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ABSTRACT

The bulk of recent cosmological research has focused on the adiabatic cold dark matter model
and its simple extensions. Here we present an accurate �tting formula that describes the matter
transfer functions of all common variants, including mixed dark matter models. The result is a
function of wavenumber, time, and six cosmological parameters: the massive neutrino density,
number of neutrino species degenerate in mass, baryon density, Hubble constant, cosmological
constant, and spatial curvature. We show how observational constraints|e.g. the shape of the
power spectrum, the abundance of clusters and damped Ly� systems, and the properties of the
Ly� forest|can be extended to a wide range of cosmologies, including variations in the neutrino
and baryon fractions in both high-density and low-density universes.

Subject headings: cosmology: theory { dark matter { large-scale structure of the universe

1. Introduction

Most popular cosmologies rely on density perturbations generated in the early universe and ampli�ed
by gravity to produce the structure observed in the universe, such as galaxies, galaxy clustering, and the
anisotropy of the microwave background. It is of particular interest that the spectrum and evolution of
these fluctuations depends on the nature of the dark matter as well as upon the \classical" cosmological
parameters. Hence, by the study of the observable signatures of the perturbations, one hopes to learn not
only about quantities such as the density of the universe or the Hubble constant, but also what fraction of
the matter in the universe is in baryons, cold dark matter (CDM), massive neutrinos, and so forth.

The calculation of how the various types of dark matter and the background cosmology a�ect the power
spectrum can be treated for much of the history of the universe using linear perturbation theory. Numerically,
this reduces to integrating the coupled Boltzmann equations for each mode as a function of time. For modes
above the Jeans scales of the gravitating species, the growth of perturbations is independent of scale. In
the absence of hot or warm dark matter, this scale drops precipitously after recombination and therefore
the late-time power spectrum may be separated into a function of scale and a scale-independent growth
function that incorporates the e�ects of time, cosmological constant, and curvature. These growth functions
are well-cataloged (e.g. Peebles 1980), while the form of the spatial function can be found numerically (e.g.
Bond & Efstathiou 1984) or quoted from �tting forms (e.g. Bond & Efstathiou 1984; Bardeen et al. 1986;
Holtzman 1989; Eisenstein & Hu 1997, hereafter EH97).

With the introduction of massive neutrinos (Fang et al. 1984; Valdarnini & Bonometto 1985; Achilli et
al. 1985), or other forms of hot dark matter, the spatial and temporal behavior of the perturbations cannot
be separated. The Jeans scale, also called the free-streaming scale, of the neutrinos remains signi�cant
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after recombination (Bond & Szalay 1983). In this case, the CDM and baryon perturbations are not traced
by neutrinos and grow more slowly due to the reduction of the gravitational source (Bond et al. 1980).
Since the free-streaming scale itself moves to ever smaller scales with increasing time, the transfer function
acquires a non-trivial time dependence. Consequently, a cosmological constant or non-zero curvature enters
the problem in a more complicated manner. Although accurate numerical treatments (Ma & Bertschinger
1995; Dodelson et al. 1996a) exist, these complications have meant that �tting formula (Holtzman 1989;
Klypin et al. 1993; Pogosyan & Starobinsky 1995; Ma 1996) for the power spectra of such cosmologies have
been restricted to certain regions of parameter space, e.g. �xed baryon content and critical density overall.

In Hu & Eisenstein (1997, hereafter HE97), we showed that the late-time evolution of perturbations
in a mixed dark matter (MDM) cosmology with CDM, baryons, and massive neutrinos could be accurately
treated using a scale-dependent growth function. The transfer function then becomes the product of this
growth function and a time-independent master function that represents the perturbations around recombi-
nation. Moreover, the small-scale limit of this master function can be calculated analytically as a function
of cosmological parameters (HE97).

In this paper, we give an accurate �tting formula for the master function. This in turn produces a
�tting formula for the transfer functions of adiabatic cosmologies as functions of matter density, baryon and
neutrino fractions, cosmological constant, Hubble constant, redshift, and the number of degenerate massive
neutrino species. For the central region of parameter space, i.e. only moderate deviations from the pure-
CDM model, the formula is accurate to better than 5% in the transfer function (10% in power). The formula
does not attempt to �t the acoustic oscillations created by large baryon fractions but provides a good match
to the underlying smooth function. Hence, the formula loses accuracy for baryon fractions exceeding 30%.
Similarly, the formula has larger errors for cosmologies with massive neutrino fractions exceeding 30% or
with matter densities outside the range 0:06 �< Ω0h

2
�< 0:4. In this range, however, if the baryon fraction is

less than 10%, the accuracy improves to better than 3%.

The outline of the paper is as follows. In x2, we review the basic results of linear perturbation theory.
We then present the �tting function in x3 and a user’s guide in x4. As illustrative examples of the utility of
the formula in exploring parameter space, we examine constraints on large-scale structure and high-redshift
objects in x5. We conclude in x6.

2. Description of Physical Situation

We consider linear adiabatic perturbations around a Friedmann-Robertson-Walker metric for cosmolo-
gies with several species of particles: photons, baryons (i.e. nuclei and electrons), massive and massless
neutrinos, and cold dark matter. The interaction between this diverse set of particles can lead to complex
phenomenology in the growth of perturbations even in linear theory (e.g. Peebles 1993).

Nevertheless, the underlying physical situation remains simple. Perturbations under the so-called Jeans
scale are not subject to gravitational instability due to pressure support or, in the case of collisionless
particles, su�cient rms velocity. Above this scale, perturbations grow at the same rate regardless of scale.
In general, the Jeans scale of each gravitating species is imprinted into the power spectrum. It is conventional
to de�ne the transfer function as the ratio of time-integrated growth on a particular scale as compared to
that on scales far larger than the Jeans scale.

