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CMB Power Spectra
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• Power spectra
of CMB

– temperature

– polarization

– lensing



Linear Polarization: Stokes Q, U
• Q ∝ ⟨E1E

∗
1⟩ − ⟨E2E

∗
2⟩, U ∝ ⟨E1E

∗
2⟩+ ⟨E2E

∗
1⟩.

• Counterclockwise rotation of axes by θ = 45◦

E1 = (E ′
1 − E ′

2)/
√
2 , E2 = (E ′

1 + E ′
2)/

√
2

• U ∝ ⟨E ′
1E

′∗
1 ⟩ − ⟨E ′

2E
′∗
2 ⟩, difference of intensities at 45◦ or Q′

• More generally, P transforms as a tensor under rotations and

Q′ = cos(2θ)Q+ sin(2θ)U

U ′ = − sin(2θ)Q+ cos(2θ)U

or

Q′ ± iU ′ = e∓2iθ[Q± iU ]

acquires a phase under rotation and is a spin ±2 object



Coordinate Independent Representation
. • Two directions: orientation of polarization

and change in amplitude, i.e. Q and
U in the basis of the Fourier wavevector
(pointing with angle ϕl) for small sections
of sky are called E and B components

E(l)± iB(l) = −
∫
dn̂[Q′(n̂)± iU ′(n̂)]e−il·n̂

= −e∓2iϕl

∫
dn̂[Q(n̂)± iU(n̂)]e−il·n̂

• For the B-mode to not vanish, the
polarization must point in a direction not
related to the wavevector - not possible
for density fluctuations in linear theory

• Generalize to all-sky: eigenmodes of Laplace operator of tensor



Spin Harmonics
• Laplace Eigenfunctions

∇2
±2Yℓm[σ3 ∓ iσ1] = −[l(l + 1)− 4]±2Yℓm[σ3 ∓ iσ1]

• Spin s spherical harmonics: orthogonal and complete∫
dn̂sY

∗
ℓm(n̂)sYℓ′m′(n̂) = δℓℓ′δmm′∑

ℓm

sY
∗
ℓm(n̂)sYℓm(n̂

′) = δ(ϕ− ϕ′)δ(cos θ − cos θ′)

where the ordinary spherical harmonics are Yℓm = 0Yℓm

• Given in terms of the rotation matrix

sYℓm(βα) = (−1)m
√

2ℓ+ 1

4π
Dℓ

−ms(αβ0)



Polarization Multipoles

π/20

0

π/2

π
π 3π/2 2π
φ

θ

l=2, m=0

φl=2, m=1 π/20

0

π/2

π
π 3π/2 2π

θ

π/20

0

π/2

π
π 3π/2 2π
φ

θ

l=2, m=2



Statistical Representation
• All-sky decomposition

[Q(n̂)± iU(n̂)] =
∑
ℓm

[Eℓm ± iBℓm]±2Yℓm(n̂)

• Power spectra

⟨E∗
ℓmEℓm⟩ = δℓℓ′δmm′CEE

ℓ

⟨B∗
ℓmBℓm⟩ = δℓℓ′δmm′CBB

ℓ

• Cross correlation

⟨Θ∗
ℓmEℓm⟩ = δℓℓ′δmm′CΘE

ℓ

others vanish if parity is conserved



Thomson Scattering
• Polarization state of radiation in direction n̂ described by the

intensity matrix
〈
Ei(n̂)E

∗
j (n̂)

〉
, where E is the electric field vector

and the brackets denote time averaging.

• Differential cross section

dσ

dΩ
=

3

8π
|Ê′ · Ê|2σT ,

where σT = 8πα2/3me is the Thomson cross section, Ê′ and Ê

denote the incoming and outgoing directions of the electric field or
polarization vector.

