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ABSTRACT

By decomposing the damping tail of CMB anisotropies into a series of transfer functions

representing individual physical e�ects, we provide ingredients that will aid in the reconstruction

of the cosmological model from small-scale CMB anisotropy data. We accurately calibrate the

model-independent e�ects of di�usion and reionization damping which provide potentially the

most robust information on the background cosmology. Removing these e�ects, we uncover

model-dependent processes such as the acoustic peak modulation and gravitational enhancement

that can help distinguish between alternate models of structure formation and provide windows

into the evolution of fluctuations at various stages in their growth.
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1. Introduction

Much e�ort is being expended to measure the angular power spectrum of the cosmic microwave

background (CMB) anisotropy on increasingly smaller angular scales. For many types of models for structure

formation, the spectrum can be predicted to a precision of about 1% (Hu et al. 1995), raising the hope that the

cosmological parameters that are the input to these calculations can be extracted to comparable precision

(see e.g. Jungman et al. 1996). The \inverse problem" of reconstructing the model given a spectrum is

less well understood than the \forward problem" of predicting it given the model. For this purpose, it

is important to assess the generation of anisotropies in a manner that is not tied to any given model for

structure formation. From the theory of anisotropy formation, we know that CMB fluctuations su�ered

causal processing and damping of the primordial signal. In this paper, we numerically calibrate such e�ects,

extending and improving upon prior work (Hu & Sugiyama 1995ab, 1996, hereafter HSa, HSb, HSc and Hu

& White 1996b).

A particularly fruitful way to visualize the CMB spectrum, and one that provides a framework for the

inverse problem, is as a product of transfer functions representing individual physical e�ects. The spectrum

is then constructed out of physical elements rather than a model-dependent parameterization. Conceptually,
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the evolution of CMB anisotropies processes primordial metric or gravitational potential perturbations into

features observable in the spectrum today (see e.g. Bond 1996, Hu & White 1996b). Since the evolution

obeys linear perturbation theory, its e�ects are described by a series of transfer functions that multiply the

underlying perturbations. The form of these functions depends on the cosmological model, not only for the

background expansion and thermal history (see e.g. Bond et al. 1994, Seljak 1994, Hu, Sugiyama & Silk

1996) but also for structure formation (see e.g. Crittenden & Turok 1995, Magueijo et al. 1996, Durrer et

al. 1996, Hu, Spergel, & White 1996). By decomposing the evolution into functions representing separate

physical e�ects, we can isolate portions of the anisotropy spectrum that are the most sensitive to particular

aspects of the cosmological model.

In particular, processes that damp CMB anisotropies, photon di�usion (Silk 1968) and rescattering

(Efstathiou & Bond 1987), depend mainly on the background parameters and little on the perturbations

that form structure in the universe. In x2, we isolate these e�ects in a numerical treatment. From this

damping calibration, we produce convenient �tting formulae that accurately describe the behavior of the

di�usion and reionization damping transfer functions, or envelopes, directly in anisotropy multipole space.

In x3, we illustrate the reconstruction process by testing it with known models within the cold dark matter

(CDM) scenario. By removing the model-independent e�ects of damping, one uncovers important model-

dependent e�ects such as the baryon-drag modulation of the peaks (HSa), the potential envelope that

describes gravitational driving of acoustic oscillations (HSc), and the regeneration of anisotropies during

reionization (Sunyaev & Zel’dovich 1970, Kaiser 1984).

In the context of currently popular models, recovery of these signatures will help distinguish between such

possibilities as an inflationary or cosmological defect origin of fluctuations (Crittenden & Turok 1995, Durrer

et al. 1996, Hu & White 1996b). The e�ects of damping are also intrinsically interesting because they provide

the most model-independent probes of the background cosmology. We also consider how di�usion damping

can be used to constrain the curvature of the universe and reionization damping to determine the redshift and

extent of reionization in the universe. In this way, the study of e�ects in the damping tail of CMB anisotropies

presented here will aid in the future reconstruction of the cosmological model from the anisotropy data.

2. Damping Calculation

Damping processes which a�ect CMB anisotropies provide the most model-independent information

available in the spectrum and allow constraints on cosmological parameters such as the curvature and the

thermal history of the universe. Furthermore, these universal e�ects obscure the model-dependent signatures

that are useful to determine the mechanism for structure formation in the universe and the ultimate source

of density perturbations.

For both these reasons, an accurate calibration of damping e�ects is desirable. In this section, we begin

with the formalism necessary to describe them (x2.1) and simple approximations to help understand their

nature (x2.2). We then turn to numerical calibration of these e�ects (x2.3). Finally, we give convenient

�tting formulae to their e�ects on the anisotropy power spectrum that encapsulate these results (x2.4).
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2.1. Boltzmann Formalism

In this section, we provide the formalism for the evolution of CMB anisotropies that underly the

calculations which follow. It may be skimmed upon �rst reading.

The anisotropy in the CMB is described by small perturbations of the photon distribution function

around a homogeneous and isotropic black-body. The Boltzmann equation describes the evolution of the

distribution function f , through Compton scattering with electrons df=d� (�;x(�);p(�)) = C[f ], where

the collision term is written schematically as C[f ]. Here � is the conformal time and p the photon

momentum. In the absence of spectral distortions, the magnitude of the momentum can be integrated over

leaving only its directional depenence γ and the e�ect of gravitational redshifts on the photon temperature

perturbation �. Due to azimuthal symmetry and the decoupling of modes in linear theory, it is convenient

to decompose the fluctuation in a Fourier or normal mode k into angular moments, e.g. in flat space

�(�;k; γ) =
P
‘(−i)

‘�‘P‘(k � γ) with an appropriate generalization to curved spaces (Wilson 1983, White

& Scott 1996). Here γi are the direction cosines of the photon momenta. The Boltzmann equation then

becomes an in�nite hierarchy of coupled ordinary di�erential equations (see e.g. Ma & Bertschinger 1995)
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where �‘ = [1− (‘2 − 1)K=k2]1=2 modi�es the angular hierarchy for geodesic deviation in spaces of constant

comoving curvature K = −H2
0 (1 − Ω0 − Ω�) with a Hubble constant of H0 = 100h km s−1 Mpc−1. The

metric perturbations are represented by � the fluctuation of the spatial curvature in Newtonian gauge and

Ψ the Newtonian potential. The collision terms from C[f ] are proportional to _� = ne�Ta the di�erential

optical depth to Compton scattering, where ne is the free electron density and �T is the Thomson cross

section.

