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Inhomogeneous Cosmology

e Prerequisites: homogeneous cosmology at Ast 310 level

e Requirements: final project presented 1n class

e Gravitational Instability
e CMB Temperature Anisotropy (aka Ast 448)

e Large Scale Structure

e Dark Energy Models

e CMB Polarization (optional)

e Gravitational Lensing (optional)

e Ast 408: Formal Relativistic Perturbation Theory (Winter 2026)



Structure Formation

e Small perturbations from inflation over the course of the 14Gyr life
of the universe are gravitationally enhanced into all of the structure
seen today

e Cosmic microwave background shows a snapshot at a few hundred
thousand years old at recombination

e Discovery in 1992 of cosmic microwave background anisotropy
provided the observational breakthrough - convincing support for
adiabatic initial density fluctuations of amplitude 10~°

e Combine with galaxy clustering - large scale structure seen in
galaxy surveys - right amplitude given cold dark matter



CMB Temperature Anisotropy

e Planck map of the temperature anisotropy (first discovered by
COBE) from recombination:

—-300 —-200 —100 0 100 200 300
,UJKcmb



Gravitational Lensing

e Gravitational Lensing measures projected mass

e Planck CMB lensing map

lensing



Galaxy Redshift Surveys

e Galaxy redshift surveys measure the three dimensional distribution
of galaxies today:
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Curvature Fluctuations

e All structure originates from initial curvature fluctuations

e In the inflationary ACDM model these curvature fluctuations come
from quantum field fluctuations during inflation: d¢,,s = H /27

e Field fluctuations change the scale factor at which inflation ends

dina dt dt H
ne T 16 2m
e Using the equation V(9)

of state of ¢ we

can convert d¢/dt to ey

Hubble
friction

¢



Derivation in Slow Roll

e Rescaling the field fluctuation to absorb the scale factor, like with
comoving coordinates u = ad¢ brings the wave equation L1o¢ = 0
to
where 1) 1s the conformal time normalized to zero at the end of
inflation such that k77 = —1 denotes horizon exit

e Simple harmonic oscillator well inside the horizon

i+ ku=0



Derivation in Slow Roll

e Quantize the simple harmonic oscillator

~

o = u(k,7)a+u*(k,7)a’

where u(k, ) satisfies classical equation of motion and the
creation and annihilation operators satisty

a,a'] =1, al0) =0

e Normalize wavefunction |u, du/dn] = 1

u(k,n) = ki

€

1
V2k



Quantum Fluctuations

e Zero point fluctuations of ground state
(u”) =

= (0|(u*a’ 4 ua)(ua + u*a")|o)

= (0aa|0)|u(k, )|

<

= (0[a, a'] + afa|o)|u(k, 7))

0luTu|0)

= Ju(k, D = 57

e Classical equation of motion take this quantum fluctuation outside
horizon where it freezes 1in.



Slow Roll Limait

e (lassical equation of motion then has the exact solution

| (1 i ) o
V'2k k1)
e For |k7j| < 1 (late times, > Hubble length) fluctuation freezes in

, | 1Ha
lim v = —

k7| —0 VoE ki \/2k3
1 H
S —
¢ v 2k3

e Power spectrum of field fluctuations

AQ _ k3‘5¢‘2 _ H2
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Curvature Fluctuation

e Equation of state characterized by slow roll parameter e << 1

2 pe _ (de)dt)/2-V
T3 s (do/dt)*/2+V
L (do/d)’
V

and H? ~ 87GV/3 from Friedmann

_ 3 (dg/dt)*

€Eg ~

- (do/dE)’
v ST

and the variance of fluctuations per log wavenumber d In k
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Gravitational Waves

e Gravitational wave amplitude satisfies wave equation same as
scalar field LAy x =0

. a .
h_|_7>< _|_ Qah_hx —|— k2h+’x — O .

e Acquires quantum fluctuations in same manner as ¢.
Einstein-Hilbert action sets the canonical normalization: ADM

(4)R/167TG — (hw/2>2/167TG + .. ) and hz’j — h—|—€—|—ij -+ hxexij SO

H2
(2m)

A% = 161GA;, = 167G



Gravitational Waves

e Quantum fluctuations in gravitational waves follow a similar
prescription but are not enhanced by 1 /ey

e Gravitational wave power oc H? < V o< E} where Ej is the energy
scale of inflation

e Tensor-scalar ratio 1s therefore generally small

2
— = 16€H

A2
e Gravitational waves from inflation can be measured via its imprint
on the polarization of the CMB (current upper limits » < 0.032

95% CL)



Tilt
e Curvature power spectrum 1s scale invariant to the extent that A/
and €y are constant

A% o< H? /ey ~ const
e But with a small tilt that indicates inflation must end in ~60 efolds

din A% dinH  dlney
dlnk dink  dlnk

e Evaluate at horizon crossing where fluctuation freezes £ = aH

dln H N dln H

dlnk  dlna X
leGH - leGH

dink ~ dlna

song =1 = —4ey — 204

— 2(51 —+ GH)



Power Spectrum: Ag, ng

e Tilt in the slow-roll approximation

ng — 1 = —4deyg — 20,

e Power spectrum parameters:

, L ng—1
A2 = A
RS (0.05Mpc1>

with pivot scale 0.05 Mpc~! chosen to be approximately where the

data constrains inflation

e Ag,ng are two of the 6 ACDM parameters



CMB Parameter Inferences

e Spectrum constrains the matter-energy contents of the universe

e Planck 2018 results [arXiv:1807.06209]