For a relativistic species, the Jeans scale grows with the particle horizon. In a universe with cold dark
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matter and radiation only, the Jeans scale of the total system grows to the size of the horizon at matter-
radiation equality and then shrinks to zero as the universe becomes matter-dominated. The result is that
the transfer function turns over at the scale of the horizon at equality. Moreover, well after equality, the
Jeans scale has dropped su�ciently that all scales of interest are above it and hence grow at the same rate.
The familiar result is that the spectrum of fluctuations can be written at low redshifts as a scale-independent
growth factor times a function of scale that depends only on the size of the horizon at equality.

With the inclusion of the baryons, another scale is imprinted in the transfer function. The baryons
are dynamically coupled to the photons until the end of the Compton drag epoch, close to recombination
for the standard thermal history. Prior to this time, the baryonic Jeans scale tracks the horizon (or more
properly the sound horizon, accounting for the fact that baryons contribute mass but little pressure). After
recombination, the Jeans scale of the baryons drops precipitously to scales smaller than those of interest for
large-scale structure (for sub-Jeans perturbations, see Yamamoto et al. 1997). The sound horizon at the end
of the Compton drag epoch is thereby imprinted in the transfer function in the form of Jeans or acoustic
oscillations (c.f. EH97). Again, perturbations at low redshifts grow at the same rate on all relevant scales.

The same principles may be applied to massive neutrinos. At su�ciently high temperatures, even mas-
sive neutrinos behave as radiation; therefore their Jeans scale grows with the horizon. As their temperature
drops with the expansion, they become non-relativistic and their Jeans scale shrinks. Physically, their mo-
menta decay with the expansion and eventually become small enough to allow them to cluster with the
non-relativistic matter. For this reason, the Jeans scale is often called the free-streaming scale. By the same
arguments as before, the maximal free-streaming scale is imprinted in the transfer function. What makes
the massive neutrino case more complicated than the cold dark matter and radiation case is that for eV
mass neutrinos the free-streaming scale today lies in the regime of large-scale structure measurements. Thus
the growth of fluctuations in the regime of interest is not independent of scale even at low redshifts.

Let us examine the growth in more detail. A given scale begins outside the free-streaming length; here
the neutrino density perturbation traces those of the other species. If the scale is below the maximal free-
streaming scale, it will at some point cross the free-streaming scale. While in the free-streaming regime,
perturbations in the neutrinos damp out collisionlessly while those in the cold dark matter and baryons grow
more slowly due to the loss of a gravitating source. As the neutrinos slow down and their Jeans scale shrinks,
the scale in question eventually crosses back out of the free-streaming regime. At this time, the neutrinos
fall back into the potential wells of the other species and the growth rate is boosted back to its original rate.
Even at low redshifts, some scales are still in the free-streaming regime; hence, the temporal and spatial
dependence of the transfer function cannot be separated as before.

If all of the massive neutrinos had the same momentum, then one could hope to describe the free-
streaming situation more exactly, but of course the neutrinos have a thermal distribution, frozen in when the
universe had a temperature of about 1 MeV. Hence, the transition between free-streaming and infall occurs
smoothly and requires a Boltzmann code to follow (Ma & Bertschinger 1995). HE97 showed that the result
could be well �t by a scale-dependent growth rate; we will use this here to separate the time dependence
from the complications of the spatial dependences.

3. Fitting Form
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3.1. Scales and Notation

We begin by describing our notation. The density of cold dark matter, baryons, and massive neutrinos,
in units of the critical density, are denoted Ωc, Ωb, and Ω�, respectively. The total matter density is then
Ω0 = Ωc + Ωb + Ω�. fc, fb, and f� are the ratio of the density of these species to the total Ω0. We use
multiple subscripts to indicate summation, so that, e.g., fcb = fc + fb = (Ωc + Ωb)=Ω0. The contribution
of a cosmological constant � is written as Ω� � �=3H2

0 and is not included in Ω0. The Hubble constant is
parameterized as H0 = 100h km s−1 Mpc−1. The CMB temperature is given by TCMB = 2:7�2:7K; the best
determination to date is 2:728� 0:004 K (Fixsen et al. 1996; 95% con�dence interval), at which it is �xed
for most of our expressions.

We assume that there are three species of neutrinos with a temperature equal to (4=11)1=3 of the photons
while they are relativistic. One or more of the species may be su�ciently massive to influence cosmology,
but we only study the case where the most massive species have essentially equal masses. Then N� is the
number of these species, and the mass of each is m� = 91:5Ω�h2N−1

� eV=c2 (Kolb & Turner 1990).

We generally work with the redshift z as our time coordinate. The redshift of matter-radiation equality
is2

zeq = 2:50� 104Ω0h
2�−4

2:7: (1)

The baryons are released from the Compton drag of the photons near recombination at a redshift (see Hu
& Sugiyama 1996; EH97)

zd = 1291
(Ω0h

2)0:251

1 + 0:659(Ω0h2)0:828
[1 + b1(Ωbh2)b2 ]; (2)

b1 = 0:313(Ω0h
2)−0:419[1 + 0:607(Ω0h

2)0:674];

b2 = 0:238(Ω0h
2)0:223:

However, it is more convenient to refer this quantity to the expansion factor since matter-radiation equality,
so we de�ne

yd =
1 + zeq

1 + zd
: (3)

The comoving distance that a sound wave can propagate prior to zd is called the sound horizon and is (EH97
1997)

s =
44:5 ln(9:83=Ω0h

2)p
1 + 10(Ωbh2)3=4

Mpc (4)

(note that the units are Mpc, not h−1 Mpc).