Scattering by electrons with velocity vb generates a Doppler e�ect on the photons. Scattering of

anisotropic radiation creates a polarization, described by the temperature perturbation in the Stokes

parameter Q, and governed by a separate hierarchy (Bond & Efstathiou 1984),
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To complete these equations, we need the baryon Euler equation, which determines the evolution of the
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baryon velocity,

_vb = −
_a

a
vb + kΨ + _�(�1 − vb)=R: (3)

Finally, the observable anisotropy spectrum follows by integrating over the k-modes,

2‘+ 1

4�
C‘ =

1

2�2

Z
dk

k

k3j�‘(�0; k)j2

2‘+ 1
: (4)

The interpretation of these equations is quite straightforward. The metric fluctuations feed power into

hierarchy through the gravitational redshift e�ects of density dilution ( _� in ‘ = 0) and potential infall (kΨ

in ‘ = 1). If the optical depth across a wavelength _�=k � 1, this power flows to higher ‘ much like a wave

pulse flows along a string, being concentrated in mode ‘ when k� � ‘. The critical epoch for this process

is horizon crossing k� � 1 after which ‘ �> 1 modes can be populated. When the free electron density

is not negligible then the Compton scattering terms ( _� terms) become important. Modes with ‘ � 2 are

exponentially damped, sealing o� the hierarchy and providing a barrier o� which the wave pulse reflects.

The monopole term is not damped at all and the dipole term is driven toward vb so that the distribution is

isotropic in the electron rest frame.

Thus before recombination, _�=k� 1, and the photon distribution possesses only the ‘ = 0 (density) and

‘ = 1 (velocity) modes, which represent a fluid that oscillates acoustically due to photon pressure (see x2.2).

Only for very high k will power leak into the higher ‘ modes, where it will be exponentially damped. This

is responsible for the damping tail at small angular scales. An increase in _� at late times due to reionization

also possesses a characteristic signature. For scales inside the horizon at reionization, the power has already

propagated to high ‘ where it su�ers exponential damping; for larger scales no such damping occurs. Thus

reionization damps small-scale anisotropies while preserving large-scale anisotropies. We shall discuss these

behaviors more quantitatively in the next section.

2.2. Analytic Estimates

Before turning to the numerical calibration of e�ects in the damping tail, it is useful to describe them

analytically to see how they enter in and a�ect the Boltzmann evolution given above. The two main damping

processes at work in the CMB are photon di�usion before recombination and rescattering during an epoch

of late reionization.

2.2.1. Di�usion Damping before Recombination

For wavelengths much larger than the mean free path to Compton scattering (k= _� � 1), the Boltzmann

hierarchy of Eq. (1) can be described by the relativistic fluid dynamics of a combined photon-baryon fluid.

Rapid scattering insures that any anisotropy of the photons in the electron rest frame is vanishingly small

so that the hierarchy can be truncated at ‘ = 1 with �1 � vb. Even in this tightly-coupled regime, the

random walk of the photons through the electrons eventually mixes photons across a wavelength of the

fluctuation (Silk 1968). Thus, we expect temperature perturbations to be destroyed by this di�usive process

before the mean free path grows long enough to invalidate the central approximation. This statement is

only approximately true during the recombination epoch when the mean free path grows so rapidly that it

approaches the horizon scale and coincides with the di�usion scale. For this reason, we calibrate the process

numerically in x2.3.
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Formally, we can approximate these e�ects by expanding the Boltzmann temperature and polarization

equations (1) and (2) in powers of k= _� (Peebles & Yu 1970). To lowest order, one obtains the oscillator

equation (HSa)
d

d�
(1 +R) _�0 +

k2

3
�0 = −

k2

3
(1 +R)Ψ−

d

d�
(1 +R) _�: (5)

Gravity drives the oscillator by potential infall into Ψ and density dilution as the curvature fluctuation �

changes. The baryon inertia in the fluid is described by the relative baryon-photon momentum density ratio

R and increases the e�ective mass of the oscillator. Together these e�ects imply oscillations at the sound

speed

cs =
1p

3(1 +R)
; (6)

around a zero point displaced by gravity to (1 +R)Ψ for slowly-varying � (HSa, HSc, Hu & White 1996b).

To treat the e�ects of di�usion, one must include higher order terms. An examination of the ‘ = 1

photon Euler equation (1) shows that there are two di�usive e�ects: viscous damping from the quadrupole �2

and heat conduction from the relative photon-baryon velocity �1−vb (Weinberg 1972). From the expansion

of the polarization hierarchy, Q2 = Q0 = 1
4
�2 and the quadrupole evolution equation (1) with �1 � �3, we

obtain the tight-coupling prediction for the quadrupole,

�2 = (k= _�)
8

9
�1: (7)

Heat conduction may be described by expanding the baryon Euler equation (3) to second order. Let us

assume a solution of the form �1 / exp i
R
!d� and ignore variations on the expansion time scale _a=a in

comparison with those at the oscillation frequency !. We return to consider this approximation in x3.1. The

heat conduction equation becomes

�1 − vb = _�−1R[i!�1 − kΨ] + !2 _�−2R2�1; (8)

allowing us to rewrite the photon Euler equation (1) as

i!(1 +R)�1 = k[�0 + (1 +R)Ψ]− !2 _�−1R2�1 −
16

45
k2 _�−1�1: (9)

The presence of (1 +R)Ψ again reflects the gravitational zero-point displacement of the oscillator. It is thus

appropriate to try a solution of the form �0 + (1 + R)Ψ / exp i
R
!d�. With this assumption, one obtains

the dispersion relation for acoustic oscillations

! = �kcs + i
1

6
k2 _�−1

�
R2

(1 +R)2
+

16

15

1

1 +R

�
: (10)

From the form of the solution exp i
R
!d�, this gives the damping scale kD (Kaiser 1983)

k−2
D =

1

6

Z
d�

1

_�

R2 + 16(1 +R)=15

(1 + R)2
(11)

by which acoustic oscillations are damped exponentially as exp[−(k=kD)2]. Notice that the di�usion length

is roughly the geometric mean of the mean free path _�−1 and horizon length � as one would expect of a

random walk kD �
p

_�=�.
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2.2.2. Di�usion Damping during Recombination

As the universe recombines, the mean free path and hence the di�usion length of the photons increases.

As long as the di�usion length is much greater than the mean free path, damping can be described by the

tight-coupling approximation of the previous section. This is because the mean free path only surpasses

the wavelength after di�usion has already destroyed the perturbations, resulting in no contributions outside

of the tight-coupling regime. The approximation thus remains approximately true until quite near the end

of recombination when the mean free path becomes comparable to the horizon and so the di�usion length

(HSa, HSc). This fact explains the reasonable level of agreement between the numerical results we present

in x2.3 and the tight-coupling approximation.