TT+lowE TE+lowE EE+lowE TT,TE,EE+lowE TT,TE ,EE+]lowE+lensing
Parameter 68% limits 68% limits 68% limits 68% limits 68% limits
Qh>. ... 0.02212+0.00022  0.02249 + 0.00025  0.0240 + 0.0012 0.02236 + 0.00015 0.02237 + 0.00015
Qh>. . ... 0.1206 + 0.0021 0.1177 £ 0.0020 0.1158 £ 0.0046 0.1202 +£ 0.0014 0.1200 + 0.0012
1000yc . . . . .. .. 1.04077 £ 0.00047  1.04139+0.00049  1.03999 + 0.00089  1.04090 = 0.00031 1.04092 + 0.00031
T oo 0.0522 + 0.0080 0.0496 + 0.0085 0.0527 £ 0.0090 0.0544’_'8:885? 0.0544 £ 0.0073
In(101°Ay) . . . .. .. 3.040+0.016 3-018i8f8£ 3.052 +0.022 3.045+£ 0016 3044+ 0014
g oo e e 0.9626 + 0.0057 0.967+0.011 0.980 = 0.015 0.9649 + 0.0044 0.9649 + 0.0042
Ho [kms™'Mpc™'] .. 66.88+0.92 68.44 +£ 091 699+ 2.7 67.27 £ 0.60 67.36 £ 0.54

e Since 2018, CMB improvements from ground based instruments
mainly on lensing, polarization (including upper limits on 7)

e Note the low value of Hy compared with the Cepheid-SN distance
ladder



CMB Power Spectra

e Power spectra
of CMB

— temperature
— polarization

— lensing
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CMB Temperature Anisotropy

e Power spectrum shows characteristic scales where the intensity of
variations peak - reveals geometry and contents of the universe:
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Tensor Power Spectrum

e Gravitational waves from inflation (yet to be detected)
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Planck 2018 Predictions

e Observables at lower z < 1100 all predicted to high accuracy

TT+lowE TE+lowE EE+lowE TT,TE,EE+lowE TT,TE,EE+lowE+lensing

Parameter 68% limits 68% limits 68% limits 68% limits 68% limits
Q.o 0.02212+0.00022  0.02249 +0.00025  0.0240 + 0.0012 0.02236 = 0.00015 0.02237 = 0.00015
Q.. 0.1206 + 0.0021 0.1177 £ 0.0020 0.1158 + 0.0046 0.1202 + 0.0014 0.1200 + 0.0012
1000mc - oo . 1.04077 + 0.00047  1.04139 +0.00049 103999 + 0.00089  1.04090  0.00031 1.04092 = 0.00031
T 0.0522  0.0080 0.0496 + 0.0085 0.0527 + 0.0090 0.0544+0:0070 0.0544 + 0.0073
In(10"4,) . . . . ... 3.040 +0.016 3.018+0:020 3.052 +0.022 3.045 £0.016 3.044 +0.014
Mg oo 0.9626 + 0.0057 0.967 +0.011 0.980 + 0.015 0.9649 + 0.0044 0.9649 + 0.0042
Ho [kms™ Mpc™] 66.88 + 0.92 68.44 + 091 69.9 £2.7 67.27 £ 0.60 67.36 +£0.54
Qrvo 0.679 0.013 0.699 + 0.012 0.711+0933 0.6834 + 0.0084 0.6847 + 0.0073
Qoo 0.321 £0.013 0.301 £ 0.012 0.289+0:92¢ 0.3166 + 0.0084 0.3153 + 0.0073
Qul .o 0.1434 + 0.0020 0.1408 + 0.0019 0.1404+0-0034 0.1432 £ 0.0013 0.1430 + 0.0011
Quh® .. 0.09589 +0.00046  0.09635 +0.00051  0.0981*)-901¢ 0.09633 + 0.00029 0.09633 + 0.00030
T8 e 0.8118  0.0089 0.793 £ 0.011 0.796 +0.018 0.8120 + 0.0073 0.8111 + 0.0060
S5 = 03(Qm/0.3)%° 0.840 + 0.024 0.794 + 0.024 0.781+0932 0.834+0.016 0.832+0.013
oy 0P L 0.611 +0.012 0.587 +0.012 0.583 +0.027 0.6090 + 0.0081 0.6078 + 0.0064
Ze v 7.50 +0.82 7115091 7.1070%7 7.68 +0.79 7.67+0.73
10045 ... 2.092 +0.034 2.045 +0.041 2.116 £ 0.047 2.101+3%31 2.100 + 0.030
10°45e7 ... ... 1.884 £0.014 1.851 £0.018 1.904 = 0.024 1.884 +0.012 1.883 = 0.011
Age[Gyr] . ... ... 13.830 + 0.037 13.761 +0.038 13.64*016 13.800 + 0.024 13.797 +0.023
Ta e 1090.30 + 0.41 1089.57 + 0.42 1087.8*16 1089.95 + 0.27 1089.92 +0.25
roMpel ... ... .. 144.46 +0.48 144.95 £ 0.48 144.29 + 0.64 144.39 +0.30 144.43 £0.26
1006, .. ....... 1.04097 £ 0.00046  1.04156 +0.00049  1.04001 +0.00086  1.04109 = 0.00030 1.04110 + 0.00031
Zdrag < e 1059.39 + 0.46 1060.03 + 0.54 1063.2 + 2.4 1059.93 = 0.30 1059.94 = 0.30
Farag [Mpc] . ... L. 147.21 £0.48 147.59 +0.49 146.46 = 0.70 147.05 £ 0.30 147.09 £ 0.26

0.14054 + 0.00052
3411 +£48

0.01041 + 0.00014
0.4483 + 0.0046

0.14043 + 0.00057
3349 + 46
0.01022 + 0.00014
0.4547 + 0.0045

0.1426 = 0.0012
3340781
0010197566633
0.4562 + 0.0092

0.14090 + 0.00032
3407 + 31

0.010398 + 0.000094
0.4490 + 0.0030

0.14087 + 0.00030
3402 + 26

0.010384 + 0.000081

0.4494 + 0.0026



CMB after Planck

e Polarization and higher resolution
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CMB after Planck

e Gravitational lensing power spectrum
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Matter Power Spectrum
e Compilation of Redshift Surveys, Lensing, CMB
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BAO and SN

e Baryon Acoustic Oscillations as transverse and radial standard
rulers (DESI DR?2)

e SN as standard candles (DES Y5) - is ACDM now disfavored?
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Drag Aside

e BAO best measure the sound horizon at the drag epoch 15 > 7.,
later than recombination due to low baryon momentum ratio R

e A super old plot illustrating this from Hu & Sugiyama
astro-ph/9510117

Acoustic Visibility




Distance Parameters

e BAO measure both the excess clustering in angular and redshift
scales as a function of redshift or scale factor a = (1 + z)~!