• Summed over angle and incoming polarization∑
i=1,2

∫
dn̂′ dσ

dΩ
= σT



Polarization Generation
. E–mode

B–modee–

Linear
Polarization

Thomson
Scattering

Quadrupole

x k

y

z

• Heuristic:
incoming radiation shakes
an electron in direction
of electric field vector Ê′

• Radiates photon with
polarization also in direction Ê′

• But photon cannot be longitudinally polarized so that scattering
into 90◦ can only pass one polarization

• Linearly polarized radiation like polarization by reflection

• Unlike reflection of sunlight, incoming radiation is nearly isotropic

• Missing from direction orthogonal to original incoming direction

• Only quadrupole anisotropy generates polarization by Thomson
scattering



Polarization Generation
• Single direction



Polarization Generalization
• Isotropic distribution



Polarization
• Quadrupole distribution



Polarization
• Scalar quadrupole to E mode



Polarization
• Scalars: ℓ = 2, m = 0 E mode pattern - quadrupole viewing angle
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Polarized Radiative Transfer
• Source of linear polarization is the radiation quadrupole

• Quadrupolar structure transferred through plane wave or orbital
angular momentum onto polarization anisotropy

• Recall monopole and dipole emission structure – same procedure
except couple to s = ±2, ℓ = 2:

±2Y2mYℓ0 → ±2Y(ℓ−2)m . . . ±2Y(ℓ+2)m
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Polarization Transfer
• A polarization source function with ℓ = 2, modulated with plane

wave orbital angular momentum

• Scalars have no B mode contribution, vectors mostly B and tensor
comparable B and E

.
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Radiation Transfer Function
• Radiation transfer function takes initial curvature inhomogeneity

in k to anisotropy in ℓ

ReionizationISW

Acoustic Acoustic

SW



Acoustic Polarization
• Break down of tight-coupling leads to quadrupole anisotropy of

πγ ≈ k

τ̇
vγ

• Scaling kD = (τ̇ /η∗)
1/2 → τ̇ = k2Dη∗

• Know: kDs∗ ≈ kDη∗ ≈ 10

• So:

πγ ≈ k

kD

1

10
vγ

∆P ≈ ℓ

ℓD

1

10
∆T



Acoustic Polarization
• Gradient of velocity is along direction of wavevector, so

polarization is pure E-mode

• Velocity is 90◦ out of phase with temperature – turning points of
oscillator are zero points of velocity:

Θ+Ψ ∝ cos(ks); vγ ∝ sin(ks)

• Polarization peaks are at troughs of temperature power



Cross Correlation
• Cross correlation of temperature and polarization

(Θ + Ψ)(vγ) ∝ cos(ks) sin(ks) ∝ sin(2ks)

• Oscillation at twice the frequency

• Correlation: radial or tangential around hot spots

• Partial correlation: easier to measure if polarization data is noisy,
harder to measure if polarization data is high S/N or if bands do
not resolve oscillations

• Good check for systematics and foregrounds

• Comparison of temperature and polarization is proof against
features in initial conditions mimicking acoustic features



Reionization
. • Reionization causes

rescattering of radiation

• Suppresses temperature anisotopy
as e−τ and changes interpretation
of amplitude to Ase

−2τ

• Electron sees temperature
anisotropy on its recombination
surface

• For wavelengths that are comparable to the horizon at reionization,
a quadrupole moment

• Rescatters to a linear polarization that is correlated with the
Sachs-Wolfe temperature anisotropy



Reionization
.
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• Amplitude of
CEE

ℓ depends mainly on τ

• Shape of CEE
ℓ depends

on reionization history

• Horizon at earlier epochs
subtends a smaller angle,
higher multipole peak

• Precision measurements can constrain the reionization history to
be either low or high z dominated



Polarized Landscape
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Gravitational Waves
• Gravitational wave amplitude satisfies Klein-Gordon equation
(K = 0), same as scalar field

d2h+,×

dt2
+ 3H

dh+,×

dt
+
k2

a2
h+,× = 0 .