The remaining subtlety is that due to the �nite duration of recombination, last scattering takes place

at a slightly di�erent epoch, with a slightly di�erent di�usion length, for each photon. The net e�ect has

been approximated (HSa) by weighting the damping by the visibility function _�e−� , the probability of last

scattering within d� of �,

D(k) =

Z �0

0

d� ( _�e−� ) expf−[k=kD(�)]
2g: (12)

This \smearing" of the last scattering surface, and the evolution of kD tend to soften the damping, meaning

it is not quite the simple exponential one would naively predict. It is however often convenient to de�ne the

last scattering epoch as �(��) = 1.

Notice that the net result depends only on the cosmological parameters of the background. The e�ect

of Ω0h
2 is simple. Increasing Ω0h

2 decreases the horizon at last scattering thus monotonically decreasing

the di�usion length. The dependence on Ωbh
2 is more complicated. Increasing Ωbh

2

1. decreases the mean free path

2. delays recombination

3. shortens its duration

4. speeds di�usion scale growth at recombination

The �rst e�ect tends to decrease the damping length and dominates for low Ωbh
2. The second e�ect extends

the amount of time the photons can di�use and hence increases the damping length; it dominates at high

Ωbh
2. In the limit of instantaneous recombination, the damping function D(k) attains its sharpest form of

expf−[k=kD(��)]
2g. For the realistic case where recombination takes place over an extended period D(k)

becomes less steep. Both the width of the visibility function and the evolution of kD through it a�ect this

drop. Again the baryon dependence of these two e�ects are in opposition leading to a steepening of the slope

at both the high and low Ωbh
2 limits.

2.2.3. Free Streaming

After recombination photons enter the free-streaming regime. The observer views a temperature

fluctuation at wavenumber k on the last scattering surface as an anisotropy at multipole moment ‘ �

fkr�(��), where the constant of proportionality f � 0:98 from numerical �tting (see x2.3) and the comoving

angular-size distance to the epoch � is

r�(�) = jKj−1=2 sinh[jKj1=2(�0 − �)]; (13)
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for K < 0. For positively curved universes, replace sinh with sin. The fact that angular size depends

sensitively on the curvature allows its precise measurement from acoustic features (Doroshkevich, Zel’dovich

& Sunyaev 1978, Sugiyama & Gouda 1992, Kamionkowski, Spergel & Sugiyama 1994, Hu & White 1996b).

These e�ects are represented formally in the Boltzmann equation (1) by the transfer of power down the

‘-hierarchy with distance � − �� from the last scattering event and the geodesic deviation factors �‘.

Note that the latter becomes important when the distance is long enough such that the subtended angle

� � ‘−1 =
p
K=k, i.e. smaller than that of a wavelength at the curvature distance.

The angular-size distance relation may be used to map k-space inhomogeneities onto ‘-space anisotropies.

For example, the damping function in multipole space is

D‘ � D(k = ‘=fr�(��)): (14)

There are instances when this mapping fails to accurately describe the streaming process. The projection of

k-mode inhomogeneities onto ‘-mode anisotropies depends on the viewing angle and is thus not one-to-one.

In particular, it can take power to larger angles for wavelengths that happen to be viewed with wavevector

parallel to the line of sight. In this case, the angular separation between the intersections of the flat wavefront

with the spherical shell at �� is much larger than (kr�)
−1. Sharp features in k-space will thus be blurred in

‘-space and excess power at small physical scales can be aliased into large angular scales. Formally, this is

reflected by the decomposition of the k-mode on the sphere and the fact that the solution to the sourceless

Boltzmann or Liouville equation is just its radial component, a spherical Bessel function in flat space (see

e.g. Bond & Efstathiou 1987). For the cases we consider, where the k-space features are broad with no strong

deviations from scale invariance, the simple approximation of Eq. (13) su�ces.

2.2.4. Reionization Damping

From the null detection of the Gunn-Peterson e�ect (Gunn & Peterson 1965), we know that the universe

was reionized at least as early as redshift z � 5. Reionization recouples the photons to the electron-baryon

plasma. The same process that is responsible for di�usion damping acts to destroy anisotropies during this

epoch as well.

During the free-streaming epoch, the e�ective \di�usion length" is simply the horizon scale. Photon

trajectories from di�erent temperature regions on the last scattering surface intersect forming the anisotropy

that is represented by the ‘ � 2 photon modes. When the universe reionizes, the photons which rescatter

lose their anisotropy. Note that the isotropic temperature fluctuation that exists above the horizon, where

trajectories have not yet crossed, does not damp by rescattering. This is reflected in the lack of a _� coupling

term in the ‘ = 0 mode of the Boltzmann equation (1). The ‘ = 1 mode damps in such a way as to drive

�1 toward vb so that the distribution is isotropic in the electron rest frame.

Even in a reionized universe, photons eventually last scatter as the electron density drops due to the

expansion and the mean free path to scattering exceeds the horizon length. Thus only the fraction e−� of the

photons that did not rescatter contribute to the anisotropy below the horizon at last scattering �r. Above

this scale all photons contribute. Thus the rough form of the reionization damping function becomes

R‘ =

�
1 ‘� r�=�r,

e−� ‘� r�=�r,
(15)

where again the e�ect of the �nite duration of last scattering on �r can be accounted for by the visibility

function (see x2.4).
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Fig. 1.| Di�usion damping calibration. In the absence of both di�usion damping and gravitational sources,

the rms temperature fluctuation at recombination (short-dashed line) exhibits simple acoustic oscillations.

These are mapped onto anisotropies on the sky in a near one to one fashion (solid line). The inclusion of

di�usion terms in the Boltzmann equation allows for a simple numerical calibration of its e�ects.

2.3. Numerical Calibration

The expressions of the previous section are only approximations, though useful ones. We now turn to

numerical calibration by solving the Boltzmann equations of x2.1.

Extracting the damping e�ects from realistic models of structure formation is complicated due to the

manner in which gravity generates perturbations through the metric fluctuations � and Ψ in the model.

Since the e�ects discussed above are essentially model-independent, we choose instead to calculate a toy-

model in which no gravitational e�ects, beyond the background expansion, are included. Speci�cally, we

solve the Boltzmann equations for the photons and baryons with � = 0 = Ψ. This includes neglecting the

self-gravity of the photon-baryon fluid.

Before recombination, we are left with a pure acoustic oscillation whose behavior is completely

determined by the initial conditions. For simplicity, we take them to be adiabatic and scale invariant.