e Angular dimension measures DD, = D4 the comoving angular
diameter distance

e Redshift dimension measures Dy = 1/H the expansion rate

e Recall the FRW line element gives the separation between two
points separated by dz, df, do

ds* = a*[—dn? + dD* + D% (d#* + sin? 0d¢?)] = a*[—dn* + d%?]
to convert to dz recall that photons travel on null ds? = 0 radially
dn=dt/a = (dt/dIna)dlna/a =dIna/aH = dz/H = dD

so the separation dz corresponding to the BAO measures H(z2)



Distance Parameters

o If K =R 2%+#0, Dy # D -to visualize suppress one sky
dimension so angular separation is do? = df? + sin® 0d¢?

e Define D 4 such that a transverse scale d>.(= r4) obeys

dX. = DAdOé

Draw a circle at the distance D, its radius is D4 = Rsin(D/R)

D A:Rsin(D/lR)




FRW Geometry

e Angular diameter distance

e Positively curved geometry D4 < D and objects are further than
they appear

e Negatively curved universe R 1s imaginary and
Rsin(D/R) =i|R|sin(D/i|R|) = |R|sinh(D/|R|)
and D4 > D objects are closer than they appear

e Flatuniverse, R —»ococand D4 =D



FRW Geometry

e What’s the distance d¥ between x; = (61, ¢1, 21) and

Xy = (0o, ¢, 22), separated by angle da and radial distance
dD = dz/H(z)?




Angular Diameter Distance

e For small angular and radial separations, space 1s nearly flat so that
the Pythagorean theorem holds for differentials

dx? = dD? + D%do?

e Now restore the fact that the angular separation can involve two
angles on the sky - the curved sky is just a copy of the spherical
geometry with unit radius that we were suppressing before

d¥* = dD? + D%do”
= dD? + D% (d6? + sin® 0d¢?)
e [, useful for describing observables (flux, angular positions)

e [ useful for theoretical constructs (causality, relationship to

temporal evolution) but also comparisons between photons emitted
at different redshifts, e.g. radial BAO



Luminosity Distance

e Photons propagate as in special relativity in comoving/conformal
coordinates: 1gnore scale factor in right units!

e Given a physical luminosity at emission L. = dFE/dt in comoving
coordinates £ = FE /(1 + z) for the wavelength conversion and
dn = (1 + z)dt for the time interval so the “comoving luminosity”

L=1L/1+z)

e So flux F' = L /47 D% defines luminosity distance d;, = (1 + 2)Dy
and the relative magnitude of high and low redshift supernovae

puw=m — Mgq = blogo[(1 + 2)D4/1Mpc| + 25

where Mjyq 1s the absolute magnitude at 10pc and can be
(controversially... Hy!) calibrated by the distance ladder through
Cepheids, TRGB, etc



On Time

e Despite GRs

coordinate invariance,
preferred cosmic

time 1s slicing where
matter 1s homogeneous
and 1sotropic on average

Cosmological constant 1s
a spacetime scalar - with
no matter, no preferred
time: all 3 FRW metrics

During inflation,
the field and its surface of

homogeneity 1s the clock!

0 Closed Flat Open
=-1 ]
-
0 7 m0 7 m0 7 bis
X X X

FIG. 1. Conformal diagrams showing portions of de Sitter space charted by closed (left), flat (middle) and open (right)
foliations. Thick lines indicate coordinate singularities. Superimposed are lines of constant isotropic time and radius for each

foliation.

De Sitter Charts

One special feature of de Sitter space is that there is
no preferred temporal coordinate to define a foliation
with respect to. Sections of the full spacetime can
therefore be charted by isotropic coordinates where the
constant time slices have positive, negative or zero
spatial curva-ture. The conformal diagram for de Sitter
space can be constructed from the positive curvature
(closed) foliation of the spacetime, where the line
element takes the form

. 1’ . . 0
ds? = (r) (—dn? +dx® + sin? xdQ3),  (22)
sin7

with the dimensionless conformal time 7 € (—m,0) and
the comoving radial coordinate x € [0,7]. Here H? =
Acsr/3. We use the (7, x) conformal diagram throughout
to represent the spacetime.

Closed, flat, and open isotropic coordinates can al-
ternately be used to foliate portions of de Sitter space
and are useful in finding solutions to the background
massive gravity equations and for investigating pertur-
bations. With the transformations

sinh(Ht.) = — cotn,
Hr, = 2tan(x/2), (23)

the line element (22) takes its closed isotropic form

cosh (Ht.)

2 _ 42
ds® = dtc-‘r{71+<Hu>2#l

2
] (dr2 +72dQ3), (24)
where t, € (—00,00), 7. € [0,00). These coordinates
chart the entire de Sitter spacetime. Similarly, defining
the coordinates

Sty — _ cos x.+ COS ”.
sinn
Hrp= —>2X (25)
cos X + cosn
obtains the flat isotropic form
ds® = —dt} + ' (dr} + r}d03), (26)

where Hty € (—00,00), Hry € [0,00). These coordinates
chart the upper left half of the conformal diagram n >
x — 7. Finally, the coordinate definition

In [tanh(Ht,/2)] = tanh~* (S0 |
R

2tanh ™' (Hr,/2) = tanh ™" <m> , (27)
cos1
gives the open isotropic form

sinh (Ht,)
1—(Hr,)?/4
where Ht, € (0, o), Hr, € [0, 2). These coordinates
chart the upper left wedge of the conformal diagram n >
X — 7/2, corresponding to 1/8 of the space.

