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Inhomogeneous Cosmology
• Prerequisites: homogeneous cosmology at Ast 310 level

• Requirements: final project presented in class

• Gravitational Instability

• CMB Temperature Anisotropy (aka Ast 448)

• Large Scale Structure

• Dark Energy Models

• CMB Polarization (optional)

• Gravitational Lensing (optional)

• Ast 408: Formal Relativistic Perturbation Theory (Winter 2026)



Structure Formation
• Small perturbations from inflation over the course of the 14Gyr life

of the universe are gravitationally enhanced into all of the structure
seen today

• Cosmic microwave background shows a snapshot at a few hundred
thousand years old at recombination

• Discovery in 1992 of cosmic microwave background anisotropy
provided the observational breakthrough - convincing support for
adiabatic initial density fluctuations of amplitude 10−5

• Combine with galaxy clustering - large scale structure seen in
galaxy surveys - right amplitude given cold dark matter



CMB Temperature Anisotropy
• Planck map of the temperature anisotropy (first discovered by

COBE) from recombination:
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Gravitational Lensing
• Gravitational Lensing measures projected mass

• Planck CMB lensing map
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Galaxy Redshift Surveys
• Galaxy redshift surveys measure the three dimensional distribution

of galaxies today:
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FIG. 2: The distribution of the 6,476 LRGs (black) and 32,417 main galaxies (green/grey) that are within 1.25◦ of the Equatorial plane.
The solid circles indicate the boundaries of our NEAR, MID and FAR subsamples. The “safe13” main galaxy sample analyzed here and
in [28] is more local, extending out only to 600h−1 Mpc (dashed circle).

III. POWER SPECTRUM MEASUREMENTS

We measure the power spectrum of our various samples
using the PKL method described in [28]. We follow the
procedure of [28] exactly, with some additional numeri-
cal improvements described in Appendix A, so we merely
summarize the process very briefly here. The first step
is to adjust the galaxy redshifts slightly to compress so-

called fingers-of-god (FOGs), virialized galaxy clusters
that appear elongated along the line-of-sight in redshift
space; we do this with several different thresholds and
return to how this affects the results in Section IV F2.
The LRGs are not just brightest cluster galaxies; about
20% of them appear to reside in a dark matter halo with
one or more other LRG’s. The second step is to expand
the three-dimensional galaxy density field in N three-



Curvature Fluctuations
• All structure originates from initial curvature fluctuations

• In the inflationary ΛCDM model these curvature fluctuations come
from quantum field fluctuations during inflation: δϕrms = H/2π

• Field fluctuations change the scale factor at which inflation ends

R = −δ ln a = −d ln a

dt

dt

dϕ
δϕ = −H

dt

dϕ

H

2π

. V(φ)

φ

Hubble
friction

end of inflation

δφ

R=-δa/a

• Using the equation
of state of ϕ we
can convert dϕ/dt to ϵH



Derivation in Slow Roll
• Rescaling the field fluctuation to absorb the scale factor, like with

comoving coordinates u = aδϕ brings the wave equation □δϕ = 0

to

ü+ [k2 − 2

η̃2
]u = 0

where η̃ is the conformal time normalized to zero at the end of
inflation such that kη̃ = −1 denotes horizon exit

• Simple harmonic oscillator well inside the horizon

ü+ k2u = 0



Derivation in Slow Roll
• Quantize the simple harmonic oscillator

û = u(k, η̃)â+ u∗(k, η̃)â†

where u(k, η̃) satisfies classical equation of motion and the
creation and annihilation operators satisfy

[a, a†] = 1, a|0⟩ = 0

• Normalize wavefunction [û, dû/dη̃] = i

u(k, η) =
1√
2k

e−ikη̃



Quantum Fluctuations
• Zero point fluctuations of ground state

⟨u2⟩ = ⟨0|u†u|0⟩
= ⟨0|(u∗â† + uâ)(uâ+ u∗â†)|0⟩
= ⟨0|ââ†|0⟩|u(k, η̃)|2

= ⟨0|[â, â†] + â†â|0⟩|u(k, η̃)|2

= |u(k, η̃)|2 = 1

2k

• Classical equation of motion take this quantum fluctuation outside
horizon where it freezes in.



Slow Roll Limit
• Classical equation of motion then has the exact solution

u =
1√
2k

(
1− i

kη̃

)
e−ikη̃

• For |kη̃| ≪ 1 (late times, ≫ Hubble length) fluctuation freezes in

lim
|kη̃|→0

u = − 1√
2k

i

kη̃
≈ iHa√

2k3

δϕ =
iH√
2k3

• Power spectrum of field fluctuations

∆2
δϕ =

k3|δϕ|2
2π2

=
H2

(2π)2



Curvature Fluctuation
• Equation of state characterized by slow roll parameter ϵH ≪ 1

wϕ ≡ 2

3
ϵH − 1 =

pϕ
ρϕ

=
(dϕ/dt)2/2− V

(dϕ/dt)2/2 + V

≈ (dϕ/dt)2

V
− 1

and H2 ≈ 8πGV/3 from Friedmann

ϵH ≈ 3

2

(dϕ/dt)2

V
≈ 4πG

(dϕ/dt)2

H2

and the variance of fluctuations per log wavenumber d ln k

∆2
R ≡ ⟨R2⟩ ≈

(
H

2π

)2
4πG

ϵH
=

H2

8π2ϵHM2
pl



Gravitational Waves
• Gravitational wave amplitude satisfies wave equation same as

scalar field □h+,× = 0

ḧ+,× + 2
ȧ

a
ḣ+,× + k2h+,× = 0 .

• Acquires quantum fluctuations in same manner as ϕ.
Einstein-Hilbert action sets the canonical normalization: ADM
(4)R/16πG = (ḣij/2)

2/16πG+ . . .) and hij = h+e+ij + h×e×ij so

∆2
+,× = 16πG∆2

δϕ = 16πG
H2

(2π)2



Gravitational Waves
• Quantum fluctuations in gravitational waves follow a similar

prescription but are not enhanced by 1/ϵH

• Gravitational wave power ∝ H2 ∝ V ∝ E4
i where Ei is the energy

scale of inflation

• Tensor-scalar ratio is therefore generally small

r ≡ 4
∆2

+

∆2
R

= 16ϵH

• Gravitational waves from inflation can be measured via its imprint
on the polarization of the CMB (current upper limits r < 0.032

95% CL)



Tilt
• Curvature power spectrum is scale invariant to the extent that H

and ϵH are constant

∆2
R ∝ H2/ϵH ≈ const

• But with a small tilt that indicates inflation must end in ∼60 efolds

d ln∆2
R

d ln k
≡ nS − 1 = 2

d lnH

d ln k
− d ln ϵH

d ln k

• Evaluate at horizon crossing where fluctuation freezes k = aH

d lnH

d ln k
≈ d lnH

d ln a
= −ϵH

d ln ϵH
d ln k

≈ d ln ϵH
d ln a

= 2(δ1 + ϵH)

so nS = 1 = −4ϵH − 2δ1



Power Spectrum: AS, nS
• Tilt in the slow-roll approximation

nS − 1 = −4ϵH − 2δ1

• Power spectrum parameters:

∆2
R = AS

(
k

0.05Mpc−1

)nS−1

with pivot scale 0.05 Mpc−1 chosen to be approximately where the
data constrains inflation

• AS, nS are two of the 6 ΛCDM parameters



CMB Parameter Inferences
• Spectrum constrains the matter-energy contents of the universe

• Planck 2018 results [arXiv:1807.06209]

TT+lowE TE+lowE EE+lowE TT,TE,EE+lowE TT,TE,EE+lowE+lensing TT,TE,EE
Parameter 68% limits 68% limits 68% limits 68% limits 68% limits 68% limits

Ωbh2 . . . . . . . . . . 0.02212 ± 0.00022 0.02249 ± 0.00025 0.0240 ± 0.0012 0.02236 ± 0.00015 0.02237 ± 0.00015 0

Ωch2 . . . . . . . . . . 0.1206 ± 0.0021 0.1177 ± 0.0020 0.1158 ± 0.0046 0.1202 ± 0.0014 0.1200 ± 0.0012 0

100θMC . . . . . . . . 1.04077 ± 0.00047 1.04139 ± 0.00049 1.03999 ± 0.00089 1.04090 ± 0.00031 1.04092 ± 0.00031 1

