
- Sample variance near Gaussian until *l*~1000

- Convergence power spectrum
- Sub-degree scale power from non-linear regime (*l* ≥100)
- Mean power matches density scaling prediction (PD96)
- Sample variance near Gaussian until *l*~1000
- Shot noise from intrinsic ellipticities takes over for *l* ≥1000 (γ_{rms}=0.4; 2×10⁵deg⁻¹)
- Gaussian approximation reasonable for estimation purposes

White & Hu (1999)

- Potentially as precise as the CMB
- Systematic effects are under control at the sub% level in shear
- The Good News: Depends on most (8) cosmological parameters

Weak Lensing:

Power Spectrum & Cosmological Parameters

- Potentially as precise as the CMB
- Systematic effects are under control at the sub% level in shear
- The Good News: Depends on most (8) cosmological parameters
- The Bad News: Depends on most (8) cosmological parameters Blandford et al. (1991); Miralda-Escude (1991); Kaiser (1992)

Degeneracies!

• Solutions:

Large sky coverage Tomography on source distribution Combination with CMB measurements Nongaussianity

- Potentially as precise as the CMB
- Systematic effects are under control at the sub% level in shear
- The Good News: Depends on most (8) cosmological parameters
- The Bad News: Depends on most (8) cosmological parameters

Degeneracies!

• Solutions:

Large sky coverage Tomography on source distribution Combination with CMB measurements Nongaussianity

- Large sky coverage
- Comparable precision to CMB per area of sky

11D CDM Space

	WL $\sqrt{f_{sky}}$	MAP(T)	Planck(T+P)
$\sigma(\Omega_{\rm m}h^2)$	0.024	0.029	0.0027
$\sigma(\Omega_{\rm b}h^2)$	0.0092	0.0029	0.0002
$\sigma(m_{\rm v})$	0.29	0.77	0.25
$\sigma(\Omega_{\Lambda})$	0.079	1.0	0.11
$\sigma(\Omega_K)$	0.096	0.29	0.030
$\sigma(n_{\rm S})$	0.066	0.1	0.009
$\sigma(\ln A)$	0.28	1.21	0.045
$\sigma(z_{\rm S})$	0.047	(1)	(1)
$\sigma(\tau)$	—	0.63	0.004
$\sigma(T/S)$	_	0.45	0.012
$\sigma(Y_p)$	(0.02)	(0.02)	0.01

Hu & Tegmark (1999)

- Divide sample by photometric redshifts
- Cross correlate samples

• Order of magnitude increase in precision, e.g. Ω_{Λ}

Hu (1999)

- Combine with CMB
- Degeneracy breaking even with 1° FOV (acheivable today)
- Order of magnitude gains for > 10° FOV
- Opportunity to probe the detailed nature of dark energy

Weak Lensing: Skewness

- Skewness of the convergence
 Sensitive to Ω_m, Ω_G (Bernardeau *et al.* 1997, Hui 1999; Jain, Seljak & White 1999)
 But depends on: degree of non-linearity shape of power spectrum
 Hierarchical scaling ansatz
- only applies on deeplynonlinear, shot noise limited scales (<1')
- Severely limited by sample variance (>1')

White & Hu (1999)

Part III: Determining the Properties of the Dark Sector

- Inconsistent precision measures?
- Generalized dark matter
- Examples:

massive neutrinos, scalar fields, decaying dark matter, neutrino background radiation

Inconsistent Precision Measures ?

- Expect precision results from CMB, galaxy surveys, SNIa, weak lensing...
- May turn out inconsistent with even the large adiabatic CDM parameter space (11–15 parameters)

Inconsistent Precision Measures ?

- Expect precision results from CMB, galaxy surveys, SNIa, weak lensing...
- May turn out inconsistent with even the large adiabatic CDM parameter space (11–15 parameters)

What If

• CMB shows sub-degree scale structure, but not necessarily the peaks of adiabatic CDM

- Nature of the initial fluctuations isocurvature vs. adiabatic inflation vs. ordinary causal mechanisms
- Clustering properties of matter scale & time dependent bias gravity on large scales dark matter properties

Beyond Cold Dark Matter

- Parameter estimation and likelihood analysis is only as good as the model space considered
- Even if we do live in CDM space one should observationally prove dark matter is CDM and

missing energy is Λ or scalar field quintessence

 Need to parameterize the possibilities continuously from CDM to more exotic possibilities