2
ds? — ,dt3+[ ] (@2 +12402),  (28)



Temperature Anisotropy



Filtered Maps and Power Spectrum

e Take original
64° x 64° map

e Band filter to a range

of multipole moments




Schematic Outline

e Take apart features in the power spectrum
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Schematic Outline

e Take apart features in the power spectrum
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Last Scattering

JitkD )

e Angular distribution T
of radiation 1s the 3D k
temperature field

Doppler
effect

projected onto a shell
- surface of last scattering

e Shell radius
1s distance from the observer

JitkD )

to recombination: called
the last scattering surface

e Take the radiation
distribution at last scattering to also be described by an isotropic
temperature fluctuation field ©(x)



Astro-Particle Dictionary

Astro and physics use different words to describe same thing:
e Specific intensity I, = 4wv® f <+ phase space distribution f
I, = AE/AtAvAQdA: “energy per unit everything”
Black Body I, = B, ++ f = (e/T — 1)~
e Radiative transfer equation
dl,/dr = —1I,+ S,
+ Boltzmann equation D f /Dt = C'[f]
e Formal solution with 7 increasing along photon path
L(1)=L(0)e ™ + [/ dr’e™ ™S,
< 1ntegral approach to Boltzmann equation with 7 decreasing,
optical depth in front of source
e Absorption, emission, scattering <+ Collision term

e Einstein relations <+ Single matrix element
e dl,/dr = 0 <> Liouville equation D f /Dt = 0



Formal/Integral Solution

e Initial radiation field 7,,(0) absorbed and replaced with source
emission until observed at [, (1)

Sy

IV(O) 7 : 7 7 > IV(T:)

0 T T

e Observer 1s on the right at the end of path, optical depth in front of
source is 7 — 7’ (in general, frequency v dependent, but not for
Thomson scattering



CMB Spectrum

e Modern measurement from COBE satellite of blackbody
spectrum. T = 2.725K giving 0, h? = 2.471 x 107°

GHz

200 400 600
T T T T T T T T T T

error X 50

5 10 15
frequency (cm1)




Black Body Formation

o After z ~ 106 photon creating . bla'c'kb;d-y------- Y

processes v + e~ > 2y + e

005

and bremmstrahlung

&
e”+pre +Fptoy S b L ]
[ ~| u-distortion ]
drop out of equilibrium :
0.151 53 5 7
. /10°=3.
for photon energies £/ ~ T'. )
. . .1.6_5 P ..i.(.;_4 P ."1.6_3 P ..i..o.l_2 P ."1.6_1 P ......Il P ....II() P
e Compton scattering remains pIT:

effective 1n redistributing energy via exchange with electrons

e Out of equilibrium processes like decays leave residual photon
chemical potential imprint

e Observed black body spectrum places tight constraints on any that
might dump energy into the CMB



Radiative Processes

e Bremsstrahlung collision term (k = h=c =1, x = hv/kT,)

1. -1/ e ”
Cglf] ~ nineor (E) ZZCYT%;), 1—(e"=1)f]

where ~ absorbs a dimensionless Gaunt factor: note density and
temperature dependence

e Double Compton collision term

—X

Cdc[f] ~ NeO0T <£> @

m

€

1 ("~ 1)f] / drc'(1+ f)f

T3

wins at high 7. and low number densities but requires some seed
photons f = 0



Recombination

e Maxwell-Boltzmann distribution determines the equilibrium
distribution for reactions, e.g. big-bang nucleosynthesis,
recombination:

p+e < H+7y

3/2
Mple =57 ((Mel N7 Guptpie—yuan) /7
ng 27

where B = m, + m. — myg = 13.6eV 1is the binding energy,
9p = 9ge = 39m = 2, and pi, + p. = pp in equilibrium

e Define 10nization fraction

Np = Ne = LT

ng =ny, —ne = (1 — o)y



Recombination

e Saha Equation

2

NeMyp X

NN 1 — e

1 T 3/2
wla)
Ny 2T

e Naive guess of 7, = 5 wrong due to the low baryon-photon ratio

— T, =~ 0.3eV so recombination at z, ~ 1000

e But the photon-baryon ratio 1s very low

My = /1y ~ 3 x 107°Qh°



Recombination
e Eliminate in favor of 7, and B/T through

n, = 0.244T% % — 3.76 x 10

e Big coefficient

T2 B\ 3>
c =316 x 10" [ = —B/T
1 — 2, (T) ‘

T=1/3eV —2,=0.7,T=0.3eV — 2, = 0.2

e Further delayed by inability to maintain equilibrium since net is
through 2~ process and redshifting out of line



Recombination

e Relatively sharp transition to z. < 1 in less than an efold

redshift z
104 103 102
e— I
-
S
9 10!
S
.E Saha
.§ 102
=
S
2-level
103
| | | ] 1 111 l | | | 1 1 111
104 103 102

scale factor a



Angular Power Spectrum

e Take visibility function x.n.orae™" — 6(D — D,)

O(h) = /dD O(x)5(D — D,)

where D 1s the comoving distance and 1), denotes recombination.

e Well under curvature scale, describe ©(x) by its Fourier moments

e Orthogonality and Completeness (forward and inverse transform):

/d?’xei(kk/)'x = (27)%0(k — k')

d3k k- (x—x/ /




Angular Power Spectrum

e Statistical homogeneity and 1sotropy

(O(x)O(x')) = C(lx — x|)

function of separation only

BO(x+d)O(x' +d)) = (0(x)O(x))

—k-x+1k’-x 7 . * k k/
| 57 | e I CRSETS)

- [ G [ G e o)

requires the 2pt Fourier correlation to be described by a power

spectrum

(©7(k)O(K)) = (27m)"d(k — k') Pr(k)



Angular Power Spectrum

e Correlation function and power spectrum are Fourier conjugates

Cllx—x) = (0000 = [ 155 Pa(h

e Log weighted power spectrum determines variance

©00) = [ Gsri) = [ Fompr = [ A

A} = = Prf= Pr()

272

and 1s the contribution to the total variance per log interval in &

e A7 dimensionless, whereas Pr has dimensions of [L7], e.g.
(h~'Mpc)? for the power spectrum of a redshift survey



Nonlinear regime

. . e 10" —————
e Inflationary initial S
linear
regime

non-linear

perturbations provide ol
density perturbations 10’
6 = 0p/p that grow as g o'}
0 o< a in the linear regime

o A =EkP(k)/2m*
contribution to variance A
(6%) per d1In k ’ D keMpey

e Linear theory would predict that for & > 0.1hMpc~!, (6?) > 1.

e Linear approximation breaks down at this point and we must
follow the nonlinear equations

e Nonlinearities further enhance the formation of structure



Convolution

e Convolution 1n real space often occurs, e.g. smoothing of field by
telescope beam but also any smoothing [ d*zW (x) = 1