As we are using linear perturbation theory, it is appropriate to work in Fourier space, where the transfer
function depends on the comoving wavenumber k. We often parameterize k relative to the scale that crosses
the horizon at matter-radiation equality, so as to de�ne

q =
k

Mpc−1
�2

2:7(Ω0h
2)−1 =

k

19:0
(Ω0H

2
0 )−1=2(1 + zeq)−1=2: (5)

2Although this is not well-de�ned in cases with Ω� 6= 0, we justify our choice in HE97.
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3.2. Free-Streaming and Infall

As shown in HE97, one can decompose the transfer function into a scale-dependent growth function that
incorporates all post-recombination e�ects and a time-independent master function that reflects conditions at
the drag epoch. Hence, we write the transfer function of the density-weighted CDM and baryon perturbations
as

Tcb(q; z) = Tmaster(q)Dcb(q; z)=D1(z) (6)

and that of the density-weighted CDM, baryon, and neutrino perturbations as

Tcb�(q; z) = Tmaster(q)Dcb�(q; z)=D1(z): (7)

Here, D1 is the growth factor for the universe in the absence of neutrino free-streaming (i.e. on very large
scales), Dcb and Dcb� are the scale-dependent MDM growth functions, and Tmaster is the time-independent
master function. We describe these now in turn.

In the absence of free-streaming, the growth function takes on the usual form (Heath 1977; Peebles
1980)

D1(z) =
5Ω0

2
(1 + zeq)g(z)

Z z 1 + z0

g(z0)3
dz0; (8)

g2(z) = Ω0(1 + z)3 + (1− Ω0 −Ω�)(1 + z)2 + Ω�: (9)

We have chosen the normalization to be D1 = (1 + zeq)=(1 + z) at early times. For an Ω0 = 1 universe,
equation (8) yields D1 = (1+zeq)=(1+z) at all times; closed-form expressions are also available for universes
without � (Weinberg 1972; Edwards & Heath 1976; Groth & Peebles 1975) and flat low-density universes
with � (Bildhauer et al. 1992). Alternatively, one may use the �tting form (Lahav et al. 1991; Carroll et al.
1992)

D1(z) =
�

1 + zeq
1 + z

�
5Ω(z)

2

n
Ω(z)4=7 −Ω�(z) + [1 + Ω(z)=2][1 + Ω�(z)=70]

o−1

; (10)

Ω(z) = Ω0(1 + z)3g−2(z);

Ω�(z) = Ω�g
−2(z);

where g(z) is de�ned in equation (9).

The presence of neutrinos suppresses the growth of fluctuations on scales su�ciently small that the
neutrinos’ velocity allows them to escape the perturbation. This alters the logarithmic growth rate (Bond
et al. 1980) according to the factor (i = cb,c)

pi �
1
4

h
5−

p
1 + 24fi

i
� 0: (11)

Then the growth rates in the presence of free-streaming are (HE97)

Dcb(z; q) =

"
1 +

�
D1(z)

1 + yfs(q; f�)

�0:7
#pcb=0:7

D1(z)1−pcb ; (12)

and

Dcb�(z; q) =

"
f

0:7=pcb
cb +

�
D1(z)

1 + yfs(q; f�)

�0:7
#pcb=0:7

D1(z)1−pcb ; (13)
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for the CDM+baryon and CDM+baryon+neutrino cases, respectively. In both cases, the free-streaming
epoch as a function of scale is

yfs(q) = 17:2f�(1 + 0:488f−7=6
� )(N�q=f�)2: (14)

Note that increasing N� at �xed Ω� prolongs free-streaming by making the neutrinos less massive and hence
faster moving.

The functions Dcb and Dcb� contain all the dependence of the transfer functions on time, curvature,
and cosmological constant, and moreover relate the two transfer functions to a single master function. Of
course, in a cosmology with no massive neutrinos, Dcb = Dcb� = D1 and the master function is simply the
usual post-recombination transfer function.

3.3. The Master Function

The master function reflects the spectrum of perturbations at the drag epoch. As such, it can only
depend on Ω0h

2, fb, f� , and N� . In the case without massive neutrinos, this reduces to the CDM+baryon
transfer function. EH97 described the phenomenology of this function. In particular, the presence of baryons
suppresses power on scales smaller than the sound horizon at the drag epoch and introduces a series of
oscillations in the transfer function that damp as one moves to smaller scales. For moderate baryon fractions
(fb �< Ω0h

2 + 0:2), the oscillations are fairly small but the suppression can be important (roughly 5fb in
power). Because of the increased complexity of adding massive neutrinos to the form, we opt not to �t
the oscillations and instead tailor a formula that runs through the center of the oscillations and properly
incorporates the small-scale suppression. Of course, this means that the formula will not be appropriate for
cases where the oscillations are large, roughly Ωb=(Ωc + Ωb) �> Ω0h

2 + 0:2.

On scales much larger than the sound horizon at the drag epoch and the horizon at the time when the
neutrinos �nally become non-relativistic, the e�ects of pressure fluctuations and collisionless damping are
not important. Therefore, the transfer function will match that of a pure-CDM model. On small scales,
we have solved the evolution equations analytically and therefore can calculate the amount of small-scale
suppression due to the baryons and neutrinos (HE97). We use these two limits to anchor our �tting form.

The suppression of power in the master function on small-scales is primarily due to baryons, although
neutrinos do contribute a residual coe�cient not included in the free-streaming growth function3. The
amount of small-scale suppression is given as (HE97)

��(f� ; fb; yd) =
fc
fcb

5− 2(pc + pcb)
5− 4pcb

� 1− 0:553f�b + 0:126f3
�b

1− 0:193
p
f�N� + 0:169f�N0:2

�

(1 + yd)pcb−pc (15)

�
�
1 +

pc − pcb
2

�
1 +

1
(3− 4pc)(7− 4pcb)

�
(1 + yd)−1

�
:

We choose to include this suppression by a scale-dependent rescaling of the zero-baryon shape parameter Γ
(c.f. EH97). The suppression occurs rapidly near the sound horizon (de�ned in eq. [4]):

Γe� = Ω0h
2

�p
�� +

1−p��
1 + (0:43ks)4

�
; (16)

3The total suppression of Tcb on small-scales is ��D
−pcb
1
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qe� =
k�2

2:7

Γe� Mpc−1 : (17)

Then we use this e�ective wavenumber in the zero-baryon form,

Tsup(k) =
L

L+ Cq2
e�

; (18)

L = ln(e+ 1:84�c
p
��qe�); (19)

C = 14:4 +
325

1 + 60:5q1:08
e�

; (20)

�c = (1− 0:949f�b)−1; (21)

to produce a form that breaks from the large-scale, pure-CDM formula to the small-scale solution.