τ . . . . . . . . . . . . 0.0522 ± 0.0080 0.0496 ± 0.0085 0.0527 ± 0.0090 0.0544+0.0070
−0.0081 0.0544 ± 0.0073 0

ln(1010A s) . . . . . . . 3.040 ± 0.016 3.018+0.020
−0.018 3.052 ± 0.022 3.045 ± 0.016 3.044 ± 0.014 3

ns . . . . . . . . . . . 0.9626 ± 0.0057 0.967 ± 0.011 0.980 ± 0.015 0.9649 ± 0.0044 0.9649 ± 0.0042 0

H0 [km s−1 Mpc−1] . . 66.88 ± 0.92 68.44 ± 0.91 69.9 ± 2.7 67.27 ± 0.60 67.36 ± 0. 45

Ω . . . . . . . . . . . 0.679 ± 0.013 0.699 ± 0.012 0.711+0.033 0.6834 ± 0.0084 0.6847 ± 0.0073 0

• Since 2018, CMB improvements from ground based instruments
mainly on lensing, polarization (including upper limits on r)

• Note the low value of H0 compared with the Cepheid-SN distance
ladder



CMB Power Spectra
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CMB Temperature Anisotropy
• Power spectrum shows characteristic scales where the intensity of

variations peak - reveals geometry and contents of the universe:
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Tensor Power Spectrum
• Gravitational waves from inflation (yet to be detected)
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Planck 2018 Predictions
• Observables at lower z < 1100 all predicted to high accuracy

Planck Collaboration: Cosmological parameters

Table 2. Parameter 68 % intervals for the base-ΛCDM model from Planck CMB power spectra, in combination with CMB lensing
reconstruction and BAO. The top group of six rows are the base parameters, which are sampled in the MCMC analysis with flat
priors. The middle group lists derived parameters. The bottom three rows show the temperature foreground amplitudes f TT

`=2000 for
the corresponding frequency spectra (expressed as the contribution to DTT

`=2000 in units of (µK)2). In all cases the helium mass fraction
used is predicted by BBN (posterior mean YP ≈ 0.2454, with theoretical uncertainties in the BBN predictions dominating over the
Planck error on Ωbh2). The reionization redshift mid-point zre and optical depth τ here assumes a simple tanh model (as discussed
in the text) for the reionization of hydrogen and simultaneous first reionization of helium. Our baseline results are based on Planck
TT,TE,EE+lowE+lensing (as also given in Table 1).

TT+lowE TE+lowE EE+lowE TT,TE,EE+lowE TT,TE,EE+lowE+lensing TT,TE,EE+lowE+lensing+BAO
Parameter 68% limits 68% limits 68% limits 68% limits 68% limits 68% limits

Ωbh2 . . . . . . . . . . 0.02212 ± 0.00022 0.02249 ± 0.00025 0.0240 ± 0.0012 0.02236 ± 0.00015 0.02237 ± 0.00015 0.02242 ± 0.00014

Ωch2 . . . . . . . . . . 0.1206 ± 0.0021 0.1177 ± 0.0020 0.1158 ± 0.0046 0.1202 ± 0.0014 0.1200 ± 0.0012 0.11933 ± 0.00091

100θMC . . . . . . . . 1.04077 ± 0.00047 1.04139 ± 0.00049 1.03999 ± 0.00089 1.04090 ± 0.00031 1.04092 ± 0.00031 1.04101 ± 0.00029

τ . . . . . . . . . . . . 0.0522 ± 0.0080 0.0496 ± 0.0085 0.0527 ± 0.0090 0.0544+0.0070
−0.0081 0.0544 ± 0.0073 0.0561 ± 0.0071

ln(1010As) . . . . . . . 3.040 ± 0.016 3.018+0.020
−0.018 3.052 ± 0.022 3.045 ± 0.016 3.044 ± 0.014 3.047 ± 0.014

ns . . . . . . . . . . . 0.9626 ± 0.0057 0.967 ± 0.011 0.980 ± 0.015 0.9649 ± 0.0044 0.9649 ± 0.0042 0.9665 ± 0.0038

H0 [km s−1 Mpc−1] . . 66.88 ± 0.92 68.44 ± 0.91 69.9 ± 2.7 67.27 ± 0.60 67.36 ± 0.54 67.66 ± 0.42

ΩΛ . . . . . . . . . . . 0.679 ± 0.013 0.699 ± 0.012 0.711+0.033
−0.026 0.6834 ± 0.0084 0.6847 ± 0.0073 0.6889 ± 0.0056

Ωm . . . . . . . . . . . 0.321 ± 0.013 0.301 ± 0.012 0.289+0.026
−0.033 0.3166 ± 0.0084 0.3153 ± 0.0073 0.3111 ± 0.0056

Ωmh2 . . . . . . . . . 0.1434 ± 0.0020 0.1408 ± 0.0019 0.1404+0.0034
−0.0039 0.1432 ± 0.0013 0.1430 ± 0.0011 0.14240 ± 0.00087

Ωmh3 . . . . . . . . . 0.09589 ± 0.00046 0.09635 ± 0.00051 0.0981+0.0016
−0.0018 0.09633 ± 0.00029 0.09633 ± 0.00030 0.09635 ± 0.00030

σ8 . . . . . . . . . . . 0.8118 ± 0.0089 0.793 ± 0.011 0.796 ± 0.018 0.8120 ± 0.0073 0.8111 ± 0.0060 0.8102 ± 0.0060

S 8 ≡ σ8(Ωm/0.3)0.5 . 0.840 ± 0.024 0.794 ± 0.024 0.781+0.052
−0.060 0.834 ± 0.016 0.832 ± 0.013 0.825 ± 0.011

σ8Ω0.25
m . . . . . . . . 0.611 ± 0.012 0.587 ± 0.012 0.583 ± 0.027 0.6090 ± 0.0081 0.6078 ± 0.0064 0.6051 ± 0.0058

zre . . . . . . . . . . . 7.50 ± 0.82 7.11+0.91
−0.75 7.10+0.87

−0.73 7.68 ± 0.79 7.67 ± 0.73 7.82 ± 0.71

109As . . . . . . . . . 2.092 ± 0.034 2.045 ± 0.041 2.116 ± 0.047 2.101+0.031
−0.034 2.100 ± 0.030 2.105 ± 0.030

109Ase−2τ . . . . . . . 1.884 ± 0.014 1.851 ± 0.018 1.904 ± 0.024 1.884 ± 0.012 1.883 ± 0.011 1.881 ± 0.010

Age [Gyr] . . . . . . . 13.830 ± 0.037 13.761 ± 0.038 13.64+0.16
−0.14 13.800 ± 0.024 13.797 ± 0.023 13.787 ± 0.020

z∗ . . . . . . . . . . . 1090.30 ± 0.41 1089.57 ± 0.42 1087.8+1.6
−1.7 1089.95 ± 0.27 1089.92 ± 0.25 1089.80 ± 0.21

r∗ [Mpc] . . . . . . . . 144.46 ± 0.48 144.95 ± 0.48 144.29 ± 0.64 144.39 ± 0.30 144.43 ± 0.26 144.57 ± 0.22

100θ∗ . . . . . . . . . 1.04097 ± 0.00046 1.04156 ± 0.00049 1.04001 ± 0.00086 1.04109 ± 0.00030 1.04110 ± 0.00031 1.04119 ± 0.00029

zdrag . . . . . . . . . . 1059.39 ± 0.46 1060.03 ± 0.54 1063.2 ± 2.4 1059.93 ± 0.30 1059.94 ± 0.30 1060.01 ± 0.29

rdrag [Mpc] . . . . . . 147.21 ± 0.48 147.59 ± 0.49 146.46 ± 0.70 147.05 ± 0.30 147.09 ± 0.26 147.21 ± 0.23

kD [Mpc−1] . . . . . . 0.14054 ± 0.00052 0.14043 ± 0.00057 0.1426 ± 0.0012 0.14090 ± 0.00032 0.14087 ± 0.00030 0.14078 ± 0.00028

zeq . . . . . . . . . . . 3411 ± 48 3349 ± 46 3340+81
−92 3407 ± 31 3402 ± 26 3387 ± 21

keq [Mpc−1] . . . . . . 0.01041 ± 0.00014 0.01022 ± 0.00014 0.01019+0.00025
−0.00028 0.010398 ± 0.000094 0.010384 ± 0.000081 0.010339 ± 0.000063