The evolution equations of x2.1 are then solved in the usual way (see e.g. Bond & Efstathiou 1984, Ma &

Bertschinger 1995, Seljak & Zaldarriaga 1996) through recombination to the present. This properly includes

the e�ects of di�usion through the last scattering surface and the projection of the fluctuations at last

scattering onto the sky today. We show an example in Fig. 1 (long-dashed line).

To extract the di�usion damping behavior, we compare this to a calculation of the same model with

di�usion damping \turned o�". Speci�cally, we solve the tightly-coupled photon-baryon equation (5) up to

the point where the optical depth to the present, (ignoring reionization) becomes unity. We then free-stream

the photons to the present by solution of the sourceless Boltzmann equation (Ψ = � = _� = 0 in Eqs. 1 and 2)

to determine the anisotropy (see Fig. 1, solid line). The ratio of the angular power spectrum of the damped

to undamped calculation gives the form of the damping function D2
‘ (see also Fig. 7). This also serves to
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Fig. 2.| Reionization damping calibration. By removing the relative Doppler e�ect from a reionized

Boltzmann calculation and comparing the result to the same model (here standard CDM Ω0 = 1, h = 0:5,

Ωbh
2 = 0:0125) with no reionization, the e�ects of rescattering damping are isolated. The reionization

damping envelope is �t by two parameters, the optical depth during reionization and the horizon scale at

last scattering (see Eq. 24).

calibrate the angular-size distance relation of Eq. (13) through comparison with the mean squared fluctuations

in Fourier space j�0j2 + j�1j2=3 at optical depth unity (see Fig. 1, short-dashed line). By aligning the peaks,

one extracts the proportionality factor f � 0:98. As discussed in x2.2 free streaming smears features in the

k-space rms spectrum somewhat which explains the slightly smoother actual anisotropy.

To extract the reionization damping behavior, we compare the no-reionization case to one with some

arbitrary reionization history. In order to isolate damping e�ects from the Doppler e�ect due to the relative

motion of the baryons with respect to the CMB, we set vb = �1 during this epoch. For simplicity, we often

parameterize the reionization as instantaneous at some epoch zr to some constant fractional level of hydrogen

reionization xh though none of our results depend on this simpli�cation. The ratio of the two power spectra

gives R2
‘ . We show examples in Fig. 2 (solid lines).

2.4. Fitting Formulae

It is convenient to �t the numerical calculations of x2.3 for the di�usion damping and reionization

damping envelopes. Aside from providing a compact summary of the results, this exposes the sensitivity of

the spectrum to cosmological parameters which will be useful in x3.



{ 10 {

2.4.1. Di�usion Damping Envelope

Since the e�ect of di�usion damping is determined solely through the Compton mean free path and

horizon scale, it is dependent on very few cosmological parameters. The Compton mean free path of a

photon is governed by the baryon density �b / Ωbh
2. If the present energy density in the radiation is

�xed, then the horizon only depends on the matter content Ω0h
2 before curvature and cosmological constant

contributions become signi�cant. We assume here that the radiation energy density is �xed by the observed

CMB temperature Tγ = 2:728K (Fixsen et al. 1996) and there exist three families of massless neutrinos

with T� = (4=11)1=3Tγ (we ignore the small correction of Dodelson & Turner 1992). Thus aside from the

projection e�ects from r�, which are sensitive to the curvature and cosmological constant, the damping

behavior depends only on Ω0h
2 and Ωbh

2. We have computed D‘ as described in x2.3 for 150 models in the

range 0:02 < Ω0h
2 < 0:75 and 0:005 < Ωbh

2 < 0:75 .

From the tight-coupling expansion, we expect the damping tail to scale as exp[−(‘=‘D)2]. Including

the e�ect of a �nite last scattering surface and the conversion from k to ‘ makes the damping function less

steep. We �nd that through the �rst two decades of damping in power, the function D‘ calculated in the

last section can be approximated as

D‘ = exp[−(‘=‘D)m]: (16)

The quantities kDf = ‘D=r� and m are functions of Ω0h
2 and Ωbh

2 which are power laws at the extreme ends

of parameter space (see Fig. 3). Recall that f � 0:98 is obtained by numerical calibration of the projection

relation (see x2.3). We chose �rst to �t the Ωbh
2 dependence. A simple two-power law �t

‘D=r� = a1(Ωbh
2)0:291[1 + a2(Ωbh

2)1:80]−1=5;

m = a3(Ωbh
2)a4 [1 + (Ωbh

2)1:80]1=5;
(17)

provides a good description of the numerically determined behavior. The coe�cients of this �t are then

functions of Ω0h
2. We �nd that they �t single or double power-laws forms,

a1 = 0:0396(Ω0h
2)−0:248[1 + 13:6(Ω0h

2)0:638];

a2 = 1480(Ω0h
2)−0:0606[1 + 10:2(Ω0h

2)0:553]−1;

a3 = 1:03(Ω0h
2)0:0335;

a4 = −0:0473(Ω0h
2)−0:0639:

(18)

Together these �tting functions work to the percent level for 0:02 < Ω0h
2 < 0:75 and 0:005 < Ωbh

2 < 0:75

and improve upon the approximate results of x2.2 and HSc (Eq. E4).

To complete the description of the damping, we need to express explicitly the conversion of physical

to angular space variables through the angular-size distance r�. The missing ingredient of Eq. (13) is the

comoving distance to the last scattering surface �0 − ��. The horizon scale today can be expressed as an

integral over the Hubble parameter �0 =
R 1

0
(a2H)−1da. For Ω� = 0, this has the exact solutions

�0 =

8>>><>>>:
1

H0(1− Ω0)1=2
ln

�
2− Ω0 + 2(1−Ω0)1=2(1 + aeqΩ0)

Ω0 + 2(1−Ω0)1=2(aeqΩ0)1=2

�
K < 0,

1

H0(Ω0 − 1)1=2

"
tan−1 Ω

1=2
0 (Ω0 − 1)−1=2

2a
1=2
eq (1 + aeq)1=2

− tan−1 2 + 2aeq −Ω0 − 2aeqΩ0

2(1 + aeq)(Ω0 − 1)1=2

#
K > 0,

(19)

while for K = 0, the following form,

�0 = 2(Ω0H
2
0 )−1=2[(1 + aeq)1=2 + a1=2

eq ](1− 0:0841 lnΩ0); (20)
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Fig. 3.| Di�usion scale calibration. Analytic estimates of kD(Ω0h
2;Ωbh

2) based on the tight-coupling

approximation trace the results to reasonable accuracy and explains their general behavior (HSc, Eq. E4).