We �nd, however, that this formula is inaccurate around the scale of the horizon at the epoch when
the neutrinos slowed to non-relativistic speeds, the so-called maximal free streaming scale (cf. x2). This is
because the form of yfs (eq. [14]) assumes that the neutrino velocity scales simply as v / (1 + z). In fact,
it is the momentum that carries this scaling, while the velocity cannot exceed c. This error causes us to
overestimate the maximal free-streaming scale (note that in eq. [14] the running of this scale with redshift is
cuto� at the equality epoch). In turn, the growth functions Dcb and Dcb� provide too much free-streaming
suppression on these scales, although since the scales are well above the free-streaming scale for z �< 30, no
spurious time-dependence is introduced at late times.

For f� � 0:3, this error can be �xed by the following multiplicative correction:

B(k) = 1 +
1:24f0:64

� N0:3+0:6f�
�

q−1:6
� + q0:8

�

; (22)

q� =
k

3:42
p
f�=N�keq

= 3:92q

s
N�
f�
: (23)

The master function is then
Tmaster(k) = Tsup(k)B(k): (24)

3.4. Performance

In Figures 1 and 2, we compare the �tting formula to the numerical evaluation (using the CMBfast
code of Seljak & Zaldarriaga 1996 v. 2.3) of the transfer function. Figure 1 shows the most common MDM
model|Ω0 = 1, h = 0:5, Ωb = 0:05, Ω� = 0:2, and N� = 1|at two di�erent redshifts. Figure 2 shows other
cases|high baryon fraction, low Ω0, N� = 2, and high Ω0h

2|at redshift zero.

For 0:06 �< Ω0h
2
�< 0:40, Ωb=Ω0 � 0:3, Ω�=Ω0 � 0:3, z = 0, and N� = 1, the accuracy of the �tting

formula is quite high. For baryon fractions of 5%, the acoustic oscillations are small and the �t is better than
2% on all scales. At higher baryon fractions, the oscillations become more prominent, and so the maximum
level of the residuals grows, although the residuals would at least partially cancel for many applications.
Performance for fb � 0:3 is nearly always better than 5% (and often �< 3%) when comparing to the non-
oscillatory portion of the transfer function. The small-scale �t for q > 0:25 (k �> 1 Mpc−1) is always better
than 2% accurate. Behavior for N� = 2 is similar, although di�erent numerical codes seem to be inconsistent
for q � 1 at the several percent level. Performance at z = 9 is at most 1% worse than that at z = 0; at
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Fig. 1.| Comparison of the �tting formula to the numerical results of CMBfast (Seljak & Zaldarriaga
1996). (a) Results at z = 0. (b) z = 9. Upper panels: Transfer functions divided by a �ducial pure-
CDM transfer function, formed by using equation (18) with �� = �c = 1 and qe� = q. Density-weighted
CDM+baryon (short-dashed) and CDM+baryon+neutrino (long-dashed) transfer functions are shown. Lower
panels: Fractional residuals. The cosmology is Ω0 = 1, Ω� = 0:2, Ωb = 0:05, and h = 0:5.

z = 29, performance can degrade by 4% at the lowest values of Ω0h
2 (where z=zeq is its largest). Hence, 5%

accuracy is achieved only for z < 30.

For Ω0h
2
�> 0:4, the �tting formula tends to overestimate the transfer function on scales just below

the sound horizon (k � 0:3 Mpc−1) and underestimate it just above the sound horizon (k � 0:1 Mpc−1);
we display this problem in Figure 2d. These errors are only a few percent for fb < 0:1, but grow to 10%
by fb � 0:3. The culprit is our reliance on using an e�ective Γ within a pure-CDM transfer function; for
high Ω0h

2 the sound horizon corresponds to q � 1, thereby altering the portion of the curve we use for our
transition (eq. [16]). For Ω0h

2
�< 0:06, the opposite situation occurs; moreover, the power series in 1 + yd in

equation (15) becomes less accurate. For Ω0h
2 = 0:025, the errors are 5% for both low and moderate baryon

fractions.

For models with Ωb=(Ωb + Ωc) �> Ω0h
2 + 0:2, the baryon oscillations exceed 10% in amplitude, which

may be a problem for some applications. By Ω0h
2 + 0:4, the oscillations are of order 40% (c.f. Fig. 5 of

EH97). We note that the location of the peaks in wavenumber seems essentially constant with varying Ω�;
thus the formulae in EH97 could be used to give the location but not the amplitude.

For neutrino fractions exceeding 30%, our correction for the behavior near the maximal free-streaming
scale (eq. [22]) is too small, leading to signi�cant errors (8% for f� � 0:5, increasing thereafter).

For Ω0 < 1, we have only tested the �t on intermediate scales for flat universes (i.e. Ω� = 1− Ω0). We
have tested the small-scale limit in both open and flat cases and found excellent accuracy.