100θs,eq . . . . . . . . 0.4483 ± 0.0046 0.4547 ± 0.0045 0.4562 ± 0.0092 0.4490 ± 0.0030 0.4494 ± 0.0026 0.4509 ± 0.0020

f 143
2000 . . . . . . . . . . 31.2 ± 3.0 29.5 ± 2.7 29.6 ± 2.8 29.4 ± 2.7

f 143×217
2000 . . . . . . . . 33.6 ± 2.0 32.2 ± 1.9 32.3 ± 1.9 32.1 ± 1.9

f 217
2000 . . . . . . . . . . 108.2 ± 1.9 107.0 ± 1.8 107.1 ± 1.8 106.9 ± 1.8

3.2. Hubble constant and dark-energy density

The degeneracy between Ωm and H0 is not exact, but the con-
straint on these parameters individually is substantially less pre-
cise than Eq. (12), giving

H0 = (67.27 ± 0.60) km s−1Mpc−1,

Ωm = 0.3166 ± 0.0084,

}
68 %, TT,TE,EE
+lowE.

(13)

It is important to emphasize that the values given in Eq. (13) as-
sume the base-ΛCDM cosmology with minimal neutrino mass.

These estimates are highly model dependent and this needs to
be borne in mind when comparing with other measurements, for
example the direct measurements of H0 discussed in Sect. 5.4.
The values in Eq. (13) are in very good agreement with the inde-
pendent constraints of Eq. (6) from Planck CMB lensing+BAO.
Including CMB lensing sharpens the determination of H0 to a
0.8 % constraint:

H0 = (67.36 ± 0.54) km s−1Mpc−1 (68 %, TT,TE,EE
+lowE+lensing). (14)
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CMB after Planck
• Polarization and higher resolution 6
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FIG. 1. TT, TE, and EE band powers from SPT-3G D1 (blue dots), ACTDR6 (orange empty squares) and Planck PR3
(green empty dots). Band powers from each experiment are foreground- and nuisance-parameter cleaned combinations of all
auto- and cross-frequency spectra. We also show the best-fit ΛCDM model to SPT-3G D1 T&E (solid line). Top: TT and
EE band powers on a logarithmic scale. SPT TT band powers are estimated in the multipole range ℓ = 400 to 3000, while
the range for TE and EE band powers is ℓ = 400 to 4000, see §IV D for details. Bottom: TE band powers in linear scale,
with a zoomed-in view of the ℓ > 2000 region where ground-based experiments dominate the measurement. These data sets
demonstrate excellent agreement with each other, and the SPT-3G D1 T&E data provide the tightest measurement of the
lensed EE and TE band powers at ℓ = 1800-4000 and ℓ = 2200-4000, respectively.

5. We investigate the amplitude of CMB lensing
implied from its effect on the primary CMB power
spectra and find a value consistent with the ΛCDM
prediction, Alens = 1.016+0.048

−0.054 from SPT+ACT
T&E data, a result that differs at ∼ 2σ from the
mild anomaly in the Planck data [1].

6. We report a growing discrepancy between CMB
data and BAO data from DESI DR2 in ΛCDM, at
the level of 2.8σ in the Ωm-hrd plane4 when SPT,
ACTDR6, and Planck are combined.

7. While the CMB data alone do not prefer any
extended model over ΛCDM, the discrepancy

4 rd is the sound horizon at the drag epoch and h ≡
H0/100 km s−1 Mpc−1.

between the CMB experiments and DESI is al-
leviated in some extended models of cosmology.
The combination of CMB and BAO yields 2-3σ
deviations from the standard model of cosmology.

III. SKY MAPS

There are several steps between observations of the
microwave sky and cosmological analysis of the CMB. In
this section, we discuss the steps to produce CMB maps
from the raw observations. The observations themselves
and the processing of the data are described in great
detail in Q25; in this work we highlight characteristics of
the data that we need to take into account in our power
spectrum modeling.



CMB after Planck
• Gravitational lensing power spectrum



Matter Power Spectrum
• Compilation of Redshift Surveys, Lensing, CMB

Planck (2018) I



BAO and SN
• Baryon Acoustic Oscillations as transverse and radial standard

rulers (DESI DR2)

• SN as standard candles (DES Y5) - is ΛCDM now disfavored?26
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FIG. 13. Hubble diagrams showing comparisons of DESI BAO and SNe data to models. In the top panels, DESI BAO
measurements are shown with black circles, and DESY5 is used as the SNe dataset for determining model fits. In the bottom
row, binned DESY5, Union3 and Pantheon+ SNe distance modulus residuals are shown with black squares in the three panels.
The SNe binning method is described in Section IVC. The bin edges for the SNe bins are indicated by vertical gray dashed
lines. ΛCDM predictions from Planck CMB (including Planck+ACT CMB lensing), DESI, SNe and DESI+CMB are shown
in black, blue, orange and purple solid lines, respectively. The wCDM predictions from best-fit DESI+CMB+SNe are shown
in cyan dotted lines. w0waCDM predictions from fits to DESI+SNe and DESI+CMB+SNe are shown in green and red dashed
lines; in the top panels DESY5 is used as the SNe sample, while in the bottom panels, the model curves are adjusted to use the
corresponding SNe sample in the title of each panel. In the SNe panels, all models are pinned at the average of the SNe data.

DESY5 SNe is 0.04 in µ at low redshifts, z < 0.1, which
is worse than the 0.03 offset from the Planck fiducial
model. All these observations point to the fact that
the ΛCDM model struggles to consistently fit all three
datasets: BAO, CMB, and SNe.

One way to address this tension is to adopt a model
with more flexibility in the background expansion. How-
ever, the wCDM model with a constant equation of state
lacks sufficient flexibility. The cyan dotted curves in the
top row and bottom left show a model with constant
w = −0.971 and Ωm = 0.310, which is the wCDM model
that best fits the DESI+CMB+DESY5 data combina-
tion; in the remaining two panels the cyan curves show
the predictions of very similar models obtained by sub-
stituting Union3 or Pantheon+ for DESY5. The high-z
anchor does not allow enough redshift evolution for this
model to provide a good fit to the BAO and SNe data at
low redshifts, performing only slightly better than Planck
ΛCDM. If instead the wCDM model were chosen to fit
the DESI+DESY5 data, it would necessarily have an Ωm

value that would fail to match the CMB constraints on
(θ∗, ωb, ωbc).

On the other hand, the w0waCDM model does have

sufficient flexibility to simultaneously achieve good fits
to all three datasets. The green dashed and red
dashed curves in the top panels show predictions for
w0waCDM models with parameters matching the best
fits to DESI+DESY5 and DESI+CMB+DESY5 respec-
tively. These are barely distinguishable in the plots,
showing that the w0waCDM model that best fits the
BAO and SNe automatically also provides a good fit to
the CMB. Over the range of redshifts covered by DESI
BAO, these model predictions provide a better fit to BAO
data than the best such ΛCDM model—in particular,
in the fit to the parallel BAO distances α||—while also
simultaneously resolving the mismatch in Ωm between
DESI and CMB in the ΛCDM framework. The bottom
left panel also shows that they are also equally good at
fitting the µ offsets between low-z and high-z DESY5
data. These observations qualitatively help to explain
why these models are strongly preferred over ΛCDM.