• Acquires quantum fluctuations in same manner as ϕ. Lagrangian
sets the normalization

• Scale-invariant gravitational wave amplitude

∆2
+,× = 16πG

H2

(2π)2

• Gravitational wave power ∝ H2 ∝ V ∝ E4
i where Ei is the energy

scale of inflation



Gravitational Waves
• Tensor-scalar ratio is therefore generally small

r ≡ 4
∆2

+

∆2
R

= 16ϵH

• Tensor tilt:

d ln∆2
+

d ln k
≡ nT = 2

d lnH

d ln k
= −2ϵH

• Consistency relation between tensor-scalar ratio and tensor tilt

r = 16ϵ = −8nT

• Measurement of scalar tilt and gravitational wave amplitude
constrains inflationary model in the slow roll context

• Comparision of tensor-scalar ratio and tensor tilt tests the idea of
slow roll itself



Observability
• Gravitational waves from inflation can be measured via its imprint

on the polarization of the CMB
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Tensor Power
.

1/aH

1/aH• Gravitational waves obey
a Klein-Gordon like equation

• Like inflation, perturbations generated
by quantum fluctuations during inflation

• Freeze out at horizon crossing
during inflation an amplitude
that reflects the energy scale of inflation

∆2
+,× =

H2

2π2M2
Pl

∝ E4
i

• Gravitational waves remain frozen outside the horizon at constant
amplitude

• Oscillate inside the horizon and decay or redshift as radiation



Tensor Quadrupoles
.

crest

trough

trough

m=2

Tensors
(Gravity Waves)

• Changing transverse-traceless
distortion of space creates a
quadrupole CMB anisotropy
much like the distortion
of test ring of particles

• As the tensor mode enters the
horizon it imprints a quadrupole
temperature ℓ = 2,m = ±2 in plane wave coordinates k ∥ z

• Modes that cross before recombination: effect erased by
rescattering e−τ due to its isotropizing effect

• Modes that cross after recombination: integrate contributions
along the line of sight - tensor ISW effect



Tensor Temperature Power Spectrum
.
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• Resulting spectum,
near scale invariant out to
horizon at recombination ℓ < 100

• Suppressed on smaller scales or
higher multipoles ℓ > 100, weakly
degenerate with tilt

• When added to scalar spectrum, enhances large scale anisotropy
over small scale

• Shape of total temperature spectrum can place tight limit r < 0.1

• Non-detection of B modes by BICEP limits r < 0.03

• Rules out monomial potentials V ∝ ϕp, including p = 2

• Allowed models have some scale so that potential is flatter on
CMB scales



Polarization
• Scalar vs tensor quadrupole viewed on sky



Polarization
• Scalars vs. tensors: E vs B

Scalars m=0 Tensors m=2



Tensor Polarization Power Spectrum
. • Polarization of gravitational

wave determines the
quadrupole temperature anisotropy

• Scattering of quadrupole
temperature anisotropy generates
linear polarization aligned
with cold lobe

• Direction of CMB polarization is therefore determined by
gravitational wave polarization rather than direction of wavevector

• B-mode polarization when the amplitude is modulated by the
plane wave

• Requires scattering: two peaks - horizon at recombination and
reionization



Polarized Landscape
• Low ℓ gravitational wave B modes under the lensing B modes
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Tensor Polarization Power Spectrum
• Measuring B-modes from gravitational waves determines the

energy scale of inflation

∆Bpeak ≈ 0.024

(
Ei

1016GeV

)2

µK

• Also generates E-mode polarization which, like T , is a consistency
check but like T falls below detectability below r ∼ 0.1



Large Scale Structure and Dark Energy
Wayne Hu



Matter Evolution
• Relative to inflationary initial curvature power spectrum

k3

2π2
PR(k) = AS

(
k

knorm

)nS−1

transfer function T (k) defines the subhorizon evolution which is
influenced by pressure effects during radiation domination

