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Abstract

We consider the effects of relaxing the assumption that gravitational waves composing the

stochastic gravitational wave background (SGWB) are uncorrelated between frequencies in analyses

of the data from Pulsar Timing Arrays (PTAs). While uncorrelated monochromatic plane waves

are often a good approximation, a background composed of unresolved astrophysical sources cannot

be exactly uncorrelated since an infinite plane wave propagates no temporal signal. We consider

how relaxing this assumption allows us to extract potential information about modified dispersion

relations and other fundamental physics questions, as both the group and phase velocity of waves

become relevant. After developing the formalism we carry out simple Gaussian wavepacket examples

and then consider more realistic waveforms, such as that from binary inspirals. When the frequency

evolves only slowly across the PTA temporal baseline, the monochromatic assumption at an effective

mean frequency remains a good approximation and we provide scaling relations that characterize

its accuracy.
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I. INTRODUCTION

Pulsar Timing Arrays (PTAs) have opened up an entirely new window to observe any

physics that modifies the propagation of signals from distant sources. This method allows

for the detection of the stochastic gravitational wave background (SGWB), measurements

of gravitational waves (GWs) from individual sources, constraints on the effects of fuzzy

dark matter, and enables novel tests of fundamental physics [1]. Of particular interest is the

recent 3σ evidence of a quadruple correlation in the signal, indicating the gravitational-wave

nature of the timing residuals [2–5].

The primary quantity measured by PTAs is the two-point correlation function of timing

delays in signals received from sources that are spatially separated on the sky. As we will

review later, the angular dependence of this quantity, averaged over all sources, is generally

referred to as the overlap reduction function (ORF). If we specialize to General Relativity

(GR), then a particularly useful result is that information about the sources themselves can

be well separated from the information contained in the ORF. In fact, both the SGWB and a

single GW source can produce similar angular correlations in PTA surveys. For an isotropic

SGWB, the ORF adopts a specific, well-known form, known as the Hellings-Downs curve [6].

Interestingly, this same form is obtained for the PTA response to a single GW source when

averaging over a statistically isotropic pulsar distribution [7].

This unique prediction of the Hellings-Downs curve when detecting gravitational waves

using PTAs means that these systems provide a novel opportunity to test deviations from

GR [8–15]. In modified gravity (MG), the ORF might display a different dependence on

the angular separation of pulsar pairs. In the case of a modified dispersion relation for the

graviton, only the phase velocity enters the relevant modification to the ORF if we assume the

plane wave nature of the SGWB and no correlations between frequencies [8]. However, real

signals cannot be monochromatic, since an infinite plane wave carries no information. Signals

from real sources like binary inspirals arrive and propagate at their group velocity alongside

the pulsar pulses, raising the question of how the group velocity and frequency correlations

enter PTA timing for a background composed of astrophysical sources. Furthermore, if new

physics principles are at play, interesting new effects can arise away from the monochromatic

limit. For example, if new physics leads to a modified dispersion relation for gravitational

waves, then relaxing the assumption of a monochromatic source allows us to see how the
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effect of the group velocity can be modified compared to the predictions of GR.

With this in mind, in this paper we consider the question of whether it is justified to

approximate the SGWB to be uncorrelated monochromatic plane waves, and investigate how

the group velocity can change the ORF. This question depends crucially on the source of

the gravitational waves. Both astrophysical sources such as supermassive black hole binaries

(SMBHB) and various cosmological sources could give rise to a SGWB in the nanohertz band

[1]. We would like to establish a formalism to study the effect of wave packets and further

apply it to SMBHB sources to estimate how significant the effect could be in a realistic

scenario.

The outline of the paper is as follows. In the next section we review the formalism of

pulsar timing residuals for the case of monochromatic GWs that superimpose incoherently.

In § III, we then focus on the thought example in which the gravitational waves propagate as

a Gaussian wavepacket. We use the width of the wavepacket as an expansion parameter to

evaluate the PTA response signal at each order, and find that for a narrow wavepacket in the

frequency domain, the net effect is still just a wavepacket superposition of the result obtained

by assuming monochromatic plane waves at Earth and the pulsar, and the modification of

Hellings-Downs curve of each frequency still only depends on the phase velocity. This can

simply be thought of as an average over the modified Hellings-Downs angular dependence

with the frequency spread of the signal. We then turn to the more realistic example of a

supermassive black hole binary inspiral in § III B. We discuss the waveform with and without

the distortion due to modified propagation effects and their impact on the ORF. We conclude

with a discussion of these results in § V.

Throughout the paper, we use the metric signature (−,+,+,+), and set ℏ = c = 1.