The �tting function of Eq. (17) tracks the numerical calibration to better than the 1% level.

�ts the integral over the region 0:1 �< Ω0 � 1 and 0:3 �< h to better than 1% accuracy. Here

aeq = 4:17� 10−5(Ω0h
2)−1(Tγ=2:728K)4 (21)

is the scale factor at matter-radiation equality. Finally, the horizon at last scattering where �(��) = 1 takes

the form

�� = 2(Ω0H
2
0 )−1=2[(a� + aeq)1=2 − aeq]; (22)

where (HSc, Eq. E1)

z� � a−1
� − 1 = 1048[1 + 0:00124(Ωbh

2)−0:738][1 + b1(Ω0h
2)b2 ];

b1 = 0:0783(Ωbh
2)−0:238[1 + 39:5(Ωbh

2)0:763]−1;

b2 = 0:560[1 + 21:1(Ωbh
2)1:81]−1;

(23)

is a �t to the redshift of recombination.

2.4.2. Reionization Damping Envelope

Reionization damping depends on two parameters, the total optical depth � and the angular scale

subtended by the horizon at last scattering during the reionization epoch �r � ‘−1
r . The asymptotic values

given in Eq. (15) are highly accurate and thus we need only search for an interpolating function around ‘r.

The following form �ts the behavior in R2
‘ to better than 1% for late reionization

R2
‘ =

1− e−2�

1 + c1x+ c2x2 + c3x3 + c4x4
+ e−2� ; (24)
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with x = ‘=(‘r + 1) and c1 = −0:276, c2 = 0:581, c3 = −0:172, c4 = 0:0312. Even the more extreme case of

early reionization to a low ionization level is described well at the couple of percent level (see Fig. 2). High

precision in the large optical depth limit is unnecessary since secondary anisotropies dominate in this limit.

The parameter ‘r = r�(�r)=�r involves the visibility-weighted horizon at reionization

�r =

R
d� � ( _�e−� )R
d� ( _�e−� )

; (25)

where the optical depth functions can be obtained by noting that

_� � ne�Ta = 2:304� 10−5Mpc−1(1− Yp)Ωbh
2(1 + z)2xh: (26)

Here Yp � 0:23 is the primordial helium mass fraction and recall that xh is the hydrogen ionization fraction

and we assume that helium is not ionized. It is useful to note that for low redshifts zr � 100 and constant

ionization fraction, the optical depth may be integrated analytically to give

� = 4:61� 10−2(1− Yp)xh
Ωbh

Ω2
0

n
2− 3Ω0 + (1 + Ω0zr)

1=2(Ω0zr + 3Ω0 − 2)
o

(27)

when � = 0 and

� = 4:61� 10−2(1− Yp)xh
Ωbh

Ω0

n
[1− Ω0 + Ω0(1 + zr)

3]1=2 − 1
o

(28)

when K = 0. For higher redshifts, the contribution of the radiation to the expansion rate can make a few

percent or greater correction.

3. Cosmological Information

Armed with the calibration of the e�ects of di�usion and reionization damping, we can now examine

the information, both on cosmological parameters and models for structure formation, embedded in the

small-scale anisotropy spectrum. We begin with a discussion of the assumptions that render di�usion and

reionization damping model-independent for most models of structure formation (x3.1). By removing the

e�ects of damping in such models, one uncovers striking signatures that contain essential information on the

nature of fluctuations in the early universe (see also Hu & White 1996b). For illustrative purposes, we often

employ variants of the standard CDM model, scale invariant initial adiabatic fluctuations k3jΨ(0; k)j2 =const.

in an Ω0 = 1, h = 0:5, Ωbh
2 = 0:0125 universe.

Baryon drag, which enhances alternate acoustic peaks (x3.2), can help separate adiabatic from

isocurvature fluctuations, an important step in distinguishing inflationary models from cosmological defect

models (see Hu & White 1996b, Hu, Spergel, & White 1996). It also probes the gravitational potential at

last scattering. The underlying amplitude of the oscillations extracts information on the evolution of the

gravitational potentials at horizon crossing through the potential envelope (x3.3).

The di�usion damping and reionization damping envelopes are themselves interesting because they

provide essentially model-independent information about cosmological parameters, mainly the curvature of

the universe (x3.4) and the epoch and extent of reionization (x3.5). In this section, we systematically treat

these applications of the results from the damping calibration in x2.



{ 13 {

3.1. Model Assumptions

We begin by examining the conditions under which the di�usion damping and reionization damping

envelopes are model-independent to expose general guidelines for their use.

Only acoustic oscillations are damped by di�usion. This leaves untouched e.g. o�sets in the zero point of

the oscillations or anisotropies generated between the last scattering surface and the observer. In the former

case, the −Ψ o�set provided by the potential is not damped because it represents gravitational redshifts

which are picked up by the photons even as they di�use in and out of potential wells. The baryons provide

an inertia to the photon-baryon fluid which further o�sets the oscillation. The Compton drag of the baryons

on the photons increases the photon temperature inside gravitational potential wells by −RΨ leading to a

zero-point shift that is not damped by di�usion for similar reasons. Together the redshift and drag e�ects

explain why in the estimates of x2.2, it is �0 + (1 + R)Ψ which su�ers damping and not �0.

The time evolution of the potentials causes a shift of order Ψ̈=k2 [see Hu & White 1996b, Eq. (25)]. If

R� jΨ̈=k2Ψj, it is negligible in comparison to baryon drag. Generally Ψ varies on the order of an expansion

time such that jΨ̈=k2Ψj = O[(k�)−2]� 1 for scales well inside the horizon at last scattering: k� � 1. Mixed

terms of the order R _Ψ=k also exist but are again generally smaller than the RΨ term. Since the intrinsic

acoustic amplitude is of order the gravitational potential at sound horizon crossing Ψ(k; r−1
s ), the di�usion

damping signature dominates over the undamped term if����Ψ(kD; r
−1
s )

Ψ(kD; ��)

���� �> R (29)

and

k2

����Ψ(kD; r
−1
s )

Ψ̈(kD; ��)

���� �> 1; (30)

which are generally satis�ed by models whose potentials do not grow signi�cantly well within the sound

horizon. Notice that no assumption of coherence in the oscillation is necessary (Magueijo et al. 1996).

In principle, there is also a model-dependent e�ect since in the discussion above we have implicitly

assumed a two-step process: �rst the acoustic oscillations are formed and then they are damped. This is

generally called in the literature a \passive" approximation (Albrecht et al. 1995). If the model possesses a

strongly time-varying potential inside the horizon, the underlying acoustic oscillations could still be forming

as the di�usion length overtakes the wavelength. Usually this is a small e�ect, since most of the damping

occurs at the instant of recombination so that the fluctuations generated during this short time are small.