Fyv (x) = / dgyvvx— y)F(y)

d3

g /éi’;’ i jon

_ / (Zﬂ?SW(k)F(k)eik'X

Fy (k) = W(k)F(k)

e Smoothing acts as a low pass filter: if 1/ (x) is a broad function of
width L, W (k) suppressed for & > 27/ L



Convolution

e Filtered Variance

(Fw(x)Fw(x)) = / (;ZW]; / (Zf);e“k—k’)'xw*(k)F(k’)>W*(k)W(k’)

- [ P

e Common filter is the spherical tophat:

We(x)=Vs! <R
WR(X) =0 x> R

e Fourier transform

3
Wr(k) = g(smy —ycosy),  (y=kR)



Current Normalization

e Normalization 1s often quoted as the top hat rms of the density field

R—/dlnkAQ( )|Wr(k)|?

where observationally ogj, -1\, = 03 =~ 1

e Note that A%(k) itself can be thought of as the variance of the field
with a filter that has sharp high and low pass filters in k-space

e Convention 1s that oy 1s defined against the linear density field, not
the true non-linear density field



Spatial Curvature

e To include spatial curvature: note that the important property 1s
that the k-decomposition is a complete set of modes.

e General prescription: for a curved space 1s the eigenfunctions of
the Laplacian (with covariant derivatives) are a complete set

V2l = k2" * — V2Q(n, D) = —k*Q(1, D)

e This is a 3D generalization of the 2D sphere for which we do the
same thing next

VQ}/Zm — _€(€ =+ 1)}/€m

e For solving dynamics of £ mode and source function, changes due
to small curvature currently allowed |Q | < 102 are negligible
for all observable modes and only distinction is in mapping of D, n
to wavelength 27 /k through angular diameter distance D 4 (D).



Angular Power Spectrum

e Temperature field

d°k
(2r)?
Multipole moments O(n) = ) |, O, Ys,

O(h) = (k)¢ P-n

e Orthogonality:

/ dAY} (R) Yo (B1) = SogrSummn

Completeness:
ZYM )Yem () = 6(¢ — ¢)5(cos 6 — cos )

e Statistical 1sotropy:

<@Zm @E’m’ > — 5%’ 5mm’ CE



Angular Power Spectrum

e Expand out plane wave in spherical coordinates

M PR = dr Y i jo(kD.)Y, (K) Yom (D)
m
e Aside: as in the figure, 1t will often be convenient when
considering a single k mode to orient the north pole to k. This
simplifies the decomposition since

- . 20 + 1
Yvﬁm(k) — }/ém(o) — 5m0




Angular Power Spectrum

e Power spectrum

d°k v, \
Opm = / (QW)S@(k)Zlm Je(kD,)Y, (k)

(00 Orm) :/(;ljr];?) (4m)%i " jo(k D) jor (kD) Yom (K)Y iy (K) Pr (k)

= 5gg/5mm/47'(' / dIn k]?(/{D*)A%(/{)

with [ 7 j7(z)dInz = 1/(20(¢ + 1)), slowly varying A7

e Angular power spectrum:

AmAZ(()D,) 2w
2000 4+1)  L(L+1)

Co = A% (¢/D,)



Angular Power Spectrum

e The log power spectrum (sometimes called D,)

00+ 1)
2T

so that a scale invariant spectrum A% =const is scale invariant in

Cg%A?r

the log power spectrum

e Related to the contribution to the variance per log interval in ¢

emem) = eoen) =3 X e =y g

1

with the two being equivalent if £ > 1



Thomson Scattering

e Thomson scattering of photons off of free electrons 1s the most
important CMB process with a cross section (averaged over
polarization states) of

87 a?
o —
3Im?2

e Density of free electrons in a fully 1onized x. = 1 universe

— 6.65 x 10™%°cm?

ne = (1-7Y,/2)xz.ny = 107°Qh*(1 + 2)’cm ™,

where Y, =~ 0.24 is the Helium mass fraction, creates a high
(comoving) Thomson opacity

T = N.OTa

where dots are conformal time 7 = [ dt/a derivatives and 7 is the
optical depth.



Tight Coupling Approximation
e Near recombination z ~ 10° and ,h* ~ 0.02, the (comoving)
mean free path of a photon

1
Ao = — ~ 2.5Mpc
T

small by cosmological standards!

e On scales A > A¢ photons are tightly coupled to the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

e Specifically, their bulk velocities are defined by a single fluid
velocity v, = v, and the photons carry no anisotropy in the rest
frame of the baryons

e — No heat conduction or viscosity (anisotropic stress) in fluid



Full Equations of Motion

e Continuity

@:—§07—®, 51):—/{7?}5—3@
which expresses number conservation in the presence of velocity

divergence and local expansion, with p, = myn,

e Navier-Stokes (Euler + heat conduction, viscosity)

k
v, = k(O+V)— 6™~ T(vy — p)

@b = —gvb—l—k\lf+7'(v7 —Ub)/R

where the photon momentum changes due to pressure, gravity and
anisotropic stress 7, gradients (from radiation viscosity) and a
momentum exchange term with the baryons and are compensated
by the opposite term in the baryon Euler equation



Zeroth Order Approximation

e Momentum density of a fluid is (p + p)v, where p is the pressure
e Neglect the momentum density of the baryons

R = (Po +Pe)vs _ pot+po _ 3ps
(py + D)V pyt+Dpy Apy

Q 2
~ 0.0 ol ( a )
0.02 10-3

since p., o< T* is fixed by the CMB temperature 7' = 2.73(1 + 2)K
— OK substantially before recombination

e Neglect radiation in the expansion (not a good approx, just for
pedagogical start)

2
P _ 36 (Sl ( a )
Or 0.15 10—3

e Neglect gravity (obviously just for pedagogy)




Fluid Equations

e Density p, o< T* so define temperature fluctuation ©

0T

e Fourier space continuity equation

57 = —(1 +w,)kv,

: 1
@ — —gk?}7

e Euler equation (neglecting gravity)

. a kc?
Ufy = —(1 — Sw,y)a?}fy —+ m&y

3
Uy = kciidy = 3c’k©



Oscillator: Take One

e Combine these to form the simple harmonic oscillator equation
O+ k0 =0
where the sound speed 1s adiabatic

) _ 0Py _ Dy

C p—
0Py Pn

here ¢? = 1/3 since we are photon-dominated

e General solution:

O(0)
kc,

O(n) = O(0) cos(ks) + sin(ks)

where the sound horizon is defined as s = [ c.dn



Harmonic Extrema

e All modes are frozen in | (a) Peak Scales

Hil2 i Initial conditions (k<<7t/s..) ]

at recombination (denoted

with a subscript *)

>
+
o Temperature perturbations @
of different amplitude st peur (s
for different modes. “Hir 2nd peak (k=2m/s,) ]
e For the adiabatic 02 04 06 08

/8
(curvature mode) 1nitial conditions

e So solution



Harmonic Extrema

e Modes caught in the extrema of their oscillation will have
enhanced fluctuations

k.S, = nmw

yielding a fundamental scale or frequency, related to the inverse
sound horizon

kA:T(/S*

and a harmonic relationship to the other extremaas 1 : 2 : 3...