Generalized Dark Matter

 An extention of X-matter (Chiba, Sugiyama & Nakamura 1997) based on gauge invariant variables (Kodama & Sasaki 1984)

Generalized Dark Matter

- Arbitrary Stress–Energy Tensor Τ_{μν}
- Local Lorentz Invariance \rightarrow Symmetric T_{µv}

16 Components10 Components

Generalized Dark Matter

- Arbitrary Stress–Energy Tensor T_{uv}
- Local Lorentz Invariance \rightarrow Symmetric T_{uv}
- Energy–Momentum Conservation 4 Constraints 1 Pressure

16 Components

10 Components

- 5 Anisotropic stresses

Generalized Dark Matter

- Arbitrary Stress–Energy Tensor T_{μν}
- Local Lorentz Invariance \rightarrow Symmetric T_{uv}
- Energy–Momentum Conservation 4 Constraints
- Linear Perturbations

scalar, vector, tensor

- 2 vorticities2 gravity wave pol.
- Homogeneity & Isotropy + Gravitational Instability

16 Components

10 Components

- 1 Pressure
- 5 Anisotropic stresses
 - Pressure (scalar)
- Scalar anisotropic stress
- 2 Vector anisotropic stress
- 2 Tensor anisotropic stress
- 1 Background pressure
- 1 Pressure fluctuation
- 1 Scalar anisotropic stress fluctuation
Generalized Dark Matter

- Arbitrary Stress–Energy Tensor T_{μν}
- Local Lorentz Invariance \rightarrow Symmetric T_{uv}
- Energy–Momentum Conservation 4 Constraints
- Linear Perturbations

scalar, vector, tensor

- 2 vorticities2 gravity wave pol.
- Homogeneity & Isotropy + Gravitational Instability
- Model as Equations of State
- Gauge Invariance $w = p/\rho$

 $c_{eff}^{2} = (\delta p / \delta \rho)_{comov}$ $c_{vis}^{2} = (viscosity coefficient)$

Hu (1998)

16 Components

10 Components

- 1 Pressure
- 5 Anisotropic stresses
 - Pressure (scalar)
- Scalar anisotropic stress
- 2 Vector anisotropic stress
- 2 Tensor anisotropic stress
- 1 Background pressure
- 1 Pressure fluctuation
- 1 Scalar anisotropic stress fluctuation
- 1 Equation of State
- Sound Speed
- 1 Anisotropic Stress

Dark Components

	equation of state W_{σ}	sound speed C _{eff} 2	viscosity $C_{\rm vis}^2$
Prototypes:			
 Cold dark matter (WIMPs) 	0	0	0
• Hot dark matter (light neutrinos)		1/3→0	
 Cosmological constant (vacuum energy) 	1	arbitrary	arbitrary

Dark Components

	equation of state W_{g}	sound speed C_{eff}^2	viscosity $c_{\rm vis}^2$
Prototypes:			
 Cold dark matter (WIMPs) 	0	0	0
 Hot dark matter (light neutrinos) 		1/3→0	
 Cosmological constant (vacuum energy) 	-1	arbitrary	arbitrary
Exotica:			
• Quintessence (slowly-rolling scalar field)	variable	1	0

1/3

 $1/3 \rightarrow 0 \rightarrow 1/3$

1/3

 $0 \rightarrow 1/3$

- Decaying dark matter (massive neutrinos)
- Radiation backgrounds (rapidly-rolling scalar field, NBR)

Exotic Dark Matter: Examples

- Two examples
 - (1) Dark Energy (accelerating component)
 - (2) Relativistic Dark Matter
 - (a) alternate model for the seeds of fluctuations
 - (b) neutrino background radiation (number, anisotropies?)

Determining the Accelerating Component

• Is a cosmological constant responsible for the acceleration?

 $\sigma(w_g)=0.13$ (MAP+SDSS) $\sigma(w_g)=0.13$ (MAP+SN Ia) $\sigma(w_g)=0.03$ (Planck+SDSS) MAP $\sigma(w_g)=0.03$ (Planck+SN Ia) \mathbf{O} (P) • If not $(-1 < w_g < 0)$, is a scalar field responsible? sound speed constrained -0.5 **SNI**a if $w_{g} > -1/2$ MAP - SDSS onsistency 0.8 MAP 0.20.40.6 1.0 + SNIa

Hu, Eisenstein, Tegmark & White (1998)

Relativistic Dark Matter: Model

• Defining Elements:

Additional species of dark matter: relativistic ideal fluid ρ_y Scale-invariant isocurvature fluctuations

 $\delta \rho_y = -(\delta \rho_\gamma + \delta \rho_v + \delta \rho_c)$; $k^3 P_y(k) = \text{const.}$

Adiabatic relation in the usual components: $\delta_{\gamma} = \delta_{v} = 4\delta_{c}/3$

• Phenomenological Consequences: Scale-invariant series of Acoustic Peaks Correct CMB/LSS power $(\Delta T/T = -\Phi/3)$

 Early–Universe Pedigree: Scalar field rapidly rolling in quartic potential Gravitationally produced during inflation

Hu & Peebles (1999)

Relativistic Dark Matter: Consequences

 Differs from ACDM by ~10% to *l*=200

Approximate χ^2/ν			
Model	All	А	В
ΛCDM	2.5	1.2	1.4

• Peak heights opposite to ΛCDM for $\Omega_b h^2$ for $\Omega_m h^2$

• Large scale structure sensitive to rel. dark matter dynamics: $c_{\text{vis}}^2 = 0 \text{ vs } 1/3$

Hu & Peebles (1999)

Detecting the Neutrino Background Radiation

- Neutrino number N_v or temperature T_v alters the matter-radiation ratio
- Degenerate with matter density $\Omega_{\rm m}h^2$
- Break degeneracy with NBR anisotropies

Anisotropies in the Neutrino Background Radiation

- Neutrino quadrupole anisotropies alter Ψ and drive acoustic oscillations
- Anisotropies well modeled by GDM viscosity $c_{vis}^2 = 1/3$ but largely degenerate
- Detectability: 1σ, MAP (pol); 3.5σ, MAP+SDSS; 7.2σ, Planck (pol); 8.7σ, Planck+SDSS

• Upcoming CMB measurements should establish a secure cosmological framework at high redshifts

- Upcoming CMB measurements should establish a secure cosmological framework at high redshifts
- If acoustic structures are found at sub-degree scales, we can determine photon-baryon ratio $\Omega_b h^2$ matter-radiation ratio $\Omega_m h^2$ angular diameter distance Ω_Λ or Ω_K even if the adiabatic CDM model is incorrect

• Upcoming CMB measurements should establish a secure cosmological framework at high redshifts

• If acoustic structures are found at sub-degree scales, we can determine photon-baryon ratio $\Omega_b h^2$ matter-radiation ratio $\Omega_m h^2$ angular diameter distance Ω_Λ or Ω_K even if the adiabatic CDM model is incorrect

 Combine with LSS (z-surveys, lensing), distance measures... to construct precision tests and/or extract subtle properties of the dark sector

(neutino mass, trace curvature/ Λ)
$(\Lambda \text{ vs. quintessence})$
(quintessence vs. GDM)
(neutrino number and anisotropies)

• Upcoming CMB measurements should establish a secure cosmological framework at high redshifts

• If acoustic structures are found at sub-degree scales, we can determine photon-baryon ratio $\Omega_b h^2$ matter-radiation ratio $\Omega_m h^2$ angular diameter distance Ω_Λ or Ω_K even if the adiabatic CDM model is incorrect

Combine with LSS (z-surveys, lensing), distance measures... to construct precision tests and/or extract subtle properties of the dark sector (neutino mass, trace curvature/Λ)

$(\Lambda \text{ vs. quintessence})$
(quintessence vs. GDM)
(neutrino number and anisotropies)

• If acoustic structures are not found at sub-degree scales, we need to to reexamine basic assumptions and use all diagnostics to reconstruct the cosmological model, e.g CMB polarization

Index

Part I: CMB/Framework

- Current CMB Data
- Thermal History
- Angular Diameter Distance
- Integrated Sachs–Wolfe Effect
- Sachs–Wolfe Effect
- Acoustic Oscillations
- Harmonic Peaks
- Projection
- Baryon Drag
- Driving Effects
- Diffusion Damping
- Doppler Effect
- Physical Decomposition

Part II: LSS/Precision

- Baryon Oscillations
- Baryon Bumps
- Hubble Constant
- Cosmological Constant
- SDSS improvements
- Weak Lensing / Parameters
- Part III: Dark Matter/Beyond–CDM
 - Inconsistent Measures
 - Beyond CDM
 - GDM
 - Neutrino mass / Acceleration
 - Relativistic GDM
 - Neutrino Background Rad.
 - Beyond GDM Outtakes