Finally anisotropies generated between recombination and the present could be larger than the intrinsic

acoustic signal, especially in the damping tail. This could occur due to the linear (Kaiser 1984) and non-linear

(Sunyaev & Zel’dovich 1970, Vishniac 1987) Doppler e�ects in a reionized universe or time variations in the

potential along the line of sight (Sachs & Wolfe 1967, Rees & Sciama 1968, Kaiser & Stebbins 1984). In models

such as cold dark matter (CDM) with a near scale-invariant spectrum of adiabatic initial fluctuations, this is

not a worry. The lack of excessive small scale power in the model makes early reionization and/or small-scale

non-linearities that are responsible for such e�ects unlikely (Ceballos & Barcons 1994, Seljak 1996, Hu &

White 1996a).

These types of considerations also apply to the reionization damping function R‘ calculated in x2.3.

By construction, this function isolates the rescattering damping e�ect during reionization and ignores any

secondary e�ects that may regenerate fluctuations. Again, the Doppler e�ect due to the relative velocity of
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Fig. 4.| Baryon drag and its potential dependence. Baryon inertia in the fluid displaces the zero point of

the temperature oscillations leading to alternating peak heights as a function of scale at last scattering. The

magnitude of the displacement is R�Ψ(��), and by removing it the monotonic variation of heights due to the

potential envelope is uncovered (upper panel). The fractional e�ect is of order R�Ψ(��; k)=Ψ(0; k) and can

be adequately described by the matter transfer function T (k) (lower panel). The model here is CDM with

Ω0 = 1, h = 1 and Ωbh
2 = 0:025.

the electrons with respect to the CMB can regenerate fluctuations signi�cantly if both the peculiar velocities

and the optical depth are large. We examine this e�ect more closely in x3.5.

In summary, the damping function D‘ accurately describes the model-independent damping of acoustic

oscillations and the reionization damping function R‘ does the same for the rescattering damping of primary

anisotropies. In models such as CDM with no excess small scale power and hence relatively late reionization

and small secondary e�ects, their behavior will be clearly manifest in the observable spectrum. In models

where this is not true, it merely describes the behavior of a component of the total anisotropy and other

e�ects must be taken into account to extract the information embedded in the observed anisotropy.

3.2. Uncovering the Baryon Signature

Baryons create a distinct acoustic signature due to the drag e�ect discussed in x3.1. By providing inertia

to the fluid, they enhance compressions over rarefactions inside potential wells. Aside from providing a means

to measure the baryon content, it also distinguishes between between the two phases through the di�erence

in peak amplitudes between successive peaks. In turn this distinction provides one of the most striking and
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robust ways to distinguish adiabatic inflationary fluctuations from their isocurvature counterparts, generated

perhaps by cosmological defects (Hu & White 1996b, Hu, Spergel, & White 1996). Unfortunately damping

and projection e�ects serve to obscure this signal. By deconvolving these e�ects with the results and methods

of x2.3-2.4, one can uncover this important signature.

Let us �rst examine the intrinsic e�ect. In Fig. 4, we show an example from a solution of the tight-

coupling oscillator equation Eq. (5) under the metric fluctuations of an Ω0 = 1, h = 1, Ωbh
2 = 0:025

CDM model. Displayed is the e�ective temperature fluctuation of the peaks (triangles), connected by the

full function to guide the eye. To demonstrate that the alternating height e�ect is due to baryon drag,

we add R�Ψ(��; k) to each peak (squares), where R� = R(��). Notice that this eliminates the alternation,

leaving the peak heights to smoothly vary in a manner described by the \potential envelope" discussed in the

next section. Since the intrinsic amplitude of the oscillations is of order the potential before sound horizon

crossing, the fractional e�ect is of order R�Ψ(��; k)=Ψ(0; k).

Since the e�ect depends on the potential at last scattering Ψ(��; k), it also provides a probe of the

matter fluctuations at that epoch. Under the CDM scenario, the potential does not evolve signi�cantly

between recombination and the present so that the baryon drag e�ect also reflects the matter fluctuations

today. The fractional e�ect becomes R�Ψ(��; k)=Ψ(0; k) � R�Ψ(�0; k)=Ψ(0; k) = R�T (k), where T (k) is the

matter transfer function (Bardeen et al. 1987),

T (q) =
ln(1 + 2:34q)

2:34q
[1 + 3:89q+ (16:1q)2 + (5:46q)3 + (6:71q)4]−1=4; (31)

with q = (k=Mpc−1)(Tγ=2:7K)2(Ω0h
2)−1. In Fig. 4 (lower panel), we show that RT (k) accurately tracks

the e�ect and provides a potential consistency check with large scale structure today. As we shall see in the

next section, the fall of the fractional baryon drag e�ect and the rise of the potential envelope are intimately

related through the matter-radiation equality epoch.

The magnitude of the baryon drag e�ect in the observable anisotropy spectrum is reduced by inclusion

of the dipole term and smoothing by projection, but mainly by di�usion damping. If the baryon content

is low, the intrinsic magnitude of the e�ect is small and di�usion damping may cause the peak heights to

monotonically decrease rather than alternate (see Fig. 5). Given the calibration of the di�usion damping

behavior in x2.3, we can invert this �lter. In Fig. 5, we show that multiplying the spectrum by D−2
‘ uncovers

the alternating peaks even for Ωbh
2 signi�cantly lower than the standard big bang nucleosynthesis prediction.

In practice, removing the damping behavior will require knowledge of Ω0h
2 and Ωbh

2 either from external

measurements or consistency checks (see Hu & White 1996b) as well as measurement of the curvature from

the CMB.

3.3. Determining the Potential Envelope

Gravitational potential perturbations drive acoustic oscillations a�ecting their amplitude and phase. The

e�ect on the phase can be used to uncover information about the origin of fluctuations in an inflationary

epoch or phase transition (HSb, Crittenden & Turok 1995, Hu & White 1996b). Here we treat their e�ects

on the amplitude of the intrinsic oscillations, unobscured by the presence of di�usion damping. This can be

obtained from an observed spectrum by the techniques of x2 and is also useful for constraining the curvature

(see x3.4)

As an example of the driving process, let us consider the case of adiabatic fluctuations. The self-
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Fig. 5.| Uncovering Baryon Drag in a low baryon universe. Di�usion damping obscures the baryon

drag signal especially in a low baryon universe (here Ωbh
2 = 0:075 in an otherwise standard CDM model).