II. MONOCHROMATIC GWS

We begin with a review of pulsar timing residuals for the case of monochromatic GWs that

superimpose incoherently, following [8]. The direct observable in PTA is the pulse arrival

time residual, relative to the start of the observation at t = ts,

R(t) =

∫ t

ts

ν0 − ν(t′)

ν0
dt′ ≡

∫ t

ts

z(t′)dt′ , (1)
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where the integrand is the fractional change in the pulse frequency ν from its unperturbed

value ν0, and we will refer to it as the redshift,1 z.

The redshift is induced by metric perturbations that the pulse experiences while propagat-

ing along the geodesic from pulsar emission to reception. Writing the gravitational wave as

hij(x⃗, t) = eAij(Ω̂)h
A(x⃗, t), with Ω̂ denoting the GW propagation direction, the redshift can

be written as

z = −
∑

A=+,×

ν0p̂
ip̂jeAij
2

∫ λp

λe

dλ
∂hA(λ)

∂t
, (2)

where p̂ is the unit vector denoting the pulsar direction, the summation over A ∈ {+,×}
denotes the contribution from two polarization modes, and we will drop this sum in the

following context when this does not lead to ambiguity. In the Cartesian basis of the GW

wave (ê1, ê2, Ω̂), for example, the usual linear polarization states are given by

e+ij(Ω̂) = ê1iê1j − ê2iê2j e×ij(Ω̂) = ê1iê2j + ê2iê1j , (3)

where the indices i, j run over the transverse directions. The signal traverses the distance L

from the pulsar to Earth in a time te − tp, with

t = ν0(λ− λe) + te , Ω̂ · x⃗ = Ω̂ · x⃗e − ν0(λ− λe)Ω̂ · p̂ , (4)

where subscripts p, e denote that the relevant quantity is evaluated at the pulsar and Earth

respectively, and p̂ is defined by x⃗p − x⃗e = Lp̂.

For a monochromatic plane GW with momentum k⃗ = kΩ̂ and coordinates along the

propagation direction of r = Ω̂ · x⃗,

hA(r, t) = eiϕ(r,t)hA0 , (5)

where the phase

ϕ(r, t) = k(r − r0)− ω(k)(t− t0) , (6)

is determined by the dispersion relation ω(k), and the reference point r0 = Ω̂ · x⃗0 and t0,

at which ϕ = 0. Since we are here explicitly assuming a fixed monochromatic plane wave,

we leave the k and Ω̂ dependence of these quantities implicit and allow z to be complex.

1 This is not the cosmological redshift, zs, that we discuss in Eq. (56)
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We will come back to the more general case where the GW is a superposition of multiple

monochromatic modes and complex conjugation restores reality in Sec III.

Since Eq. (2) can be rewritten as the integral of a total derivative, it depends only on the

end points in the form (see Eq. (26) in Ref. [8])

z =
p̂ip̂j

2
H(k)[hij(x⃗e, te)− hij(x⃗p, tp)] =

p̂ip̂jeAij(Ω̂)

2
H(k)hA0 (e

iϕe − eiϕp) , (7)

where ϕe = ϕ(re, te) and ϕp = ϕ(rp, tp) are the GW phases when the pulse is received at

Earth (at t = te) and is emitted at the pulsar (at t = tp), respectively. The GW dispersion

relation only enters this expression through

H(k) =
ω(k)

kΩ̂ · p̂+ ω(k)
, (8)

so only through the phase velocity vp(k) = ω(k)/k. Between pulsars, the ϕp term generally

contributes incoherently to the timing residuals, since kL ≫ 1 and the phase difference

becomes random unless

∆ϕ = ϕp − ϕe = −iL[kΩ̂ · p̂+ ω(k)] (9)

is small (|∆ϕ| ≪ 1). The exceptional case is therefore when kΩ̂ · p̂+ ω(k) → 0, which can

occur if vp < 1. Even here the redshift remains finite, since H(k) in Eq. (8) has a cancelling

pole.

Aside from this exceptional case, the relevant residual arrival time defined in Eq. (1) for

the plane wave case and an array of pulsars can be expressed as

R(t, p̂) =
p̂ip̂jeAij

2

H(k)

iω(k)
hA0 e

iϕe , (10)

where t = te. Here we keep the Earth term only and assume t− ts ≫ 1/ω so that the starting

time of the observation drops out.