In the equivalent curves in the center and right pan-
els on the bottom row, DESY5 is replaced in all fits by
Union3 and Pantheon+, respectively. While the qualita-
tive picture is the same for Union3 as DESY5, the value
of µ−µfid at low redshift is smaller for Pantheon+ and so



Drag Aside
• BAO best measure the sound horizon at the drag epoch ηd > η∗,

later than recombination due to low baryon momentum ratio R

• A super old plot illustrating this from Hu & Sugiyama
astro-ph/9510117



Distance Parameters
• BAO measure both the excess clustering in angular and redshift

scales as a function of redshift or scale factor a = (1 + z)−1

• Angular dimension measures DM = DA the comoving angular
diameter distance

• Redshift dimension measures DH = 1/H the expansion rate

• Recall the FRW line element gives the separation between two
points separated by dz, dθ, dϕ

ds2 = a2[−dη2 + dD2 +D2
A(dθ

2 + sin2 θdϕ2)] = a2[−dη2 + dΣ2]

to convert to dz recall that photons travel on null ds2 = 0 radially

dη = dt/a = (dt/d ln a)d ln a/a = d ln a/aH = dz/H = dD

so the separation dz corresponding to the BAO measures H(z)



Distance Parameters
• If K ≡ R−2 ̸= 0, DA ̸= D - to visualize suppress one sky

dimension so angular separation is dα2 = dθ2 + sin2 θdϕ2

• Define DA such that a transverse scale dΣ(= rd) obeys

dΣ = DAdα

Draw a circle at the distance D, its radius is DA = R sin(D/R)

D

DA

dα

dα

dΣ

DA=Rsin(D/R)



FRW Geometry
• Angular diameter distance

• Positively curved geometry DA < D and objects are further than
they appear

• Negatively curved universe R is imaginary and
R sin(D/R) = i|R| sin(D/i|R|) = |R| sinh(D/|R|)

and DA > D objects are closer than they appear

• Flat universe, R → ∞ and DA = D



FRW Geometry
• What’s the distance dΣ between x1 = (θ1, ϕ1, z1) and
x2 = (θ2, ϕ2, z2), separated by angle dα and radial distance
dD = dz/H(z)?

dD
DAdα

dΣ

x1

x2



Angular Diameter Distance
• For small angular and radial separations, space is nearly flat so that

the Pythagorean theorem holds for differentials

dΣ2 = dD2 +D2
Adα

2

• Now restore the fact that the angular separation can involve two
angles on the sky - the curved sky is just a copy of the spherical
geometry with unit radius that we were suppressing before

dΣ2 = dD2 +D2
Adα

2

= dD2 +D2
A(dθ

2 + sin2 θdϕ2)

• DA useful for describing observables (flux, angular positions)

• D useful for theoretical constructs (causality, relationship to
temporal evolution) but also comparisons between photons emitted
at different redshifts, e.g. radial BAO



Luminosity Distance
• Photons propagate as in special relativity in comoving/conformal

coordinates: ignore scale factor in right units!

• Given a physical luminosity at emission L = dE/dt in comoving
coordinates E = E/(1 + z) for the wavelength conversion and
dη = (1 + z)dt for the time interval so the “comoving luminosity”

L = L/(1 + z)2

• So flux F = L/4πD2
A defines luminosity distance dL = (1+ z)DA

and the relative magnitude of high and low redshift supernovae

µ = m−Mfid = 5 log10[(1 + z)DA/1Mpc] + 25

where Mfid is the absolute magnitude at 10pc and can be
(controversially... H0!) calibrated by the distance ladder through
Cepheids, TRGB, etc



On Time
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FIG. 1. Conformal diagrams showing portions of de Sitter space charted by closed (left), flat (middle) and open (right)
foliations. Thick lines indicate coordinate singularities. Superimposed are lines of constant isotropic time and radius for each
foliation.

De Sitter Charts

One special feature of de Sitter space is that there is 
no preferred temporal coordinate to define a foliation 
with respect to. Sections of the full spacetime can 
therefore be charted by isotropic coordinates where the 
constant time slices have positive, negative or zero 
spatial curva-ture. The conformal diagram for de Sitter 
space can be constructed from the positive curvature 
(closed) foliation of the spacetime, where the line 
element takes the form

ds2 =

✓
1

H sin ⌘

◆2 �
�d⌘2 + d�2 + sin2 �d⌦2

2

�
, (22)

with the dimensionless conformal time ⌘ 2 (�⇡, 0) and
the comoving radial coordinate � 2 [0, ⇡]. Here H2 =
⇤e↵/3. We use the (⌘, �) conformal diagram throughout
to represent the spacetime.

Closed, flat, and open isotropic coordinates can al-
ternately be used to foliate portions of de Sitter space
and are useful in finding solutions to the background
massive gravity equations and for investigating pertur-
bations. With the transformations

sinh(Htc) = � cot ⌘,

Hrc = 2 tan(�/2), (23)

the line element (22) takes its closed isotropic form

ds2 = �dt2c +


cosh (Htc)

1 + (Hrc)2/4

�2 �
dr2

c + r2
cd⌦2

2

�
, (24)

where tc 2 (�1,1), rc 2 [0,1). These coordinates
chart the entire de Sitter spacetime. Similarly, defining
the coordinates

eHtf = �cos�+ cos ⌘

sin ⌘
,

Hrf =
sin�

cos�+ cos ⌘
, (25)

obtains the flat isotropic form

ds2 = �dt2f + e2Htf
�
dr2

f + r2
fd⌦2

2

�
, (26)

where Htf 2 (�1,1), Hrf 2 [0,1). These coordinates
chart the upper left half of the conformal diagram ⌘ >
�� ⇡. Finally, the coordinate definition

ln [tanh(Hto/2)] = tanh�1

✓
sin ⌘

cos�

◆
,

2 tanh�1(Hro/2) = tanh�1

✓
sin�

cos ⌘

◆
, (27)

gives the open isotropic form

ds2 = �dt2o +


sinh (Hto)

1 � (Hro)2/4

�2 �
dr2

o + r2
od⌦2

2

�
, (28)

where Hto 2 (0, 1), Hro 2 [0, 2). These coordinates 
chart the upper left wedge of the conformal diagram ⌘ >
� � ⇡/2, corresponding to 1/8 of the space. 

• Despite GRs
coordinate invariance,
preferred cosmic
time is slicing where
matter is homogeneous
and isotropic on average

• Cosmological constant is
a spacetime scalar - with
no matter, no preferred
time: all 3 FRW metrics

• During inflation,
the field and its surface of
homogeneity is the clock!



Temperature Anisotropy



Filtered Maps and Power Spectrum
. • Take original

64◦ × 64◦ map

• Band filter to a range
of multipole moments



Schematic Outline
• Take apart features in the power spectrum

Δ
 (μ

K
)

10

100

1

10 100 1000
l

leq lA ld

ΘΘ

EE

damping

damping

tight
coupling

driving
ISW

ISW

SW



Schematic Outline
• Take apart features in the power spectrum
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Last Scattering
.
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l<kD*

k
vb

j l(
kD

*)
 acoustic peaks secondaries

Doppler
effect

observer

last s at
er

ng
su

r
ac

e

jl( *)

∫dD j∫d l(kD)

'

ddamping and po
l

iz
at

io
n

• Angular distribution
of radiation is the 3D
temperature field
projected onto a shell
- surface of last scattering

• Shell radius
is distance from the observer
to recombination: called
the last scattering surface

• Take the radiation
distribution at last scattering to also be described by an isotropic
temperature fluctuation field Θ(x)



Astro-Particle Dictionary
Astro and physics use different words to describe same thing:
• Specific intensity Iν = 4πν3f ↔ phase space distribution f

Iν = ∆E/∆t∆ν∆ΩdA: “energy per unit everything”
Black Body Iν = Bν ↔ f = (eE/T − 1)−1

• Radiative transfer equation
dIν/dτ = −Iν + Sν

↔ Boltzmann equation Df/Dt = C[f ]

• Formal solution with τ increasing along photon path
Iν(τ) = Iν(0)e

−τ +
∫ τ

0
dτ ′e−τ+τ ′Sν

↔ integral approach to Boltzmann equation with τ decreasing,
optical depth in front of source

• Absorption, emission, scattering ↔ Collision term
• Einstein relations ↔ Single matrix element
• dIν/dτ = 0↔ Liouville equation Df/Dt = 0



Formal/Integral Solution
• Initial radiation field Iν(0) absorbed and replaced with source

emission until observed at Iν(τ)

Iν(0) Iν(τ)

0 τ' τ

Sν

• Observer is on the right at the end of path, optical depth in front of
source is τ − τ ′ (in general, frequency ν dependent, but not for
Thomson scattering



CMB Spectrum
• Modern measurement from COBE satellite of blackbody

spectrum. T = 2.725K giving Ωγh
2 = 2.471× 10−5
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Black Body Formation
.