• Normalize to the matter dominated expectation and take
Φ = [3G(a)/5]R where G(a) is the modification to the growth
rate of Φ due to the dark energy and curvature

Φ(a, k) =
3

5
G(a)T (k)R(0, k)



Matter Evolution
• Grouping the clustering matter as Ωm, the Poisson equation

converts curvature power spectrum and density fluctuation
k2Φ = 4πGa2ρm∆ (where ∆ is the density perturbation on
comoving slicing)

k3

2π2
P∆(k) =

4

25
AS

(
G(a)a

Ωm

)2(
k

H0

)4(
k

knorm

)nS−1

T 2(k)



Transfer Function
• Transfer function transfers the initial Newtonian curvature to its

value today (linear response theory)

T (k) =
Φ(k, a = 1)

Φ(k, ainit)

Φ(knorm, ainit)

Φ(knorm, a = 1)

• Conservation of curvature : Newtonian curvature is a constant
when stress perturbations are negligible: above the horizon during
radiation and dark energy domination, on all scales during matter
domination

• When stress fluctuations dominate, perturbations are stabilized by
the Jeans mechanism

• Poisson equation: Newtonian curvature, comoving density
perturbation ∆ ≡ (δρ/ρ)com implies Φ decays

(k2 − 3K)Φ = 4πGρ∆ ∼ η−2∆



Transfer Function
• Freezing of ∆ at its horizon crossing value ∆H ∼ Φinit stops at ηeq

Φ ∼ (kηeq)
−2∆H ∼ (kηeq)

−2Φinit

• Transfer function has a k−2 fall-off beyond keq ∼ η−1
eq

• Small correction since growth with a smooth radiation component
is logarithmic not frozen

• Transfer function is a direct output of an Einstein-Boltzmann code



Fitting Function
• Alternately accurate fitting formula exist, e.g. pure CDM form:

T (k(q)) =
L(q)

L(q) + C(q)q2

L(q) = ln(e+ 1.84q)

C(q) = 14.4 +
325

1 + 60.5q1.11

q = k/Ωmh
2Mpc−1(TCMB/2.7K)2

• In h Mpc−1, the critical scale depends on Γ ≡ Ωmh also known as
the shape parameter



Transfer Function
• Numerical calculation

1

0.1

0.0001 0.001 0.01 0.1 1
0.01
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Dark Matter and the Transfer Function
• Baryons caught up in the acoustic oscillations of the CMB and

impart acoustic wiggles to the transfer function. Density
enhancements are produced kinematically through the continuity
equation δb ∼ (kη)vb and hence are out of phase with CMB
temperature peaks

• Dissipation of the acoustic oscillations eliminates both the CMB
and baryon perturbations – known as Silk damping for the
baryons. This suppression and the general fact that baryons are
caught up with photons was one of the main arguments for CDM

• Neutrino dark matter suffers similar effects and hence cannot be
the main component of dark matter in the universe

• More generally beyond cold dark matter (warm, self-interacting,
fuzzy) small scale structure can differ appreciably and still be
consistent with current data



Massive Neutrinos
• Relativistic stresses of a light neutrino slow the growth of structure

• From a radiative transfer standpoint, this is due to the free
streaming of neutrinos, like the free streaming of photons after
recombination

• Neutrino species with cosmological abundance contribute to
matter as Ωνh

2 =
∑
mν/94eV, suppressing power as

∆P/P ≈ −8Ων/Ωm

• Current data from CMB lensing has caused some controversy as to
whether “negative neutrino mass” is required to invert this
suppression



Growth Function
• Same physics applies to the dark energy dominated universe

• Under the dark energy sound horizon or Jeans scale, dark energy
density frozen. Potential decays at the same rate for all scales

G(a) =
Φ(knorm, a)