Following [16], rather than averaging over random GW propagation directions for fixed

pulsars, we can instead consider the pulsars to be randomly oriented with respect to a fixed

GW when calculating residual correlations. More explicitly, in spherical-polar coordinates

with Ω̂ propagating toward the south pole, we can express

R(t, θ, ϕ) =
1

2

(1− cos2 θ)

k cos θ + ω

(
cos 2ϕh+0 − sin 2ϕh×0

)
eiϕe , (11)
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where we have taken

p̂ = (sin θ sinϕ, sin θ cosϕ, cos θ) , and, Ω̂ = (0, 0, 1) . (12)

We then decompose this quantity into spherical harmonics,

aℓm(t) =

∫
d2p̂ R(t, θ, ϕ)Y ∗

ℓm(θ, ϕ) =
1

ω
cℓ(vp(t))

π

2

√
2ℓ+ 1

4π

(ℓ− 2)!

(ℓ+ 2)!

(
h+0 ± ih×0

)
, m = ±2 .

(13)

Here the integration
∫
d2p̂ is over pulsar positions, and cℓ are the coefficients

cℓ(vp) =

∫ 1

−1

d cos θ
vp

vp + cos θ
(1− cos θ2)2

d2

d cos θ2
Pℓ(cos θ) , (14)

which take the form2

cℓ = −2vp(1 + ℓ)
((
(2 + ℓ)v2p − ℓ

)
Qℓ(−vp) + 2vpQℓ+1(−vp)

)
, if vp ≥ 1 , (15)

where Qℓ(z) =LegendreQ[ℓ, 0, 3, z] is the Legendre Q function of the third type with m = 0.

For small deviations, vp = 1 + ε > 1, we can expand cℓ with respect to ε,

(−1)ℓcℓ = 4− 2(ℓ2 + ℓ− 4)ε− 1

2

(ℓ+ 2)!

(ℓ− 2)!

(
log

ε

2
+ 2ψ(ℓ) + 2γE

)
ε2

−1

4
(12− ℓ(3ℓ− 1)) (ℓ+ 2)(ℓ− 1)ε2 +O(ℓ6ε3) , (16)

where γE is Euler’s constant, and ψ is the digamma function defined as

ψ(z) =
Γ′(z)

Γ(z)
. (17)

In practice, we want to extract the angular correlation between two pulsars, assuming

statistical isotropy of pulsar distribution:

⟨R(t1, p̂1)R∗(t2, p̂2)⟩ ∝ Γ(ξ)eiω(t1−t2) , (18)

where ξ = cos−1(p̂1 · p̂2) is the angle between the two pulsars. The function Γ(ξ) is called the

overlap reduction function (ORF) and is conventionally normalized to Γ(0) = 1/2. Using this

normalization, we then have

Γm(ξ) ≡
1

2

∑∞
ℓ=2

2ℓ+1
4π
CℓPℓ(cos ξ)∑∞

ℓ=2
2ℓ+1
4π
Cℓ

, (19)

2 See Eq. (16) in [17] for further discussion and the case of vp < 1. See also [18] for a finite distance effect

discussion.
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with the total power spectrum

Cℓ =
1

2ℓ+ 1

∑
m

a∗ℓmaℓm =
π

8

|cℓ(vp)|2
ω2

(ℓ− 2)!

(ℓ+ 2)!

∑
A=+,×

|hA0 |2 . (20)

In the particular case of General Relativity, where vp(k) = 1, the overlap reduction function

is given by the Hellings-Downs form [6]

ΓGR(ξ) =
3

2

∞∑
ℓ=2

2(2ℓ+ 1)

(ℓ+ 2)(ℓ+ 1)ℓ(ℓ− 1)
Pℓ(cos ξ)

=
1

2

[
1 +

3

2
(1− cos ξ)

(
ln

1− cos ξ

2
− 1

6

)]
. (21)

In the limit of a small positive deviation of the phase velocity from the speed of light,

vp = 1 + ε, the leading order distortions to the Hellings-Downs curve scale as ε but with a

logarithmic running of the coefficient due to the summation over ℓ in Eq. (19). In Fig. 1, we

show an example for ε = 0.01. Note that aside from zero crossings in Γm, the deviations are

the same order of magnitude for all ξ, so a simple characterization of their amplitude is the

deviation at ξ = π, for which

δΓm(π) ≡ Γm(π)− ΓGR(π) ≈ −(0.6 + 0.57 log ε)ε , (22)

is a good approximation if ε < 0.07 as can be seen in Fig. 1 (cross).

More generally, beyond GR the overlap reduction function becomes dependent on the GW

momentum and dispersion relation. If we assume a monochromatic plane wave, modifications

from the dispersion relation, including those to the overlap reduction function Γ(ξ), can only

enter through the phase velocity, vp(k). However, with a nontrivial dispersion relation, the

above calculation can only be an approximation to the effect of waves generated by physical

sources. Gravitational waves from a real source must propagate as a wavepacket at the group

velocity vg = ∂ω/∂k, and this fact should somehow enter into the observable redshift. For

example, when vg < 1, a GW signal peaking at pulsar emission may have no contribution to

the redshift at Earth reception if it has yet to arrive at Earth; hij(x⃗e, te) ≈ 0, and it instead

provides a source along the pulse propagation path ∂hij/∂t ≠ 0 for some λe < λ < λp (see

also Fig. 2).