Note that our formula works equally well for cases with Ω� = 0. Of course, in this case, should one wish
to �t the baryon oscillations, one should use the �tting formula in EH97.
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Fig. 2.| Same as Figure 1, but for di�erent choices of cosmology. (a) High-baryon model, with Ωb = 0:3,
Ω� = 0:2, Ω0 = 1, and h = 0:5. (b) Low-density, flat model, with Ω0 = 0:3, Ω� = 0:7, Ω� = 0:06, Ωb = 0:03,
and h = 0:5. (c) Model with two degenerate neutrino species (N� = 2). Ωb = 0:05, Ω� = 0:2, Ω0 = 1, and
h = 0:5. (d) Model with high Ω0h

2, beyond our range of [0:06; 0:40]. Ωb = 0:2, Ω� = 0:2, Ω0 = 1, and
h = 0:8.

4. User’s Guide

We present here a user’s guide to the �tting formulae of the previous section. The �tting formula for
the density-weighted matter transfer function, with and without neutrinos, is given by equations (1){(24).
For cases with Ω� 6= 0, these functions are time-dependent and involve the growth factors in equations (12)
and (13). We now detail how to use the transfer function to construct power spectra and measures of mass
fluctuations.
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4.1. Power Spectra

The power spectrum is constructed from the transfer functions in the usual way:

k3

2�2
P (k; z) = �2

H

�
ck

H0

�3+n

T 2(k; z)D2
1(z)=D2

1(0): (25)

where �H is the amplitude of perturbations on the horizon scale today, and n is the initial power spectrum
index, equal to 1 for a scale-invariant spectrum. Note that the usual growth function D1 from equation (8)
is used, not Dcb or Dcb� .

In cases with Ω� 6= 0, there are three transfer functions and hence three power spectra that may be
constructed. Using Tcb from equation (6) in equation (25) yields Pcb, the power spectra for the CDM and
baryons. Likewise using Tcb� from equation (7) yields Pcb�, the density-weighted power spectrum of the
CDM, baryons, and massive neutrinos. The power spectrum of the massive neutrinos themselves can be
constructed from the functions above. One can subtract the transfer functions given above to �nd the
transfer function for the neutrinos alone:

T� = f−1
� (Tcb� − fcbTcb): (26)

On small scales, this function goes to zero, but we have not carefully modeled this. Thus, T� has density-
weighted errors similar to those in Tcb; that is, the residuals in the �t for f�T� will be similar to those of Tcb.
This transfer function may be employed in equation (25) to obtain P�, the power spectrum of the massive
neutrinos.

Power spectra for velocity �elds can be similarly obtained by considering the continuity equation, which
relates them to time-derivatives of the density fluctuations. It is standard to express this in terms of the
quantity f � −d log(D)=d log(1 + z), where D is the growth function. In a model with massive neutrinos,
this becomes a scale-dependent quantity. We can di�erentiate equation (12) directly to �nd

fcb(k; z) = f0(z)

(
1− pcb

1 + [D1(z)=(1 + yfs)]
0:7

)
; (27)

with f0(z) as the value of f in the absence of free-streaming:

f0(z) � − d log D1

d log(1 + z)
� Ω(z)0:6 +

1
70

Ω�(z)
�

1 +
Ω(z)

2

�
; (28)

where the approximation (Lahav et al. 1991) uses Ω(z) and Ω�(z) from equation (10).

The power spectrum for the velocity �eld for the CDM and baryons is then

P
(v)
cb (k; z) =

�
fcb(k; z)H0g(z)

(1 + z)k

�2

Pcb(k; z); (29)

where g(z) was de�ned in equation (9). A similar relation follows for the velocity �eld of the density-weighted
matter.

4.2. COBE Normalization

To normalize the power spectrum to the COBE{DMR measurement, one may use the �tting formulae
of Bunn & White (1997) to �x �H . For cases with no CMB anisotropies from gravitational waves, one has

�H = 1:94� 10−5Ω−0:785−0:05ln Ω0
0 e−0:95~n−0:169~n2

; � = 1−Ω0; (30)
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�H = 1:95� 10−5Ω−0:35−0:19ln Ω0−0:17~n
0 e−~n−0:14~n2

; � = 0; (31)

valid for 0:7 � n � 1:2. For flat cosmologies with the gravitational wave contributions of power-law inflation
(which requires n < 1), �H is

�H = 1:94� 10−5Ω−0:785−0:05ln Ω0
0 e~n+1:97~n2

; � = 1− Ω0: (32)

For open cosmologies with the minimal gravitational wave contribution from power-law inflation (again,
n < 1), one has (Hu & White 1997)

�H = 1:95� 10−5Ω−0:35−0:19ln Ω0−0:15~n
0 e−1:02~n−1:70~n2

; � = 0 (33)

In all cases, ~n = n − 1 and the �ts extend from 0:2 � Ω0 � 1. The 1� statistical uncertainty in the
COBE-normalization is 7%, primarily due to cosmic variance.

4.3. Mass Fluctuation Measures

The rms amplitude of mass fluctuations inside a particular spherically-symmetric window is

�R =
�Z 1

0

dk

k

k3

2�2
P (k)

��� ~WR(k)
���2�1=2

; (34)

where P (k) is the power spectrum and ~WR(k) is the Fourier transform of the real-space window function
WR(r). Either Pcb or Pcb� may be used depending on the application. The two most popular choices for
window functions are the real-space spherical tophat of radius R:

WR(r) /
�

1 if r � R,
0 otherwise,

(35)

~WR(k) =
3

(kR)3
(sin kR− kR cos kR); (36)

MR =
4�
3
�cΩ0R

3; (37)

and the Gaussian window of scale length R:

WR(r) / exp
�
− r2

2R2

�
; (38)

~WR(k) = exp
�
−(kR)2

2

�
; (39)

MR = (2�)3=2�cΩ0R
3: (40)

Here, MR is the mass included in the window.