Φ(knorm, ainit)
′ ≡ d

d ln a

• Continuity + Euler + Poisson

G′′ +

(
1− ρ′′

ρ′
+

1

2

ρ′c
ρc

)
G′ +

(
1

2

ρ′c + ρ′

ρc
− ρ′′

ρ′

)
G = 0

where ρ is the Jeans unstable matter and ρc = 3H2/8πG



Dark Energy Growth Suppression
• Consider the unstable matter to be ρ = ρm ∝ a−3 and smooth dark

energy:

d2G

d ln a2
+

[
5

2
− 3

2
w(z)Ωde(z)

]
dG

d ln a
+

3

2
[1− w(z)]Ωde(z)G = 0 ,

where w ≡ pde/ρde and Ωde ≡ ρde/(ρm + ρde) with initial
conditions G = 1, dG/d ln a = 0

• Quintessence, a scalar field with sound speed c2s = 1 in a potential
is a candidate for smooth dark energy

□ϕ = −dV/dϕ → ϕ̈+ 2aHϕ̇+ k2ϕ = −a2dV/dϕ
• Initially frozen by Hubble drag with wde = −1 and starts rolling as

slope overcomes the decreasing Hubble friction wde > −1

• Cannot have wde < −1 or “phantom dark energy”



Current Amplitude, σ8, S8
• For ΛCDM (wde = −1) with neutrinos below free streaming scale

G0 =

(
5

2
Ωm

∫ 1

0

da

(aH(a)/H0)
3

)
×
(
1− 0.014

∑
mν

0.06eV

)
.

or approximately

G0 ≈ 0.76

(
Ωm

0.27

)0.236(
1− 0.014

∑
mν

0.06eV

)
.

• Using this growth factor:

σ8 ≈
(

As

3.135× 10−9

)1/2(
Ωbh

2

0.024

)−0.272(
Ωmh2

0.14

)0.513

× (3.123h)
(ns−1)/2

(
h

0.72

)0.698(
G0

0.76

)
,

and S8 ≡ σ8(Ωm/0.3)
1/2



Velocity field
• Continuity gives the velocity from the density field as

v = −∆̇/k = −aH
k

d∆

d ln a

= −aH
k

∆
d ln(aG)

d ln a

• In a ΛCDM model or open model d ln(aG)/d ln a ≈ Ω0.6
m

• Measuring both the density field and the velocity field (through
distance determination and redshift) allows a measurement of Ωm

• Practically one measures β = Ω0.6
m /b where b is a bias factor for

the tracer of the density field, i.e. with galaxy numbers δn/n = b∆

• Can also measure this factor from the redshift space power
spectrum - the Kaiser effect where clustering in the radial direction
is apparently enhanced by gravitational infall



Gravitational Lensing
• In general relativity, masses curve space and bend the trajectory of

photons - for this discussion lets restore the different units of t and
x by restoring c - but note that is now does not represent the
coordinate speed of light

• Newtonian approximation to the line element, neglecting the
expansion (or in conformal coordinates)

ds2 = −(1 + 2Ψ/c2)c2dt2 + (1 + 2Φ/c2)dx2

• Photons travel on null geodesics (ds2 = 0) - so the coordinate
speed of light is

v =
dx

dt
≈ c

1 + Ψ/c2

1 + Φ/c2
≈ c(1− 2Φ/c2)



Gravitational Lensing
.

slower
faster

refraction

normal

• Coordinate speed of light slows
in the presence of mass due to
the warping of spacetime
as quantified by the gravitational potential

Can be modelled as an optics problem,
defines an effective index of refraction

n =
c

v
=

(
1− 2Φ

c2

)−1

≈ 1 +
2Φ

c2

• As light passes by the object, the change in the index of refraction
or delay of the propagation of wavefronts bends the trajectory

∇n =
2

c
∇Φ = −2GM

r2c2
r̂



Strong Gravitational Lensing
.