Δ
T/

T e

0
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p/Te

μ-distortion

blackbody

z/105=3.5

0.5

z*

• After z ∼ 106, photon creating
processes γ + e− ↔ 2γ + e−

and bremmstrahlung
e− + p ↔ e− + p+ γ

drop out of equilibrium
for photon energies E ∼ T .

• Compton scattering remains
effective in redistributing energy via exchange with electrons

• Out of equilibrium processes like decays leave residual photon
chemical potential imprint

• Observed black body spectrum places tight constraints on any that
might dump energy into the CMB



Radiative Processes
• Bremsstrahlung collision term (k = ℏ = c = 1, x = hν/kTe)

Cff [f ] ∼ nineσT

(
Te

m

)−1/2

Z2α
e−x

T 3
e x

3
[1− (ex − 1)f ]

where ∼ absorbs a dimensionless Gaunt factor: note density and
temperature dependence

• Double Compton collision term

Cdc[f ] ∼ neσT

(
Te

m

)2

α
e−x

x3
[1− (ex − 1)f ]

∫
dxx4(1 + f)f

wins at high Te and low number densities but requires some seed
photons f ̸= 0



Recombination
• Maxwell-Boltzmann distribution determines the equilibrium

distribution for reactions, e.g. big-bang nucleosynthesis,
recombination:

p+ e− ↔ H + γ

npne

nH

≈ e−B/T

(
meT

2π

)3/2

e(µp+µe−µH)/T

where B = mp +me −mH = 13.6eV is the binding energy,
gp = ge =

1
2
gH = 2, and µp + µe = µH in equilibrium

• Define ionization fraction

np = ne = xenb

nH = nb − ne = (1− xe)nb



Recombination
• Saha Equation

nenp

nHnb

=
x2
e

1− xe

=
1

nb

(
meT

2π

)3/2

e−B/T

• Naive guess of T∗ = B wrong due to the low baryon-photon ratio
– T∗ ≈ 0.3eV so recombination at z∗ ≈ 1000

• But the photon-baryon ratio is very low

ηbγ ≡ nb/nγ ≈ 3× 10−8Ωbh
2



Recombination
• Eliminate in favor of ηbγ and B/T through

nγ = 0.244T 3 ,
me

B
= 3.76× 104

• Big coefficient

xe
2

1− xe

= 3.16× 1015
(
B

T

)3/2

e−B/T

T = 1/3eV → xe = 0.7, T = 0.3eV → xe = 0.2

• Further delayed by inability to maintain equilibrium since net is
through 2γ process and redshifting out of line



Recombination
• Relatively sharp transition to xe ≪ 1 in less than an efold
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Angular Power Spectrum
• Take visibility function xeneσTae

−τ → δ(D −D∗)

Θ(n̂) =

∫
dDΘ(x)δ(D −D∗)

where D is the comoving distance and D∗ denotes recombination.

• Well under curvature scale, describe Θ(x) by its Fourier moments

Θ(x) =

∫
d3k

(2π)3
Θ(k)eik·x

• Orthogonality and Completeness (forward and inverse transform):
∫

d3xei(k−k′)·x = (2π)3δ(k− k′)

∫
d3k

(2π)3
eik·(x−x′) = δ(x− x′)



Angular Power Spectrum
• Statistical homogeneity and isotropy

⟨Θ(x)Θ(x′)⟩ = C(|x− x′|)
function of separation only

⟨Θ(x+ d)Θ(x′ + d)⟩ = ⟨Θ(x)Θ(x′)⟩
∫

d3k

(2π)3

∫
d3k′

(2π)3
e−ik·x+ik′·x′

e−i(k−k′)·d⟨Θ∗(k)Θ(k′)⟩

=

∫
d3k

(2π)3

∫
d3k′

(2π)3
e−ik·x+ik′·x′⟨Θ∗(k)Θ(k′)⟩

requires the 2pt Fourier correlation to be described by a power
spectrum

⟨Θ∗(k)Θ(k′)⟩ = (2π)3δ(k− k′)PT (k)



Angular Power Spectrum
• Correlation function and power spectrum are Fourier conjugates

C(|x− x′|) = ⟨Θ(x)Θ(x′)⟩ =
∫

d3k

(2π)3
eik·(x

′−x)PT (k)

• Log weighted power spectrum determines variance

⟨Θ(x)Θ(x)⟩ =
∫

d3k

(2π)3
PT (k) =

∫
dk

k

k3

2π2
PT =

∫
dk

k
∆2

T (k)

∆2
T =

k3

2π2
PT [= PT (k)]

and is the contribution to the total variance per log interval in k

• ∆2
T dimensionless, whereas PT has dimensions of [L3], e.g.

(h−1Mpc)3 for the power spectrum of a redshift survey



Nonlinear regime
.
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• Inflationary initial
perturbations provide
density perturbations
δ = δρ/ρ that grow as
δ ∝ a in the linear regime

• ∆2 = k3P (k)/2π2

contribution to variance
⟨δ2⟩ per d ln k

• Linear theory would predict that for k > 0.1hMpc−1, ⟨δ2⟩ > 1.

• Linear approximation breaks down at this point and we must
follow the nonlinear equations

• Nonlinearities further enhance the formation of structure



Convolution
• Convolution in real space often occurs, e.g. smoothing of field by

telescope beam but also any smoothing
∫
d3xW (x) = 1

FW (x) =

∫
d3yW (x− y)F (y)

=

∫
d3y

∫
d3k

(2π)3
W (k)e−ik·(x−y)

∫
d3k′

(2π)3
F (k′)e−ik′·y

=

∫
d3k

(2π)3

∫
d3k′

(2π)3
e−ik·xW (k)F (k′)

∫
d3yei(k−k′)·y

=

∫
d3k

(2π)3
W (k)F (k)e−ik·x

FW (k) = W (k)F (k)

• Smoothing acts as a low pass filter: if W (x) is a broad function of
width L, W (k) suppressed for k > 2π/L



Convolution
• Filtered Variance

⟨FW (x)FW (x)⟩ =
∫

d3k

(2π)3

∫
d3k′

(2π)3
ei(k−k′)·x⟨F ∗(k)F (k′)⟩W ∗(k)W (k′)

=

∫
d3k

(2π)3
PF (k)|W (k)|2

• Common filter is the spherical tophat:

WR(x) = V −1
R x < R

WR(x) = 0 x > R

• Fourier transform

WR(k) =
3

y3
(sin y − y cos y) , (y = kR)



Current Normalization
• Normalization is often quoted as the top hat rms of the density field

σ2
R =

∫
d ln k∆2

δ(k)|WR(k)|2

where observationally σ8h−1Mpc ≡ σ8 ≈ 1

• Note that ∆2
δ(k) itself can be thought of as the variance of the field

with a filter that has sharp high and low pass filters in k-space

• Convention is that σR is defined against the linear density field, not
the true non-linear density field



Spatial Curvature
• To include spatial curvature: note that the important property is

that the k-decomposition is a complete set of modes.

• General prescription: for a curved space is the eigenfunctions of
the Laplacian (with covariant derivatives) are a complete set

∇2eik·x = −k2eik·x → ∇2Q(n̂, D) = −k2Q(n̂, D)

• This is a 3D generalization of the 2D sphere for which we do the
same thing next

∇2Yℓm = −ℓ(ℓ+ 1)Yℓm

• For solving dynamics of k mode and source function, changes due
to small curvature currently allowed |ΩK | ≲ 10−2 are negligible
for all observable modes and only distinction is in mapping of D, n̂

to wavelength 2π/k through angular diameter distance DA(D).