Temperature Anisotropy

e Spatial oscillations frozen at recombination; photons then stream

e Viewed at distance D, as angular anisotropy L ~ kD,

Oscillations




Peak LLocation

e The fundmental physical scale 1s translated into a fundamental
angular scale by simple projection according to the angular
diameter distance D 4

QA = )\A/DA
614 = ]CADA

e In a flat universe, the distance 1s ssmply D4 = D = 19 — 1. = 10,
the horizon distance, and k4 = 7/s, = V37 /My SO

(914%E
7o

e In a matter-dominated universe 1 o< a'/? so 04 ~ 1/30 ~ 2° or

gA ~ 200



Curvature

e In a curved

universe, the apparent g o \
or angular diameter : .
distance 1s no longer

the conformal distance

D4 = Rsin(D/R) # D A

e Objects in a closed

universe are further than
they appear! gravitational lensing of the background...

e Curvature scale of the universe must be substantially larger than
current horizon



Curvature 1n the CMB

e Curvature and A — consistent with flat ACDM

B O .
100 F Ko
_ Q4 ]
80 |
~~ [
M L
=60 [
~—" |
B~ i
< i
40
20
! L 1ol 1 L 3 v el L L1 o gl 1 L
W.Hu 11/00 10 100 1000
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Fixed Deceleration Epoch

e CMB determination of matter density controls all determinations
in the deceleration (matter dominated) epoch

e Planck: Q,,h* = 0.1426 & 0.0025 — 1.7%

e Distance to recombination [, determined to %1.7% ~ 0.43%
(ACDM result 0.46%; Ah/h ~ —AQ,,h? /€, h?)
[more general: —0.11Aw — 0.48Alnh — 0.15AIn 2, — 1.4AIn Qo = 0]

e Expansion rate during any redshift in the deceleration epoch
determined to £1.7%

e Distance to any redshift in the deceleration epoch determined as

= dz
D(z) =D, —
D=0 [ i
e Volumes determined by a combination dV = D%4dQdz/H (z)

e Structure also determined by growth of fluctuations from z,




Dark Energy

e Flat universe indicates critical density and implies missing energy
given local measures of the matter density “dark energy”

e Dy =D = [ dz/H(z) also depends on dark energy density g
and equation of state w = Pge/ Pde-

ok (a) Dark Energy 1L (b) Equation of )
' |[  State -

80

N
(en]
—_—

20
Qe

' 0.2 0.4|0.6 0.8 | | 1T -08-06 -0|.4 -02 0 | | A
10 100 1000 10 100 1000



Curvature and Dark Energy

e Curvature can adjust the relative distance between BAO at 2z < 1
and CMB at z = 1100

e () = 0.003 could alleviate the current percent level discrepancy

Dy /rq [fid] Dy /rq [fid] Dy /rq [fid]
* ¢ BAO data

1.050

1.0257

1.000

"L — baseline ACDM
no lowE lg(m,) =
----- curvature lg(m,) =
= Wy — W,
i ) 3 ! : 3 | 2 3
z ’ Z

0.9757

0.95071

Still requires dark energy to explain SN at z < 0.1, here axions,
but no phantom w < —1

Expansion rate at recombination or matter-radiation ratio enters
into calculation of k4 - other possibilities



Doppler Eftect

e Bulk motion of fluid changes the observed temperature via

(AT) )
S — nNn-v
1 dop !

e Averaged over directions

(AT > vy
T rms \/§
e Acoustic solution

D —ﬁ@ = —3ch O(0)sin(ks)

V3 k k
= O(0)sin(ks)

Doppler shifts



Doppler Peaks?

e Doppler effect for the photon dominated system 1s of equal
amplitude and 7 /2 out of phase: extrema of temperature are
turning points of velocity

e Effects add in quadrature:

(%) = 0°(0)[cos®(ks) + sin*(ks)] = ©7(0)

e No peaks in k spectrum! However the Doppler effect carries an
angular dependence that changes its projection on the sky

n-v,xn-k



Doppler Peaks?

e Coordinates where z || k

YioYeo — Yiti0

recoupling j,Yyo: no peaks in Doppler effect

temperature

last scattering surface




Radiation Transfer Function

e Geometry of projection dictates how power in inhomogeneity (k)
transfers to power in anisotropy ({)

1072 s
o “Acoustic | |
O
2. 103
2
“~Reionization
1041 Temperature | [ Polarization




Secondary Anisotropy

Even though 7 ~ 0.06 and v ~ 102 and dark energy dominates,
scattering and gravitational anisotropy from z < z, 1s small

e Can understand most of this in terms of the geometric projection of
radiation sources in the “Limber approximation”

100 e
F (a) gravitational

(b) scattering

lensing

A
:|'|I| 3
1] 2
n “\
I'\ Iy M1
) ! .

10 ; ISW

At (uK)

il




Polarization Transter (Preview?)

e A polarization source function with £ = 2, modulated with plane
wave orbital angular momentum

e Scalars have no 5B mode contribution, vectors mostly 5 and tensor
comparable B and E

(a) Polarization Pattern (b) Multipole Power

” 1.0 T
s - E i
= T2 0.5F “ .
Q B i
U - | o ]
: .