lens
β

αso
ur

ce

ob
s

r0

dS dL

θ

image

y
• Calculation would

take the same form if we took
a nonrelativistic particle of
mass m and used Newtonian
mechanics - general relativity
just doubles it the deflection for light due to space curvature

• Deflection is small so integrate the transverse (⊥) deflection on the
unperturbed trajectory

α = −
∫ ∞

−∞
dx∇⊥n =

∫ ∞

−∞
dx

2GMr0

(r20 + x2)
3/2
c2

=
4GM

r0c2



Lens Equation
• Given the thin lens deflection formula, the lens equation follows

from simple geometry

• Solve for the image position θ with respect to line of sight. Small
angle approximation

y ≈ (dS − dL)α ≈ dS(θ − β)

• Substitute in deflection angle

(dS − dL)
4GM

r0c2
≈ dS(θ − β)

• Eliminate r0 = dL sin θ ≈ dLθ

• Solve quadratic equation in θ for the multiply lensed images



From Point Lens to Continuous
• Deflection angle for a point lens across small distance

θ − β = 2

∫
dx
dS − dL
dS

∇⊥Φ

• Promote to comoving coordinates and allow the variation of Φ to
occur across cosmological scales

θ − β = 2

∫
dη
DS −DL

DS

∇⊥Φ(DLn̂, η)

note that converting for point mass Φ = GM/r = GM(1 + z)/R

is equivalent to the “redshifted mass” M =M(1 + z)

• Convert the transverse spatial derivative at the distance DL to an
angular derivative

∇n̂ = DL∇⊥

and define the deflection potential

θ − β = ∇n̂ϕ(n̂)



Gravitational Lensing
• Gravitational potentials along the line of sight n̂ to some source at

comoving distance DS lens the images according to (flat universe)

ϕ(n̂) = 2

∫
dDL

DS −DL

DLDS

Φ(DLn̂, η(DL))

remapping image positions as

n̂I = n̂S +∇n̂ϕ(n̂)

• Since absolute source position is unknown, use image distortion
defined by the Jacobian matrix

∂nI
i

∂nS
j

= δij + ψij



Weak Lensing
• Small image distortions described by the convergence κ and shear

components (γ1, γ2)

ψij =

(
κ− γ1 −γ2
−γ2 κ+ γ1

)
where ∇n̂ = D∇ and

ψij = 2

∫
dDL

DL(DS −DL)

DS

∇i∇jΦ(DLn̂, η(DL))

• In particular, through the Poisson equation the convergence
(measured from shear) is simply the projected mass

κ =
3

2
ΩmH

2
0

∫
dDL

DL(DS −DL)

DS

∆(DLn̂, η(DL))

a



Point lens
• Two images on opposite side of lens (magnified, sheared and time

delayed)



CMB Lensing
• Temperature fluctuations experience magnification and shear

allowing mass reconstruction

• CMB lensing by an unrealistically large lens



CMB Lensing
• Gravitational Lensing measures projected mass

• Planck CMB lensing map

le
ns

in
g



3×2pt
• Galaxy-Galaxy, Galaxy-Shear, Shear-Shear power spectra

• Infer galaxy bias and growth as well as halo occupation
distribution

• Controversy as to whether S8 is consistent with ΛCDM predictions
from CMB and BAO 15
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FIG. 7. Summary of marginalized constraints (mean and 68% CL) and maximum posterior values (crosses) on S8, Ωm, and σ8 in ΛCDM.
‘Ext. Low-z’ data consists of external SNe Ia, BAO, and RSD, while ‘All Ext.’ data consists of external SNe Ia, BAO, RSD, and Planck
CMB with lensing. The top section shows constraints using only DES data, the middle section only external data, and the bottom section
combinations of DES and external data.
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FIG. 8. Constraints on the galaxy bias (bg) and effective intrin-
sic alignment (IA) amplitude from tidal alignment (a1) and tidal
torquing (a2) are shown per redshift bin. Constraints using both lens
samples (MagLim and redMaGiC) are shown. The galaxy bias is
expected to be different for both lens samples, but the IA amplitude
constraints, which are a property of the source galaxy sample, are
consistent. We do not necessarily expect a1 and a2 to be consistent
with one another. We sample over a power-law evolution of the IA
amplitude, so the redshift evolution is forced to be smooth in ai.