5. Observational Constraints

The �tting formula presented in x3 allows one to manipulate statistics of the power spectrum as functions
of cosmological parameters much more easily than a suite of Boltzmann integrations would allow. As
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examples of its use, we consider predictions for the power spectrum of large-scale structure, the abundance
of clusters of galaxies, damped Ly� systems, and the Ly� forest. The theoretical power spectrum is related
to these observations via the rms amplitude of mass fluctuations (x4.3) on various scales.

We consider 2-dimensional cross-sections in parameter space by varying the baryon and massive neutrino
fractions in four �ducial models: the standard case of Ω0 = 1, h = 0:5, n = 1, and N� = 1; a tilted variant
with n = 0:95 and a tensor contribution to the CMB anisotropy; a variant with a second neutrino species
(N� = 2); and a low-density flat universe with Ω0 = 0:35, h = 0:7, n = 1, and N� = 1. We choose these
models in order to explore the various ways of addressing what has been identi�ed as the key problem of
standard CDM (i.e. Ω0 = 1, h = 0:5, n = 1, and trace or zero baryon and neutrino content), namely the
overproduction of power on galaxy and cluster scales relative to larger scales (e.g. Efstathiou et al. 1992;
Ostriker 1993; Dodelson et al. 1996b). As explained in x3, adding massive neutrinos (Schaefer & Sha� 1992;
Davis et al. 1992; Taylor & Rowan-Robinson 1992; Holtzman & Primack 1992) or baryons (White et al.
1996) reduces small-scale power. This alone may be su�cient to satisfy constraints. However, other simple
extensions act to suppress power and may produce a better �t to the data. Adding a red tilt (n < 1) to the
initial power spectrum (see e.g. Cen et al. 1992) or lowering the density parameter Ω0 (see e.g. Efstathiou
et al. 1992; Ostriker & Steinhardt 1995) are common approaches. Here, we also consider the addition of a
second species of massive neutrinos (Primack et al. 1995); this helps because it further reduces power on
cluster scales while leaving the small-scale power essentially unchanged.

5.1. Power Spectrum Shape

We begin at large scales and consider the shape of the linear power spectrum as reconstructed from
galaxy surveys. Peacock & Dodds (1994) considered a collection of data sets vis-a-vis zero-baryon power
spectrum models; they found that scale-invariant models with Γ � Ω0h = 0:255� 0:017 provided the best
�t. However, adding baryons and/or neutrinos alters the shape and hence the best �t. We do not perform
this detailed reanalysis here; rather we use the ratio of large-scale to small-scale power as a proxy for the
shape (see e.g. White et al. 1996). In particular, we construct the ratio of the amplitude of density-weighted
fluctuations (Pcb�) within a 50h−1 Mpc tophat to those within a 8h−1 Mpc tophat, i.e. �50=�8. The range
Γ = 0:25� 0:05, which we conservatively adopt, converts to �50=�8 = 0:151� 0:016. Note that high values
of Γ produce lower values of �50=�8.

We display this ratio in Figure 3a{d (left panel) as a function of baryon fraction and neutrino fraction. It
is important to note that baryons play as important a role as neutrinos in suppressing power on cluster scales
relative to larger scales (White et al. 1996). For example, even the cosmic concordance model (Ostriker &
Steinhardt 1995) of Ω0 = 0:35 with h = 0:7, which seems to have an appropriate Γ, stretches the constraint
when pushed to the 10{15% baryon fraction suggested by cluster mass determinations (e.g. White et al.
1993b; David et al. 1995; White & Fabian 1995; Evrard 1997).

5.2. Cluster Abundance

The present-day abundance of rich clusters of galaxies is a sensitive probe of mass fluctuations on the
8h−1 Mpc scale (Evrard 1989; White et al. 1993a; Eke et al. 1996; Viana & Liddle 1996; Bond & Myers 1996;
Pen 1997). We adopt the determination of Pen (1997)

�8 � 0:5Ω−0:65
0 (41)
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Fig. 3.| (a{d) Ratio of fluctuations within 50h−1 Mpc spheres to that within 8h−1 Mpc spheres as a function
of neutrino and baryon fractions for various cosmologies. The shaded region shows the preferred range of
�50=�8 = 0:151� 0:016. (a) Ω0 = 1, h = 0:5, n = 1, N� = 1. (b) As (a), but with n = 0:95 and tensors
as per power-law inflation. (c) As (a), but with two degenerate neutrino species (N� = 2). (d) Ω0 = 0:35,
Ω� = 0:65, h = 0:7, n = 1, N� = 1. All are COBE-normalized. (e{h) Amplitude of fluctuations within
8h−1 Mpc spheres for the cosmologies given in (a{d), respectively. The shaded region is the preferred range
of �8 = (0:5� 0:15)Ω−0:65

0 (Pen 1997) and �8 > 0:59 (Fan et al. 1997).

and take a conservative range of 30% errors (i.e. 0:5� 0:15).

The time evolution of the abundance of clusters provides a way to isolate �8 from its Ω0 dependence. By
comparing the abundance of high-redshift clusters relative to the present-day abundance, Fan et al. (1997)
found �8 = 0:83 � 0:15(1�). To be conservative, we employ a 2� lower limit (from the relevant quantity,
�−2

8 ) of �8 > 0:59.

Fig. 3e{h (right panel) shows the cluster abundance constraints for the same 4 models as Fig. 3a{d.
As is well-known, high-Ω0 cosmologies with small tilt and trace baryon and neutrino content overproduce
present-day clusters. Adding a substantial fraction of baryons or neutrinos makes the models marginally
consistent with both the present-day and high-redshift cluster abundances.