Q

Q

>

Tensors




Restoring Gravity

e Take a simple photon dominated system with gravity

e Continuity altered since a gravitational potential represents a
stretching of the spatial fabric that dilutes number densities —
formally a spatial curvature perturbation

e Think of this as a perturbation to the scale factor a — a(1 + ®) so
that the cosmogical redshift 1s generalized to
a a

- = -+
a a

so that the continuity equation becomes

. 1 .
@: —gkvv—q)



Restoring Gravity

e (Gravitational force in momentum conservation F = —mVW
generalized to momentum density modifies the Euler equation to

0 = k(O + 0)

e General relativity says that ® and W are the relativistic analogues
of the Newtonian potential and that & ~ —W.

e In our matter-dominated approximation, ¢ represents matter
density fluctuations through the cosmological Poisson equation

k*® = 4nGa’p,\,,

where the difference comes from the use of comoving coordinates
for k (a® factor), the removal of the background density into the
background expansion (pA,,) and finally a coordinate subtlety that
enters into the definition of A,



Constant Potentials

¢ In the matter dominated epoch potentials are constant because
infall generates velocities as v,, ~ knW

e Velocity divergence generates density perturbations as
A~ —knu, ~ —(kn)*W

e And density perturbations generate potential fluctuations

_ArGapA 3H26L2A A

)] ~ —
2 2 )2 (kn)2

~ —

keeping them constant. Note that because of the expansion, density
perturbations must grow to keep potentials constant.



Constant Curvature

e More generally, if stress perturbations are negligible compared
with density perturbations ( 0p < dp ) then potential will remain
roughly constant

e A variant called the Bardeen or comoving curvature 1s strictly
constant

R = const ~ 5+3w<b
3+ 3w

where the approximation holds when w ~const.

e This quantity 1s the direct prediction from inflation: the curvature
or local scale factor fluctuation on surfaces of spatially constant
inflaton field

e Geometry: a curvature fluctuation provides local change in space
curvature 0 K and to the local observer looks just like separate
FRW universe with X = K + § K, which is constant in time



Oscillator: Take Two

e Combine these to form the simple harmonic oscillator equation

. L2 .
@+éﬁ@:—§m—¢

e In a CDM dominated expansion ® = ¥ = 0. Also for photon
domination ¢? = 1/3 so the oscillator equation becomes

O+ U+ Ak2(O+ W) =0
e Solution is just an offset version of the original
O+ Ul(n) =[O + V](0) cos(ks)

e O + W is also the observed temperature fluctuation since photons
lose energy climbing out of gravitational potentials at
recombination



Effective Temperature

e Photons climb out of potential wells at last scattering
e Lose energy to gravitational redshifts

e Observed or effective temperature

O+ WV
e Effective temperature oscillates around zero with amplitude given
by the initial conditions

e Note: 1nitial conditions are set when the perturbation 1s outside of
horizon, need inflation or other modification to matter-radiation
FRW universe.

e GR says that initial temperature 1s given by initial potential



Sachs-Wolfe Eftect and the Magic 1/3

e A gravitational potential 1s a perturbation to the temporal
coordinate [formally a gauge transformation]

ot
t
e Convert this to a perturbation in the scale factor,

A 3(1-+w)/2
ol ap1/2

where w = p/p so that during matter domination

=V

oa 20t
a 3t
o CMB temperature is cooling as T o< a™ ! s0

5T 5 1
O+v="qU=—40=_U
A a 3



Sachs-Wolfe Normalization

e Use measurements of AT /T = 10~ in the Sachs-Wolfe effect to
infer A%

e Recall in matter domination ¥ = —3R /5
14 1 1
(L+1)C ~ AL~ A
2T 25

o Thus, amplitude of initial curvature fluctuations is A ~ 5 x 107

e Modern usage: acoustic peak measurements plus known radiation

transfer function is used to convert AT /T to Ag. Best measured at
k = 0.08 Mpc~! by Planck

e Current convention set in the WMAP era
lf ns—1
A%(k) = A, ( 1)
0.05Mpc
Ay ~ 2.5 x 1077 (slightly smaller since ng, — 1 ~ —0.03 ~ —0.04)




Baryon Loading
e Baryons add extra mass to the photon-baryon fluid

e Controlling parameter 1s the momentum density ratio:

Py ¥ P zSOQth( a )
Py + Py 10-3

of order unity at recombination

R

e Momentum density of the joint system is conserved

(/07 - p'y)vv T (,Ob + pb)vb ~ (pv + Dy T+ Pb T ,07)?}7
= (1+ R)(py + py) vy



New Euler Equation

e Momentum density ratio enters as

(14 R)vyp] = kO + (14 R)kV
e Photon continuity remains the same

. 3 |
© = —g?},yb—q)

e Modification of oscillator equation

[(1+ R)O] + %/@2@ = —%/8(1 + RV — [(1 4 R)D]



Oscillator: Take Three

e Combine these to form the not-quite-so simple harmonic oscillator

equation
d : k2 d .
2 —2 27.2 2 9
—(c, 7O kO = ——WV —ci—(c. " P
CS d/r] (CS ) _|_ CS 3 CS d/r} (CS )
where ¢ = py/pp
2o 1
31+ R

e In a CDM dominated expansion ® = U = 0 and the adiabatic
approximation R /R < w = ke,

O+ (1+ R)V|(n) =04+ (14 R)¥](0)cos(ks)



Baryon Peak Phenomenology

e Photon-baryon

ratio enters in three ways
e Overall larger amplitude:

0 + (14 R)W](0) = %(1 +3R)T(0)

e Even-odd peak modulation of

effective temperature | /s

© + Upeass = [£(1+87) — 3R] S (0)
O+ U, — [0+ U, = [-63]%@(0)

e Shifting of the sound horizon down or /4 up

lyxVvV1I+ R



Photon Baryon Ratio Evolution

e Actual effects smaller since X evolves

e Oscillator equation has time evolving mass

, d

ch—n(cf@) +c2k*0 =0

e Effective mass is is m.z = 3¢, * = (1 + R)
e Adiabatic invariant

E 1 1
= §meﬁwA2 = 5308_21@03142 x A%(1+4 R)Y2 = const.

