Slow Roll Relations

Recall the equation of motion for the unperturbed scalar field
\[\ddot{\phi}_0 + 2 \frac{\dot{a}}{a} \dot{\phi}_0 + a^2 V' = 0, \] \hspace{1cm} (1)

the definitions of the slow-roll parameters
\[\epsilon = \frac{1}{16\pi G} \left(\frac{V'}{V} \right)^2, \] \hspace{1cm} (2)
\[\delta = \epsilon - \frac{1}{8\pi G} \frac{V''}{V}, \] \hspace{1cm} (3)

where primes are derivatives with respect to the argument, \(\phi \) for \(V(\phi) \), and the formulae for the curvature and gravity wave power spectra
\[\Delta^2_\zeta = \left(\frac{H}{m_{pl}} \right)^2 \frac{1}{\pi \epsilon}, \] \hspace{1cm} (4)
\[\Delta^2_h = \left(\frac{H}{m_{pl}} \right)^2 \frac{4}{\pi}. \] \hspace{1cm} (5)

where \(m_{pl} = G^{-1/2} \).

1. Chaotic Inflation

Consider polynomial chaotic inflation where \(V = m^2 \phi^2/2 \).

- Write down \(\epsilon \) and \(\delta \). Inflation will occur if the initial field \(\phi_0(0) = \phi_i \) meets what conditions?
- Write down the slow roll equation in coordinate time \((d^2 \phi_0/dt^2 = 0; \delta \ll 1) \) with \(H(\phi) \) \((\epsilon \ll 1)\) evaluated with the Friedmann equation.
- Solve for \(\phi_0(t) \).
- Solve for \(a(t) \) using the \(H(\phi) \) relation and assume \(a(t = 0) = a_i \).
- Take \(\epsilon = 1 \) to define the end of inflation. Show that the number of efoldings of inflation can be written as
\[N = \ln(a_{end}/a_i) = 2\pi \frac{\phi_i^2}{m_{pl}^2} - \frac{1}{2}. \] \hspace{1cm} (6)

what is the condition on \(\phi_i \) such that sufficient inflation occurs \((N > 70)\). Is it compatible with the slow roll conditions?

- Write down the curvature power spectrum \(\Delta^2_\zeta \) and gravity wave power spectrum \(\Delta^2_h \) for this model in terms of \(\phi \). Taking \(\phi = \phi_i \) defined now as \(N = 70 \) above, what is the condition on \(m \) such that the rms is \(\Delta_\zeta = 10^{-5} \). What is tensor-scalar ratio \(\Delta^2_h/\Delta^2_\zeta \) for such a model?