ciently fit any of the models considered in this work (ΛCDM
and wCDM) at p < 0.01. Including MagLim lens bins 5
and 6 caused a very poor model fit to both models, with
p ≈ 5×10−4. Based on this criterion, we applied a high-z cut
to limit the MagLim sample to approximately the same red-
shift range of redMaGiC post-unblinding. This change is dis-
cussed further in App. D. The two lens samples are compared
and further details of this are discussed in Sec. V C, but all
issues that have been uncovered appear to be mostly orthog-
onal to the 3×2pt ΛCDM parameter dimensions — that is,
they do not significantly impact the inferred cosmological pa-
rameters, and the cosmological parameters inferred from the
two lens samples are consistent. This resilience of the 3×2pt
combination of data and its ability to self-calibrate potential
systematics in a subset of the two-point functions is one of
the main motivations for pursuing this cosmological probe for
large-scale structure.

We find that the DES Y3 3×2pt analysis is able to add in-
formation beyond the prior for 15 parameter dimensions in
the model, three of which are cosmological. The cosmologi-
cal modes that DES 3×2pt most improves with respect to the
prior are obtained with the Karhunen-Loève decomposition of
the posterior and prior covariance, and are:

p1 = σ8Ω0.77
m = 0.317+0.015

−0.014,

p2 = Ωmσ
−1.16
8 = 0.49+0.16

−0.15,

p3 = hn1.24
s Ω−0.39

b = 2.11+0.45
−0.42.

(18)

The combined 3×2pt data is also able to simultaneously con-
strain a variety of ‘astrophysical’ parameters that encode how
galaxies are connected to the underlying dark matter perturba-
tion field, namely the linear and nonlinear bias parameters and
intrinsic alignment of galaxies. Constraints for these model



Dark Energy Observables
• Fixed high z, CMB (D = DA)
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Figure 3. Deviations in the dark energy observables holding CMB observables D∗ and G∗
fixed by varying ΩDE to compensate a variation in (a) a constant wDE; (b) wa = −dw/da at
fixed w(a = 1) = w0; compensating variations which leave H0 fixed (c) ∆wa/∆w0 ≈ −10/3 (d)
∆wDE/∆ΩT ≈ −15. With fixed high-z observables, the main deviations due to the dark energy
equation of state appear as variations in the Hubble constant which can be measured at low redshift
by absolute standards through D, H or at high redshift through relative standards H0D. The local
value of the growth function G0 = G(a = 1) is useful in breaking the degeneracy left by variations
at fixed H0.

measurement of a standard candle becomes a calibration of the absolute brightness of the standard.
Phrased another way, relative standards measure Ωm in the deceleration regime and when combined
with Ωmh2 from the CMB determine H0. The CMB provides a counter-intuitive way of measuring
the Hubble constant by inverting the distance ladder! Of course in practice, the assumption that the
candle is standard or standardize-able between redshift zero and the deceleration epoch is suspect.
Note also that Fig. 3a only shows the best epoch to measure the dark energy observables given
fixed fractional measurement errors in the observables. It does not factor in the observational cost
required to achieve a fixed fractional distance error at high redshift.

• Solutions to D(z) tensions in SN, BAO predict matching
deviations in structure



Tensions and their Resolutions
Words of wisdom:
• Cosmological tensions come and go
• Use them to learn what is compelling about the standard picture
• Use them to see how to break the standard picture – the

assumptions behind a purported no-go
• Only become a true believer if you predict some new

phenomena that is then observationally verified!
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