5.3. Damped Ly� Systems

Cosmologies with moderate neutrino fractions have a strong suppression of power on small scales. This
implies that they form proto-galactic systems later than pure-CDM models. Indeed, these models may have
trouble forming high-redshift objects such as quasars (e.g. Ma & Bertschinger 1994; Liddle et al. 1996),



{ 14 {

σDLA(z=4) σLyα(z=3)

(d) Ω0=0.35

(a) Ω0=1

(c) Nν=2

0.1

0.3

0.1

0.3

0.1 0.20 0.1 0.2 0.30
fν=Ων/Ω0

(b) n=0.95
0.5

1.0

1.5

2.0

2.5

0.5
1.0

1.5

2.0

2.5

3.0

0.5
1.0

1.5

2.0

2.0

2.5

3.0

0.5

1.0

1.5

0.1

0.2

0.3

0.1

0.2

0.3

0.1 0.20 0.1 0.2 0.30
fν=Ων/Ω0

f b
=Ω

b/Ω
0

(d) Ω0=0.35

(a) Ω0=1

(c) Nν=2

(b) n=0.95
0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

0.5

1.0

1.5

0.5

1.0

1.5

Fig. 4.| (a{d) Amplitude of fluctuations at z = 4 within a Gaussian window of mass corresponding to
halos of 50 km s−1 Mpc−1 circular velocity. Cosmologies are as per Figure 3. The shaded region indicates
cosmologies where the neutral gas in halos of vc > 50 km s−1 Mpc−1 [using the prescription of Klypin et al.
(1995) and fH i = 1] exceeds that observed in damped Ly� systems. The region to the left of the dashed
line is the allowed region for fH i = 0:1. (e{h) Amplitude of fluctuations at z = 3 for a Gaussian window of
radius 0:0416(Ω0h

2)−1=2 Mpc, suggested by Gnedin (1997) as a indicator of the slope of the column-density
distribution of the Ly� forest. The region �Ly� > 2 is shaded. Cosmologies are as in Figure 3.

UV-dropout galaxies (Mo & Fukugita 1996), and damped Ly� systems (Mo & Miralda-Escud�e 1994; Ma &
Bertschinger 1994; Kau�mann & Charlot 1994; Klypin et al. 1995). We focus on the last of these.

Observations of damped Ly� absorption systems in QSO spectra may be interpreted as a measurement
of the mean density of neutral hydrogen Ωgas, in units of the critical density. Recent measurements at z = 4
(Storrie-Lombardi et al. 1996) �nd this to be

Ωgas(z � 4) = (9:3� 3:8)� 10−4h−1
h
(1 + z)3=2g(z)

i ���
z=4

: (42)

Assuming Poisson statistics, we adopt a 95% lower limit of 43% of the central value.

One can estimate an upper limit to the value of Ωgas in a particular cosmology by assuming that all gas in
proto-galactic halos is neutral and using the Press-Schechter formalism (Press & Schechter 1974) to estimate
the number of such halos (Mo & Miralda-Escud�e 1994; Kau�mann & Charlot 1994; Ma & Bertschinger
1994; Klypin et al. 1995; Liddle et al. 1996). These works di�er in their Press-Schechter implementation;
here we adopt the conservative assumptions of Klypin et al. (1995). We de�ne �DLA to be the amplitude
of fluctuations (using Pcb�) inside a Gaussian window of a scale corresponding to a circular velocity vc of
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50 km s−1 Mpc−1. The relation between mass and velocity is (Narayan & White 1987)

M =
v3
cp

89GH0g(z)
; (43)

where g(z) is de�ned in equation (9). Then the density of neutral gas arising from all halos with velocities
greater than 50 km s−1 Mpc−1 is

Ωgas = fH iΩb erfc
�

�cp
2�DLA

�
; fH i � 1 (44)

where fH i is the fraction of neutral gas, erfc(x) is the complimentary error function, and we take a density
threshold of �c = 1:33.

In Figure 4a{d (left panel), we plot �DLA as a function of cosmological parameters. We superpose
the constraint implied by comparing equation (42) to equation (44) with fH i = 1. As found by previous
studies, MDM models with f� �> 0:3 underproduce high-redshift halos; the constraints are tighter for higher
fb, red-tilted, and degenerate-neutrino models. The limits in Figure 4 are actually extremely conservative;
hydrodynamical studies (Ma et al. 1997; Gardner et al. 1997a,b) infer fH i �< 0:1 in tested cases. Correspond-
ingly, we plot the limits if fH i = 0:1 in dashed lines to show how this uncertainty a�ects the cosmological
constraints. Since it is di�cult to scale these numerical corrections as functions of cosmological parameters,
especially if varying Ωb (Gardner et al. 1997b), the fH i = 0:1 line should not be taken as a �rm constraint.

5.4. Ly� Forest

If the low column density absorption features in QSO spectra arise from mild density and velocity
perturbations in the IGM (Cen et al. 1994; Petijean et al. 1995; Zhang et al. 1995, 1997; Miralda-Escud�e
et al. 1996; Hernquist et al. 1996), then the correlations and column-density distribution of the lines may
yield robust information about the power spectrum on sub-Mpc scales. Croft et al. (1997) demonstrated
that the power spectrum of simulations could be reconstructed from absorption spectra drawn from them.
Gnedin (1997) showed that the power-law exponent of the column density distribution in various cosmological
simulations is strongly correlated with the amplitude of linear fluctuations on the smallest collapsing scales.
Comparing to the observed distribution suggests a lower bound on the amplitude of fluctuations on mass
scales near 109 M� at z = 3. In particular, the quantity �Ly�, de�ned as the fluctuations inside a Gaussian
window of radius R = 0:0416(Ω0h

2)−1=2 Mpc using Pcb, is constrained to be greater than 2.0 at z = 3. The
scale is chosen to approximate the Jeans length at z = 3 for common thermal histories (Gnedin 1997). This
constraint is plotted in Figure 4e{h (right panel).