Employing the numerical calibration of the damping tail, we recover the alternations.

gravity of the photon-baryon fluid drives its own oscillations through a feedback mechanism at sound horizon

crossing. Photon pressure prevents gravitational collapse inside the sound horizon leading to a decay in the

self-generated gravitational potential. This decay is timed such that it leaves the oscillator in a highly

compressed state leading to correspondingly large amplitude acoustic oscillations (see Hu & White 1996b

for further description). If the self-gravity of the photons and baryons dominate, the amplitude of the

oscillation is enhanced from gravitational redshifts by −2Ψ which combined with the Sachs-Wolfe e�ect

(Sachs & Wolfe 1967) of 1
3Ψ yields a net result of −5

3Ψ, i.e. the amplitude of the oscillation should be 5 times

the large-angle Sachs-Wolfe plateau. Inclusion of neutrinos and the matter-radiation transition modify this

result to 5(1+ 4
15
f�)−1, where the neutrino density fraction is f� = ��=(�� +�γ) (HSc, Eq. B9). This driving

e�ect only operates if the self-gravity of the photon-baryon fluid dominates at sound horizon crossing. Large

scales cross the sound horizon in the matter-dominated epoch and do not su�er this e�ect. Thus the scale

that crosses the horizon at matter-radiation equality keq marks the transition between the two asymptotic

regimes.

The critical scale keq = (2Ω0H
2
0=aeq)1=2 / Ω0h

2 provides the CMB with sensitivity to the parameter

Ω0h
2. This is similar to the more familiar e�ect of equality on the matter power spectrum [see Eq. (31)] but

note that fluctuations increase rather than decrease upon crossing keq. Fig. 6 shows that the potential

envelope that governs the amplitude is indeed a function of k=keq / k=Ω0h
2. Potentially, this e�ect

can also probe the neutrino mass through its e�ect on keq (see Seljak & Bertschinger 1993, Ma &

Bertschinger 1995, Dodelson, Gates & Stebbins 1995).

The remaining subtlety is that the presence of baryons makes acoustic oscillations decay adiabatically.

Notice that the tight-coupling equation (5) describes an acoustic oscillator with e�ective mass of (1+R). The

adiabatic invariant for such an oscillator is the energy/frequency. This requires that temperature fluctuations

decay as (1 + R)−1=4 and dipole or Doppler contributions to decay as (1 + R)−3=4. The amplitude of the



{ 17 {

Fig. 6.| Potential Envelope. Decay of the potential due to the self gravity of the photon-baryon fluid

drives the oscillator. Comparing two CDM models with di�ering matter to radiation ratios Ω0h
2, we see

that the oscillations are multiplied by an envelope that depends on the equality scale keq / Ω0h
2.

potential envelope thus gains a baryon dependence set by the value of R at recombination (HSc).

The full potential envelope in power can be roughly described by

P‘ = 1 +A exp(−1:4‘eq=‘); (32)

for a scale-invariant spectrum. Here ‘eq = keqr� and the amplitude A is �xed by the asymptotic expression

A = 25(1 +
4

15
f�)−2 (1 +R�)

−1=2 + (1 +R�)
−3=2

2
− 1; (33)

where we have combined the temperature and Doppler e�ects in quadrature. Tilting the primordial spectrum

produces an analogous tilt in P‘. The integrated Sachs-Wolfe e�ect (Sachs & Wolfe 1967) in open and �

models, also gives P‘ large-angle contributions (see also Hu, Sugiyama & Silk 1996).

We show an example in Fig. 7. The upper curves show a calculation with the e�ects of di�usion damping

removed compared with the potential envelope of Eq. (33). Note that the form of the envelope roughly traces

power in the fluctuations. The bottom curves show how di�usion damping obscures the signature and tests

the damping calibration of x2.3 in a realistic context. By multiplying the undamped calculation by D2
‘ one

regains, to reasonable accuracy, the result of a full CDM calculation encorporating di�usion damping.

Thus the obscuring e�ects of di�usion damping can be removed to extract the potential envelope of

acoustic oscillations. This provides information on the evolution of the metric fluctuations as they cross the

sound horizon which may help unravel information about the nature of such fluctuations in the general case

and the scale of matter-radiation equality in the adiabatic case.
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Fig. 7.| Uncovering the Potential Envelope. The potential envelope is obscured by di�usion damping. By

numerically removing the damping, one sees that the intrinsic fluctuations follow the analytic estimates of

P‘ reasonably well. By multiplying by the numerically-calibrated damping function D2
‘ , one recovers the

form of the full calculation even at very small angles. The model here is standard CDM.

3.4. Constraining the Curvature

The angular scale of di�usion damping ‘D provides a clear feature by which a classical angular-size

distance test of the curvature can be made by comparison with the corresponding physical scale kD (Hu &

White 1996a). In models with simple acoustic peak features which can also be used for this test, this provides

a consistency check on the curvature, important if the baryon content or thermal history of the universe is

unknown or anomalous (Hu & White 1996b). In models where the peak signature is more complicated or

non-existent (Albrecht et al. 1995), it may serve as the primary means of measuring the curvature.

In principle, the curvature is constrained by the simple absence or presence of small scale power. In

an open universe, geodesic deviation moves the di�usion tail in angular space to smaller angles leading to

more power on small scales. In practice, its application is complicated by secondary e�ects in the foreground

and lack of a priori knowledge about the intrinsic amplitude of fluctuations before damping. The former

is unlikely to be an obstacle in models with no strong non-linearities at small scales, in which the acoustic

signal from recombination is the dominant contribution to the anisotropy.

Lack of knowledge of the intrinsic amplitude of oscillations limits the precision by which the curvature can

be measured from the damping tail. The intrinsic amplitude is given by the potential envelope P‘ discussed

in the last section. Given that di�usion damping is exponential in ‘, it takes only a rough estimate of P‘ to

yield interesting constraints on the curvature. Furthermore if P‘ is a slowly varying function compared with

D‘, measurement of the power on several scales in the damping tail can remove the ambiguity.

We show an example in Fig. 8. Here we assume that the underlying spectrum is of standard CDM which
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Fig. 8.| Constraining Ω0 with the damping tail. By measuring the anisotropy power in at some scale

‘ in the damping tail (here averaged over 10% in ‘) and comparing it to a reference scale (here ‘ = 2),

one determines the ratio of intrinsic powers P‘=P2 before damping necessary to reproduce the observation

(here Ω0 = 1 in standard CDM). Since this is a strong function of the assumed Ω0, only order of magnitude

knowledge of the model-dependent intrinsic power is needed (e.g. square, estimated from Eq. (32)) to reject

values of Ω0. Multiple measurements in the damping tail largely removes this ambiguity (curve intersection).