Angular Power Spectrum
• Temperature field

Θ(n̂) =

∫
d3k

(2π)3
Θ(k)eik·D∗n̂

Multipole moments Θ(n̂) =
∑

ℓm ΘℓmYℓm

• Orthogonality:
∫

dn̂Y ∗
ℓm(n̂)Yℓ′m′(n̂) = δℓℓ′δmm′

Completeness:
∑

ℓm

Y ∗
ℓm(n̂)Yℓm(n̂

′) = δ(ϕ− ϕ′)δ(cos θ − cos θ′)

• Statistical isotropy:

⟨Θ∗
ℓmΘℓ′m′⟩ = δℓℓ′δmm′Cℓ



Angular Power Spectrum
• Expand out plane wave in spherical coordinates

eikD∗·n̂ = 4π
∑

ℓm

iℓjℓ(kD∗)Y
∗
ℓm(k̂)Yℓm(n̂)

• Aside: as in the figure, it will often be convenient when
considering a single k mode to orient the north pole to k̂. This
simplifies the decomposition since

Y ∗
ℓm(k̂) → Y ∗

ℓm(0) = δm0

√
2ℓ+ 1

4π



Angular Power Spectrum
• Power spectrum

Θℓm =

∫
d3k

(2π)3
Θ(k)4πiℓjℓ(kD∗)Y

∗
ℓm(k)

⟨Θ∗
ℓmΘℓ′m′⟩ =

∫
d3k

(2π)3
(4π)2iℓ−ℓ′jℓ(kD∗)jℓ′(kD∗)Yℓm(k)Y

∗
ℓ′m′(k)PT (k)

= δℓℓ′δmm′4π

∫
d ln k j2ℓ (kD∗)∆

2
T (k)

with
∫∞
0

j2ℓ (x)d lnx = 1/(2ℓ(ℓ+ 1)), slowly varying ∆2
T

• Angular power spectrum:

Cℓ =
4π∆2

T (ℓ/D∗)

2ℓ(ℓ+ 1)
=

2π

ℓ(ℓ+ 1)
∆2

T (ℓ/D∗)



Angular Power Spectrum
• The log power spectrum (sometimes called Dℓ)

ℓ(ℓ+ 1)

2π
Cℓ ≈ ∆2

T

so that a scale invariant spectrum ∆2
T =const is scale invariant in

the log power spectrum

• Related to the contribution to the variance per log interval in ℓ

⟨Θ(n̂)Θ(n̂)⟩ = ⟨Θ(0)Θ(0)⟩ =
∑

ℓ

2ℓ+ 1

4π
Cℓ =

∑

ℓ

1

ℓ

ℓ(2ℓ+ 1)

4π
Cℓ

with the two being equivalent if ℓ ≫ 1



Thomson Scattering
• Thomson scattering of photons off of free electrons is the most

important CMB process with a cross section (averaged over
polarization states) of

σT =
8πα2

3m2
e

= 6.65× 10−25cm2

• Density of free electrons in a fully ionized xe = 1 universe

ne = (1− Yp/2)xenb ≈ 10−5Ωbh
2(1 + z)3cm−3 ,

where Yp ≈ 0.24 is the Helium mass fraction, creates a high
(comoving) Thomson opacity

τ̇ ≡ neσTa

where dots are conformal time η ≡
∫
dt/a derivatives and τ is the

optical depth.



Tight Coupling Approximation
• Near recombination z ≈ 103 and Ωbh

2 ≈ 0.02, the (comoving)
mean free path of a photon

λC ≡ 1

τ̇
∼ 2.5Mpc

small by cosmological standards!

• On scales λ ≫ λC photons are tightly coupled to the electrons by
Thomson scattering which in turn are tightly coupled to the
baryons by Coulomb interactions

• Specifically, their bulk velocities are defined by a single fluid
velocity vγ = vb and the photons carry no anisotropy in the rest
frame of the baryons

• → No heat conduction or viscosity (anisotropic stress) in fluid



Full Equations of Motion
• Continuity

Θ̇ = −k

3
vγ − Φ̇ , δ̇b = −kvb − 3Φ̇

which expresses number conservation in the presence of velocity
divergence and local expansion, with ρb = mbnb

• Navier-Stokes (Euler + heat conduction, viscosity)

v̇γ = k(Θ + Ψ)− k

6
πγ − τ̇(vγ − vb)

v̇b = − ȧ

a
vb + kΨ+ τ̇(vγ − vb)/R

where the photon momentum changes due to pressure, gravity and
anisotropic stress πγ gradients (from radiation viscosity) and a
momentum exchange term with the baryons and are compensated
by the opposite term in the baryon Euler equation



Zeroth Order Approximation
• Momentum density of a fluid is (ρ+ p)v, where p is the pressure

• Neglect the momentum density of the baryons

R ≡ (ρb + pb)vb
(ργ + pγ)vγ

=
ρb + pb
ργ + pγ

=
3ρb
4ργ

≈ 0.6

(
Ωbh

2

0.02

)( a

10−3

)

since ργ ∝ T 4 is fixed by the CMB temperature T = 2.73(1 + z)K
– OK substantially before recombination

• Neglect radiation in the expansion (not a good approx, just for
pedagogical start)

ρm
ρr

= 3.6

(
Ωmh

2

0.15

)( a

10−3

)

• Neglect gravity (obviously just for pedagogy)



Fluid Equations
• Density ργ ∝ T 4 so define temperature fluctuation Θ

δγ = 4
δT

T
≡ 4Θ

• Fourier space continuity equation

δ̇γ = −(1 + wγ)kvγ

Θ̇ = −1

3
kvγ

• Euler equation (neglecting gravity)

v̇γ = −(1− 3wγ)
ȧ

a
vγ +

kc2s
1 + wγ

δγ

v̇γ = kc2s
3

4
δγ = 3c2skΘ



Oscillator: Take One
• Combine these to form the simple harmonic oscillator equation

Θ̈ + c2sk
2Θ = 0

where the sound speed is adiabatic

c2s =
δpγ
δργ

=
ṗγ
ρ̇γ

here c2s = 1/3 since we are photon-dominated

• General solution:

Θ(η) = Θ(0) cos(ks) +
Θ̇(0)

kcs
sin(ks)

where the sound horizon is defined as s ≡
∫
csdη



Harmonic Extrema
.
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(a) Peak Scales (b) Baryons• All modes are frozen in
at recombination (denoted
with a subscript ∗)

• Temperature perturbations
of different amplitude
for different modes.

• For the adiabatic
(curvature mode) initial conditions

Θ̇(0) = 0

• So solution

Θ(η∗) = Θ(0) cos(ks∗)



Harmonic Extrema
• Modes caught in the extrema of their oscillation will have

enhanced fluctuations

kns∗ = nπ

yielding a fundamental scale or frequency, related to the inverse
sound horizon

kA = π/s∗

and a harmonic relationship to the other extrema as 1 : 2 : 3...



Temperature Anisotropy
• Spatial oscillations frozen at recombination; photons then stream

• Viewed at distance D∗ as angular anisotropy L ≈ kD∗



Peak Location
• The fundmental physical scale is translated into a fundamental

angular scale by simple projection according to the angular
diameter distance DA

θA = λA/DA

ℓA = kADA

• In a flat universe, the distance is simply DA = D ≡ η0 − η∗ ≈ η0,
the horizon distance, and kA = π/s∗ =

√
3π/η∗ so

θA ≈ η∗
η0

• In a matter-dominated universe η ∝ a1/2 so θA ≈ 1/30 ≈ 2◦ or

ℓA ≈ 200



Curvature
.

λ

α
• In a curved

universe, the apparent
or angular diameter
distance is no longer
the conformal distance
DA = R sin(D/R) ̸= D

• Objects in a closed
universe are further than
they appear! gravitational lensing of the background...

• Curvature scale of the universe must be substantially larger than
current horizon



Curvature in the CMB
• Curvature and Λ – consistent with flat ΛCDM



Fixed Deceleration Epoch
• CMB determination of matter density controls all determinations

in the deceleration (matter dominated) epoch

• Planck: Ωmh
2 = 0.1426± 0.0025 → 1.7%

• Distance to recombination D∗ determined to 1
4
1.7% ≈ 0.43%

(ΛCDM result 0.46%; ∆h/h ≈ −∆Ωmh
2/Ωmh

2)
[more general: −0.11∆w − 0.48∆ lnh− 0.15∆ lnΩm − 1.4∆ lnΩtot = 0 ]

• Expansion rate during any redshift in the deceleration epoch
determined to 1

2
1.7%

• Distance to any redshift in the deceleration epoch determined as

D(z) = D∗ −
∫ z∗

z

dz

H(z)

• Volumes determined by a combination dV = D2
AdΩdz/H(z)

• Structure also determined by growth of fluctuations from z∗



Dark Energy
• Flat universe indicates critical density and implies missing energy

given local measures of the matter density “dark energy”