5.5. Summary

Even in the standard COBE-normalized, n = 1, Ω0 = 1 model, the inclusion of a moderate fraction of
baryons or neutrinos can decrease �8 to an appropriate level. Models that accomplish this by the neutrino
fraction alone produce insu�cient power to explain damped Ly� absorption systems. Models that accomplish
this by the baryon fraction alone require baryon densities far in excess of big bang nucleosynthesis predictions.
Although a compromise of Ωb = 0:15 and Ω� = 0:25 would work, Figure 3 shows that no model in this scenario
�ts the �50=�8 and �8 constraints.
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However, the modest change of altering the tilt to 0.95 (with tensors) or adding a second degenerate
neutrino species opens regions of parameter space that match both large-scale structure and constraints from
damped Ly� systems. For example, models with Ωb = 0:1, h = 0:5, and either Ω� = 0:15 with n = 0:95 or
Ω� = 0:2 with N� = 2 produce �8 � 0:64 and match the high-redshift constraints with fH i � 0:2. fH i � 0:1
could be achieved by reducing the COBE normalization by 7% (a 1−� shift) and decreasing Ω� so as to keep
�8 constant. The higher value of Ωb|as compared to the canonical value of 0.05 from Walker et al. (1991)
but in agreement with Tytler et al. (1996)|is doubly useful in meeting the requirements: the suppression
due to baryons occurs at larger scales than that from neutrinos and therefore alters �8 more e�ectively, while
the additional baryons are available to produce high-redshift absorption. Moreover, this value of Ωb better
agrees with the baryon fraction in clusters (e.g. White et al. 1993b; David et al. 1995; White & Fabian 1995;
Evrard 1997) and that inferred from the Ly� forest (e.g. Miralda-Escud�e et al. 1996; Weinberg et al. 1997;
Zhang et al. 1997).

The more common solution to the problems of Ω0 = 1 CDM is to reduce the value of Ω0 to around 0:3.
As shown in Figures 3 and 4, this satis�es the quoted constraints when used with small baryon and neutrino
fractions. An important lesson of the �gures, however, is that small admixtures of baryons or neutrinos
can make signi�cant changes. For example, the Ω0 = 0:35 flat model presented here tends to underproduce
power even with only a 10% baryon fraction (Ωbh2 = 0:017). The lack of small-scale power in such models
places more stringent limits on Ω�=Ω0 than in high-density cosmologies; this implies a stronger limit for the
neutrino mass m� / Ω�h2. Of course, a small blue tilt would help the situation.

It is very interesting to note that early results from modeling the Ly� forest (x5.4, Fig. 4e{h) are more
e�ective at excluding models than constraints from damped systems. The limits suggested by Gnedin (1997)
would eliminate all of the Ω0 = 1 models studied in Figures 3 and 4. Perhaps models with blue tilts (n > 1)
would succeed in producing su�cient amounts of small-scale power, although of course they would require
more suppression of power at cluster scales relative to COBE. Constraints from the Ly� forest are still only
preliminary, but they appear to be quite promising.

6. Conclusion

In this paper, we have considered adiabatic models composed of baryons, cold dark matter, and massive
neutrinos. We have presented a �tting formula for the linear transfer function of such models, including the
possibility of Ω0 6= 1 and multiple degenerate neutrino models. The parameter space covered by the formula
is much larger than that previously available; we provide functions of space, time, and six cosmological
parameters. The accuracy is �< 5% in the central range of 0:06 �< Ω0h

2
�< 0:40, Ωb=Ω0 � 0:3, Ω�=Ω0 � 0:3,

and z < 30 and improves to �< 3% for models with baryon fractions below 10%.

An accurate, general �tting formula allows one to calculate statistics of the power spectrum as func-
tions of cosmological parameters quite e�ciently. As an example of this, we presented several di�erent
observational tests and displayed the constraints as functions of baryon fraction and neutrino fraction for
various choices of the other cosmological parameters. Baryons and neutrinos are both e�ective at suppressing
small-scale power relative to that on larger scales. We �nd that models with large baryon fractions are less
\observationally-challenged", in that a given reduction on cluster scales (i.e. �8) imposes less suppression on
very small scales, where power is needed to produce damped Ly� systems and other high-redshift objects.
Hence, if Ωb is as large as 0.1, as suggested by Tytler et al. (1996) for h = 0:5, then constraints on mixed
dark matter models are weakened. For example, with a tilt of n = 0:95, an MDM model with Ω� = 0:15
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and Ωb = 0:1 fares signi�cantly better than one with Ω� = 0:2 and Ωb = 0:05. Finally, we �nd that the
constraint on the small-scale power as derived from the slope of the column-density distribution of the Ly�
forest (Gnedin 1997) is an extremely powerful limit on MDM models. Further work is needed to test the
robustness of this inference.

The observations discussed above place constraints upon the neutrino mass, although these limits vary
with other presently unknown parameters, e.g. Ω0, h, Ωb, and n. Future CMB observations should precisely
determine these quantities (Jungman et al. 1996; Bond et al. 1997; Zaldarriaga et al. 1997) but will have
little leverage on Ω� (Ma & Bertschinger 1995; Dodelson et al. 1996a). However, the combination of CMB
data with large-scale structure observations will allow a robust determination of Ω�. Further observations
and modeling of damped Ly� systems and the Ly� forest will corroborate this but may not be clean enough
to yield a precise measurement. If Ω0 is found to be low, our sensitivity to the neutrino mass will be stronger
because the suppression of small-scale power depends on Ω�=Ω0; this di�ers from the trend in the CMB,
where lowering Ω0 shifts the e�ects of neutrinos to smaller angular scales. This illustrates the power of
combining cosmological data sets with regard to determining the properties of the dark matter.

The formulae in x3 of this paper are available in electronic form at

http://www.sns.ias.edu/�whu/transfer/transfer.html.

We also include a driver that calculates COBE-normalized �8 and other constraints from x5 as a function of
cosmological input parameters.
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