For simplicity, we have �xed h = 0:5, Ωbh
2 = 0:0125 and Ω� = 0.

sets Ω0 = 1. By comparing the power at some scale ‘ in the damping tail to some reference scale, here ‘ = 2,

‘(‘+ 1)C‘
6C2

=
D2
‘

D2
2

P‘
P2
; (34)

and by using the �tting formula for D‘ of Eq. (17), one can determine the intrinsic ratio of power P‘=P2 as a

function of Ω0 needed to reproduce the measurement. We have ignored here the suppression of power from

R‘ as it is generally negligible for our purposes here. Because the damping multipole ‘D is a strong function

of Ω0, the amount of intrinsic power required increases steeply with Ω0. Thus even the crude estimate of the

CDM potential envelope of Eq. (32) is more than su�cient to distinguish between interesting values of Ω0

(see Fig. 8, square). As the slope of the curves reflect, the further into the damping tail one can measure,

the more powerful the test becomes. Of course for ‘� ‘D , the signal also drops exponentially and hence is

di�cult both to measure and separate from secondary e�ects.

By measuring more than one scale in the damping tail, one obtains a consistency check on the curvature

constraint. If the ‘ dependence of P‘ is weak, as is the case for CDM-like scenarios (see Fig. 7), then the

predictions for the intrinsic power must intersect near the actual value of Ω0. This implements the damping-

tail shape test proposed in Hu & White 1996b to remove the model dependence of the curvature constraint.

Even if only upper limits exist from CMB measurements at small scales, lower limits on Ω0 can be obtained

with reasonable assumptions on the amount of intrinsic power in small scale fluctuations.
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Fig. 9.| Reionization damping in standard CDM. Damping described by the envelope R‘ is the main

e�ect of late reionization in CDM type models. Hence employing either the numerical calibration of R‘ and

the �t to it from Eq. (24) to �lter the results of a standard recombination (SR, no reionization) calculation

approximate the full calculation to better than 1% in power. The scatter at low ‘ is a numerical artifact

from �nite sampling of the C‘ integral in k-space (see Eq. (4)).

3.5. Examining Reionization

Even late reionization produces potentially observable consequences for precise measurements of the

CMB. In a standard CDM model, the optical depth ranges from 1-3% between 5 < zr < 10 leading to a

2-6% e�ect in the anisotropy power spectrum. For these low optical depths, it is likely that the main e�ect

of reionization is the rescattering damping calculated in x2.3. In this case, two cosmological quantities are

potentially extractable from the spectrum, the total optical depth and the horizon size at last scattering

during the reionized epoch. In practice, extracting accurate results will be hampered by cosmic variance at

large angles and the close degeneracy between changes in the spectrum due to the normalization and late

reionization at small angles.

In Fig. 9, we show how well the numerical calibration of x2.3 and the �tting formula of x2.4 Eq. (24)

reproduce the full e�ect of late reionization. The accuracy achieved is always better than a percent in

power and increases toward small scales where the reionization signal is the largest. With the high precision

achievable by the next generation satellite experiments, it is conceivable that the CMB spectrum can probe

even such relatively late reionization.

If reionization occurs earlier, such that the optical depth is higher and/or non-linear e�ects dominate,

then its e�ect on the CMB can be even more signi�cant. Fluctuations are not only erased but also
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Fig. 10.| Reionization and the Doppler E�ect. For early ionization, the Doppler e�ect due to the relative

electron-photon velocity can regenerate fluctuations around the horizon scale at the last scattering epoch. By

comparing the standard recombination (SR) result �ltered by reionization dampingR2
‘ to the full calculation,

we can uncover such e�ects.

regenerated. As an example, consider the Doppler e�ect from the relative velocity of the electrons with

respect to the CMB generated as the baryons fall into dark matter potential wells. Its e�ect peaks near the

horizon at last scattering due to competing e�ects. Velocity flows are only generated inside the horizon. Yet

on small scales, photons last scatter against many crests and troughs of the velocity perturbation leading to

a strong cancellation damping of the Doppler e�ect (Kaiser 1984). By employing the rescattering damping

function R‘ from x2.3, we isolate this e�ect in Fig. 10. For the higher optical depth cases, the Doppler e�ect

is clearly apparent as an excess of fluctuations from that predicted by R‘. On scales much smaller than the

horizon at the last scattering epoch, simple analytic approximations exist for this e�ect (Kaiser 1984, Hu &

White 1996a). In a CDM model where the optical depth is likely to be � �< 1, such small scale e�ects are

masked by larger primary anisotropies until well into the damping tail.

More complicated rescattering damping can occur if the reionization is patchy. Although one cannot

directly apply the results of our damping calibration to this case, basic elements uncovered such as the

dependence of damping on the horizon scale can be applied to this case as well. Non-linear e�ects can also

create fluctuations through the Doppler e�ect but these are generally small in a model like CDM without

excessive small scale power (but see Aghanim et al. 1996).
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4. Conclusions

Prospects for measuring the small scale CMB anisotropy spectrum are bright, especially in light of the

approval of two new satellite missions, MAP from NASA and Cobras/Samba from ESA, and the funding of

ground based interferometers. If foregrounds, systematic and secondary e�ects are small or can be removed,

and the inflationary CDM model is correct, much cosmological information can be extracted from the

damping tail of CMB anisotropies (see e.g. Bersanelli et al. 1996). Despite the enormous success of this

model however, it is quite possible that what is found there will come as a surprise to the current orthodoxy

in cosmological modeling. In preparation for this possibility we have here, and in Hu & White 1996b,

attempted to construct the spectrum out of fundamental physical e�ects that are likely to be the elements

in any future model which successfully explains the observations.

The basic elements uncovered here represent a series of numerically calibrated transfer functions that

describe the linear processing of fluctuations: the di�usion damping envelope, the reionization damping

envelope, the potential envelope and the baryon drag modulation. The anisotropy spectrum is not merely

a snapshot of conditions on the last scattering surface. Rather it is a dynamic entity that bears the mark

of fluctuations before horizon crossing through the acoustic phase (Hu & White 1996b), at horizon crossing

through the potential envelope, at last scattering through baryon drag, and after last scattering through the

large-angle potential envelope (Sachs & Wolfe 1967) as well as the e�ects of reionization. Within the present

framework of model possibilities, this view of its structure also creates a system of consistency checks by

which we can verify model assumptions, such as the inflationary or cosmological defect origin of fluctuations,

before proceeding to measure cosmological parameters and details of the model.
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