• DA = D =
∫
dz/H(z) also depends on dark energy density Ωde

and equation of state w = pde/ρde.
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Curvature and Dark Energy
• Curvature can adjust the relative distance between BAO at z < 1

and CMB at z = 1100

• ΩK = 0.003 could alleviate the current percent level discrepancy

1 2 3
z

0.950

0.975

1.000

1.025

1.050
DV /rd [fid]

baseline ΛCDM
no lowE lg(ma) = −32.5
curvature lg(ma) = −32.5
w0 − wa

BAO data

1 2 3
z

DM/rd [fid]

1 2 3
z

DH/rd [fid]

• Still requires dark energy to explain SN at z < 0.1, here axions,
but no phantom w < −1

• Expansion rate at recombination or matter-radiation ratio enters
into calculation of kA - other possibilities



Doppler Effect
• Bulk motion of fluid changes the observed temperature via

Doppler shifts
(
∆T

T

)

dop

= n̂ · vγ

• Averaged over directions
(
∆T

T

)

rms

=
vγ√
3

• Acoustic solution

vγ√
3
= −

√
3

k
Θ̇ =

√
3

k
kcs Θ(0)sin(ks)

= Θ(0)sin(ks)



Doppler Peaks?
• Doppler effect for the photon dominated system is of equal

amplitude and π/2 out of phase: extrema of temperature are
turning points of velocity

• Effects add in quadrature:

(
∆T

T

)2

= Θ2(0)[cos2(ks) + sin2(ks)] = Θ2(0)

• No peaks in k spectrum! However the Doppler effect carries an
angular dependence that changes its projection on the sky
n̂ · vγ ∝ n̂ · k̂



Doppler Peaks?
• Coordinates where ẑ ∥ k̂

Y10Yℓ0 → Yℓ±1 0

recoupling j′ℓYℓ0: no peaks in Doppler effect

l
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Radiation Transfer Function
• Geometry of projection dictates how power in inhomogeneity (k)

transfers to power in anisotropy (ℓ)

ReionizationISW

Acoustic Acoustic

SW



Secondary Anisotropy
• Even though τ ∼ 0.06 and v ∼ 10−3 and dark energy dominates,

scattering and gravitational anisotropy from z < z∗ is small

• Can understand most of this in terms of the geometric projection of
radiation sources in the “Limber approximation”

ISW
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lensing

Doppler
density mod
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Polarization Transfer (Preview?)
• A polarization source function with ℓ = 2, modulated with plane

wave orbital angular momentum

• Scalars have no B mode contribution, vectors mostly B and tensor
comparable B and E

.
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Restoring Gravity
• Take a simple photon dominated system with gravity

• Continuity altered since a gravitational potential represents a
stretching of the spatial fabric that dilutes number densities –
formally a spatial curvature perturbation

• Think of this as a perturbation to the scale factor a → a(1 + Φ) so
that the cosmogical redshift is generalized to

ȧ

a
→ ȧ

a
+ Φ̇

so that the continuity equation becomes

Θ̇ = −1

3
kvγ − Φ̇



Restoring Gravity
• Gravitational force in momentum conservation F = −m∇Ψ

generalized to momentum density modifies the Euler equation to

v̇γ = k(Θ + Ψ)

• General relativity says that Φ and Ψ are the relativistic analogues
of the Newtonian potential and that Φ ≈ −Ψ.

• In our matter-dominated approximation, Φ represents matter
density fluctuations through the cosmological Poisson equation

k2Φ = 4πGa2ρm∆m

where the difference comes from the use of comoving coordinates
for k (a2 factor), the removal of the background density into the
background expansion (ρ∆m) and finally a coordinate subtlety that
enters into the definition of ∆m



Constant Potentials
• In the matter dominated epoch potentials are constant because

infall generates velocities as vm ∼ kηΨ

• Velocity divergence generates density perturbations as
∆m ∼ −kηvm ∼ −(kη)2Ψ

• And density perturbations generate potential fluctuations

Φ =
4πGa2ρ∆

k2
≈ 3

2

H2a2

k2
∆ ∼ ∆

(kη)2
∼ −Ψ

keeping them constant. Note that because of the expansion, density
perturbations must grow to keep potentials constant.



Constant Curvature
• More generally, if stress perturbations are negligible compared

with density perturbations ( δp ≪ δρ ) then potential will remain
roughly constant

• A variant called the Bardeen or comoving curvature is strictly
constant

R = const ≈ 5 + 3w

3 + 3w
Φ

where the approximation holds when w ≈const.

• This quantity is the direct prediction from inflation: the curvature
or local scale factor fluctuation on surfaces of spatially constant
inflaton field

• Geometry: a curvature fluctuation provides local change in space
curvature δK and to the local observer looks just like separate
FRW universe with K = K̄ + δK, which is constant in time



Oscillator: Take Two
• Combine these to form the simple harmonic oscillator equation

Θ̈ + c2sk
2Θ = −k2

3
Ψ− Φ̈

• In a CDM dominated expansion Φ̇ = Ψ̇ = 0. Also for photon
domination c2s = 1/3 so the oscillator equation becomes

Θ̈ + Ψ̈ + c2sk
2(Θ + Ψ) = 0

• Solution is just an offset version of the original

[Θ + Ψ](η) = [Θ + Ψ](0) cos(ks)

• Θ+Ψ is also the observed temperature fluctuation since photons
lose energy climbing out of gravitational potentials at
recombination



Effective Temperature
• Photons climb out of potential wells at last scattering

• Lose energy to gravitational redshifts

• Observed or effective temperature

Θ+Ψ

• Effective temperature oscillates around zero with amplitude given
by the initial conditions

• Note: initial conditions are set when the perturbation is outside of
horizon, need inflation or other modification to matter-radiation
FRW universe.

• GR says that initial temperature is given by initial potential



Sachs-Wolfe Effect and the Magic 1/3
• A gravitational potential is a perturbation to the temporal

coordinate [formally a gauge transformation]

δt

t
= Ψ

• Convert this to a perturbation in the scale factor,

t =

∫
da

aH
∝

∫
da

aρ1/2
∝ a3(1+w)/2

where w ≡ p/ρ so that during matter domination

δa

a
=

2

3

δt

t

• CMB temperature is cooling as T ∝ a−1 so

Θ+Ψ ≡ δT

T
+Ψ = −δa

a
+Ψ =

1

3
Ψ



Sachs-Wolfe Normalization
• Use measurements of ∆T/T ≈ 10−5 in the Sachs-Wolfe effect to

infer ∆2
R

• Recall in matter domination Ψ = −3R/5

ℓ(ℓ+ 1)Cℓ

2π
≈ ∆2

T ≈ 1

25
∆2

R

• Thus, amplitude of initial curvature fluctuations is ∆R ≈ 5× 10−5

• Modern usage: acoustic peak measurements plus known radiation
transfer function is used to convert ∆T/T to ∆R. Best measured at
k = 0.08 Mpc−1 by Planck

• Current convention set in the WMAP era

∆2
R(k) ≡ As

(
k

0.05Mpc−1

)ns−1

As ∼ 2.5× 10−9 (slightly smaller since ns − 1 ≈ −0.03 ∼ −0.04)



Baryon Loading
• Baryons add extra mass to the photon-baryon fluid

• Controlling parameter is the momentum density ratio:

R ≡ pb + ρb
pγ + ργ

≈ 30Ωbh
2
( a

10−3

)

of order unity at recombination

• Momentum density of the joint system is conserved

(ργ + pγ)vγ + (ρb + pb)vb ≈ (pγ + pγ + ρb + ργ)vγ

= (1 +R)(ργ + pγ)vγb



New Euler Equation
• Momentum density ratio enters as

[(1 +R)vγb]˙= kΘ+ (1 +R)kΨ

• Photon continuity remains the same

Θ̇ = −k

3
vγb − Φ̇

• Modification of oscillator equation

[(1 +R)Θ̇]˙+
1

3
k2Θ = −1

3
k2(1 +R)Ψ− [(1 +R)Φ̇]˙



Oscillator: Take Three
• Combine these to form the not-quite-so simple harmonic oscillator

equation

c2s
d

dη
(c−2

s Θ̇) + c2sk
2Θ = −k2

3
Ψ− c2s

d

dη
(c−2

s Φ̇)

where c2s ≡ ṗγb/ρ̇γb

c2s =
1

3

1

1 +R

• In a CDM dominated expansion Φ̇ = Ψ̇ = 0 and the adiabatic
approximation Ṙ/R ≪ ω = kcs

[Θ + (1 +R)Ψ](η) = [Θ + (1 +R)Ψ](0) cos(ks)



Baryon Peak Phenomenology
.
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(a) Peak Scales (b) Baryons• Photon-baryon
ratio enters in three ways

• Overall larger amplitude:

[Θ + (1 +R)Ψ](0) =
1

3
(1 + 3R)Ψ(0)

• Even-odd peak modulation of
effective temperature

[Θ + Ψ]peaks = [±(1 + 3R)− 3R]
1

3
Ψ(0)

[Θ + Ψ]1 − [Θ + Ψ]2 = [−6R]
1

3
Ψ(0)

• Shifting of the sound horizon down or ℓA up

ℓA ∝
√
1 +R



Photon Baryon Ratio Evolution
• Actual effects smaller since R evolves

• Oscillator equation has time evolving mass

c2s
d

dη
(c−2

s Θ̇) + c2sk
2Θ = 0

• Effective mass is is meff = 3c−2
s = (1 +R)

• Adiabatic invariant

E

ω
=

1

2
meffωA

2 =
1

2
3c−2

s kcsA
2 ∝ A2(1 +R)1/2 = const.