W

e Amplitude of oscillation A o< (1 + 1)~/ decays adiabatically as
the photon-baryon ratio changes



Baryons in the CMB

e Modulation, amplitude, sound horizon scale

100 .
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Oscillator: Take Three and a Half

e The not-quite-so simple harmonic oscillator equation 1s a forced
harmonic oscillator
k* d

((38_2@) —+ C§k2@ = —g\If — Czd—n(cs_2q))

d

¢ —

dn
changes 1n the gravitational potentials alter the form of the

acoustic oscillations

e If the forcing term has a temporal structure that is related to the
frequency of the oscillation, this becomes a driven harmonic
oscillator

e Term involving W is the ordinary gravitational force

e Term involving ® involves the ® term in the continuity equation as
a (curvature) perturbation to the scale factor



Potential Decay

e Matter-to-radiation ratio

P 24th2( a )
Pr 103

of order unity at recombination in a low {2,,, universe

e Radiation 1s not stress free and so impedes the growth of structure

20 = 4nGa’p, A\,

4

A, ~ 40 oscillates around a constant value, p, o< a~" so the

Netwonian curvature decays.

e General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sound
horizon or Jeans scale



Radiation Driving

e Decay 1s timed precisely to drive the oscillator - close to fully
coherent

[©+ Ul(n)| =1]1©+ T](0)+ AV — AD|

— %\p(o) —20(0)| = !§\If(0)|

NTATYT=
lA A‘ A\ /o :
dr]VI]; ' ' @+‘P ;

& L Dol
5 15 20
ks/mt

e 5x the amplitude of the Sachs-Wolfe effect!



External Potential Approach

e Solution to homogeneous equation

(14 R) Ycos(ks), (1 + R)™Y4sin(ks)

e Give the general solution for an external potential by propagating
impulsive forces

(1+ R)V*0(n) = ©(0)cos(ks) + g [@(O) + iR(O)@(O) sin ks

]
+ g / df (1 + R')**sin[ks — ks']F (1)
0

where

oo . . 2
Fe_b_ 5 _Fy
1+ R 3

e Useful if general form of potential evolution 1s known



Cold Dark Matter in the CMB

e Hydrostatic equilibrium, oscillation forcing, damping
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Matter-Radiation in the Power Spectrum

e Coherent approximation is exact
for a photon-baryon fluid but
reality 1s reduced to ~ 4 X
because neutrino contribution
1s free streaming not fluid like

e Neutrinos drive the oscillator
less efficiently and also slightly

change the phase of the oscillation

e Actual initial conditions are © + W = W /2 for radiation
domination but comparison to matter dominated SW correct

e With 3 peaks, it 1s possible to solve for both the baryons and dark
matter densities, providing a calibration for the sound horizon

e Higher peaks check consistency with assumptions: e.g. extra
relativistic d.o.f.s



Damping
e Tight coupling equations assume a perfect fluid: no viscosity, no

heat conduction

e Fluid imperfections are related to the mean free path of the
photons 1n the baryons

L' where 7 = n.ora

Ao =T
1s the conformal opacity to Thomson scattering

e Dissipation related to diffusion length: random walk approx

Ap = VNI = 1/ e Ao = Ve

the geometric mean between the horizon and mean free path
e \c/n. ~ %, so expect peaks > 3 to be affected by dissipation

e ./m enters here and 7 1n the acoustic scale — expansion rate and
extra relativistic species



Equations of Motion

e Continuity

@:—gvv—cb, 5b:—k?}b—3q)

where the photon equation remains unchanged and the baryons
follow number conservation with p, = myn,

e Navier-Stokes (Euler + heat conduction, viscosity)

k
v, = k(@4 V) — 6™~ T(vy — Vp)
?.Jb = —gvb—l—kqf—kj'(’(},y—?]b)/R

where the photons gain an anisotropic stress term 7., from radiation
viscosity and a momentum exchange term with the baryons and
are compensated by the opposite term in the baryon Euler equation



Viscosity

e Viscosity 1s generated from radiation streaming from hot to cold
regions

e Expect

k
T~ N~ U~ —
Y 77_

generated by streaming, suppressed by scattering in a wavelength
of the fluctuation. Radiative transfer says

k
7Tfy ~ ZAU?J,Y ;

where A, = 16/15

kK k
’l.}fy — k(@ —|— \If) — §AU—,U7

T



Oscillator: Penultimate Take
e Adiabatic approximation (w > a/a)

: k
O ~ —g’l}fy
e Oscillator equation contains a O damping term
d : k% k* d :
2 —2 s 2 2 2 —2
— O A,©+Ek%°c,© = ——WVU — ¢l — o
CS dT] (CS ) —|_ 7_ —I_ CS 3 CS dT] (CS )

e Heat conduction term similar in that it 1s proportional to v., and is
suppressed by scattering % /7. Expansion of Euler equations to
leading order in k7 gives

R2
T 1+R
since the effects are only significant if the baryons are dynamically

Ap

important



Oscillator: Final Take

e Final oscillator equation

d . k22 . k2 d .
2 (¢7%0 STA, + A0 + K220 = —— U — 2— (¢
g (670) + AL+ A0+ KO = — 0 — i (")

e Solve 1n the adiabatic approximation

O exp(i/wdn)

k*c?
—w® A 2 (A, + Ap)iw + ke =0
T




Dispersion Relation

e Solve

w? = k*c {1 + ig(AU + Ah)}

o,
— t+ke, [1+=-—(A, + A
W C _ —|—27_( + h)]

I 1 ke
— tkc, |1 £+ = SAU A
| ;5 (Aot h)]

e Exponentiate

1 2
exp(i/wdn) = T ex Xp —kQ/dU§CT.S(Av + Ap)]

= =" exp[—(k/kp)?]

e Damping 1s exponential under the scale £ p




Diffusion Scale

e Diffusion wavenumber

k2/d1 1 16 R
b= YR T R\ T 1+ R)

e Limiting forms

116 1

. _2 _ o o

R0 = 51 )
1 1
. _2 - _ e
A k= G/dn%

e Geometric mean between horizon and mean free path as expected
from a random walk

2T 2T
Ap = =5~ ()2

kp /6



Source Separation

e Decomposition into local temperature + SW, Doppler, ISW (no
dark energy) in this simple semianalytic description

5F " T R VOV

- Analytic Separation i P T

- (1,=0.06 h=0.5 / ‘\ ! .
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