• Amplitude of oscillation A ∝ (1 +R)−1/4 decays adiabatically as
the photon-baryon ratio changes



Baryons in the CMB
• Modulation, amplitude, sound horizon scale



Oscillator: Take Three and a Half
• The not-quite-so simple harmonic oscillator equation is a forced

harmonic oscillator

c2s
d

dη
(c−2

s Θ̇) + c2sk
2Θ = −k2

3
Ψ− c2s

d

dη
(c−2

s Φ)

changes in the gravitational potentials alter the form of the
acoustic oscillations

• If the forcing term has a temporal structure that is related to the
frequency of the oscillation, this becomes a driven harmonic
oscillator

• Term involving Ψ is the ordinary gravitational force

• Term involving Φ involves the Φ̇ term in the continuity equation as
a (curvature) perturbation to the scale factor



Potential Decay
• Matter-to-radiation ratio

ρm
ρr

≈ 24Ωmh
2
( a

10−3

)

of order unity at recombination in a low Ωm universe

• Radiation is not stress free and so impedes the growth of structure

k2Φ = 4πGa2ρr∆r

∆r ∼ 4Θ oscillates around a constant value, ρr ∝ a−4 so the
Netwonian curvature decays.

• General rule: potential decays if the dominant energy component
has substantial stress fluctuations, i.e. below the generalized sound
horizon or Jeans scale



Radiation Driving
• Decay is timed precisely to drive the oscillator - close to fully

coherent

|[Θ + Ψ](η)| = |[Θ + Ψ](0) + ∆Ψ−∆Φ|

= |1
3
Ψ(0)− 2Ψ(0)| = |5

3
Ψ(0)|

105 15 20

Ψi

–Ψi

Ψ

Θ+Ψ

πγ

ks/π

damping

driving

• 5× the amplitude of the Sachs-Wolfe effect!



External Potential Approach
• Solution to homogeneous equation

(1 +R)−1/4cos(ks) , (1 +R)−1/4sin(ks)

• Give the general solution for an external potential by propagating
impulsive forces

(1 +R)1/4Θ(η) = Θ(0)cos(ks) +

√
3

k

[
Θ̇(0) +

1

4
Ṙ(0)Θ(0)

]
sin ks

+

√
3

k

∫ η

0

dη′(1 +R′)3/4sin[ks− ks′]F (η′)

where

F = −Φ̈− Ṙ

1 +R
Φ̇− k2

3
Ψ

• Useful if general form of potential evolution is known



Cold Dark Matter in the CMB
• Hydrostatic equilibrium, oscillation forcing, damping



Matter-Radiation in the Power Spectrum
.
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• Coherent approximation is exact
for a photon-baryon fluid but
reality is reduced to ∼ 4×
because neutrino contribution
is free streaming not fluid like

• Neutrinos drive the oscillator
less efficiently and also slightly
change the phase of the oscillation

• Actual initial conditions are Θ+Ψ = Ψ/2 for radiation
domination but comparison to matter dominated SW correct

• With 3 peaks, it is possible to solve for both the baryons and dark
matter densities, providing a calibration for the sound horizon

• Higher peaks check consistency with assumptions: e.g. extra
relativistic d.o.f.s



Damping
• Tight coupling equations assume a perfect fluid: no viscosity, no

heat conduction

• Fluid imperfections are related to the mean free path of the
photons in the baryons

λC = τ̇−1 where τ̇ = neσTa

is the conformal opacity to Thomson scattering

• Dissipation related to diffusion length: random walk approx

λD =
√
NλC =

√
η/λC λC =

√
ηλC

the geometric mean between the horizon and mean free path

• λC/η∗ ∼ %, so expect peaks > 3 to be affected by dissipation

• √
η enters here and η in the acoustic scale → expansion rate and

extra relativistic species



Equations of Motion
• Continuity

Θ̇ = −k

3
vγ − Φ̇ , δ̇b = −kvb − 3Φ̇

where the photon equation remains unchanged and the baryons
follow number conservation with ρb = mbnb

• Navier-Stokes (Euler + heat conduction, viscosity)

v̇γ = k(Θ + Ψ)− k

6
πγ − τ̇(vγ − vb)

v̇b = − ȧ

a
vb + kΨ+ τ̇(vγ − vb)/R

where the photons gain an anisotropic stress term πγ from radiation
viscosity and a momentum exchange term with the baryons and
are compensated by the opposite term in the baryon Euler equation



Viscosity
• Viscosity is generated from radiation streaming from hot to cold

regions

• Expect

πγ ∼ vγ
k

τ̇

generated by streaming, suppressed by scattering in a wavelength
of the fluctuation. Radiative transfer says

πγ ≈ 2Avvγ
k

τ̇

where Av = 16/15

v̇γ = k(Θ + Ψ)− k

3
Av

k

τ̇
vγ



Oscillator: Penultimate Take
• Adiabatic approximation ( ω ≫ ȧ/a)

Θ̇ ≈ −k

3
vγ

• Oscillator equation contains a Θ̇ damping term

c2s
d

dη
(c−2

s Θ̇) +
k2c2s
τ̇

AvΘ̇ + k2c2sΘ = −k2

3
Ψ− c2s

d

dη
(c−2

s Φ̇)

• Heat conduction term similar in that it is proportional to vγ and is
suppressed by scattering k/τ̇ . Expansion of Euler equations to
leading order in kτ̇ gives

Ah =
R2

1 +R

since the effects are only significant if the baryons are dynamically
important



Oscillator: Final Take
• Final oscillator equation

c2s
d

dη
(c−2

s Θ̇) +
k2c2s
τ̇

[Av + Ah]Θ̇ + k2c2sΘ = −k2

3
Ψ− c2s

d

dη
(c−2

s Φ̇)

• Solve in the adiabatic approximation

Θ ∝ exp(i

∫
ωdη)

−ω2 +
k2c2s
τ̇

(Av + Ah)iω + k2c2s = 0



Dispersion Relation
• Solve

ω2 = k2c2s

[
1 + i

ω

τ̇
(Av + Ah)

]

ω = ±kcs

[
1 +

i

2

ω

τ̇
(Av + Ah)

]

= ±kcs

[
1± i

2

kcs
τ̇

(Av + Ah)

]

• Exponentiate

exp(i

∫
ωdη) = e±iks exp[−k2

∫
dη

1

2

c2s
τ̇
(Av + Ah)]

= e±iks exp[−(k/kD)
2]

• Damping is exponential under the scale kD



Diffusion Scale
• Diffusion wavenumber

k−2
D =

∫
dη

1

τ̇

1

6(1 +R)

(
16

15
+

R2

(1 +R)

)

• Limiting forms

lim
R→0

k−2
D =

1

6

16

15

∫
dη

1

τ̇

lim
R→∞

k−2
D =

1

6

∫
dη

1

τ̇

• Geometric mean between horizon and mean free path as expected
from a random walk

λD =
2π

kD
∼ 2π√

6
(ητ̇−1)1/2



Source Separation
• Decomposition into local temperature + SW, Doppler, ISW (no

dark energy) in this simple semianalytic description
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