On the other hand, the locality of the monochromatic redshift expression in Eq. (7) suggests

that the redshift for any wavepacket can be obtained from the coherent superposition of

its plane wave components at pulsar emission and Earth reception alone, without further
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FIG. 1. The difference between the overlap reduction function in GR and that in a modified

gravity theory with a higher phase velocity vp − 1 = ε = 0.01. The × symbol at the antipodal point

ξ = π denotes the deviation δΓm(π) ≈ 0.02 as predicted in Eq. (22), which then is a good proxy for

the overall amplitude of the deviations.

consideration of the propagation of the GW. In the next section we shall use the example of

a Gaussian wavepacket to reconcile these points of view before proceeding to examine the

impact of GW propagation and group velocity on a realistic binary inspiral signal.

III. GAUSSIAN WAVEPACKET

We begin with a simple generalization of the monochromatic plane wave in Eq.(5) to build

intuition about pulsar timing residuals with real signals. Consider an initial wavepacket at

t = t0 where the amplitude of the originally monochromatic wave at k = k̄ is modulated by

a spatial Gaussian of width σx

hA(r, t0) = e
− (r−r0)

2

2σ2
x eik̄(r−r0)hA0 . (23)

There are two ways to think about the effect of such a wavepacket on pulsar timing. One is

to note that the center of the wavepacket propagates at the group velocity3 v̄g = ∂ω/∂k|k̄.
Therefore, when performing the integral along the pulse path to obtain the redshift Eq. (2),

the Gaussian modulation changes the GW contribution between the pulsar and Earth

according to the spacetime position of the wavepacket.

3 This can be obtained from the stationary phase point, see Eq. (A3).
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On the other hand, we can decompose the wavepacket into its monochromatic components

via a Fourier transform

hA(k, t0) =

∫
dr e−ikrhA(r, t0) =

√
2πσxe

−ikr0e−(k−k̄)2σ2
x/2hA0 , (24)

which implies that there is a Gaussian spread of wavenumbers around k̄. Note that since we

have fixed the GW direction, we apply a one dimensional Fourier transform instead of the

3D version. Notice also that we allow hA(r, t) and hence z(t) to be complex for notational

simplicity. Our convention is that to obtain a real signal we add the complex conjugate or,

more generally when composing a full wavepacket, we compute for k > 0 only and implicitly

assume that hA(−k) = hA∗(k). Hence

hA(r, t) =

∫ ∞

−∞

dk

2π
eikrhA(k, t) = 2

∫ ∞

0

dk

2π
ℜ
[
eikrhA(k, t)

]
, (25)

where k = |⃗k|, and r = Ω̂ · x⃗.
Each of these components should affect the observable redshift through the monochromatic

expression (7) which can then be resuperimposed at the pulsar and Earth endpoints. We

now use this Gaussian example to illustrate why these pictures are equivalent and how the

group velocity enters into each.

A. The propagation approach

In the stationary phase approximation, the Gaussian wavepacket defined at t0 in Eq. (23)

propagates according to the group velocity via

hA(r, t) = eiϕ̄(r,t)−χ2(r,t)/2hA0 , (26)

where

ϕ̄(r, t) = k̄(r − r0)− ω(k̄)(t− t0) (27)

propagates the initial phase at the phase velocity and χ(r, t) tracks the dimensionless distance

from the center of the wavepacket in units of σx,

χ(r, t) =
(r − r0)− v̄g(t− t0)

σx
. (28)

Here v̄g = ∂ω/∂k|k=k̄ is the group velocity at central momentum.
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FIG. 2. A sketch to illustrate GW packet propagation (green lines) along the pulsar pulse path.

The red lines depict the pulse propagating at the speed of light. The blue lines indicate the envelope

of the wavepacket and track the peak amplitude which propagates at a group velocity vg < 1 and

lags the pulse. The green dots indicate a specific initial phase value (ϕ(r, t0) = 0) that propagates

at a phase velocity vp > 1 and leads the pulse.

In Fig. 2 we illustrate the propagation of this wavepacket and compare it to the pulsar

pulse which travels at the speed of light. After propagation, the center of the wavepacket,

where the GW amplitude is the highest, lags the pulse if v̄g < 1 whereas a given initial phase

value leads the pulse if v̄p > 1. Moreover, the phase at the center of the wavepacket evolves

with time. Eventually, the pulse will lead the GW packet by such a large spatial separation

that the GW amplitude at the pulse and at its reception on Earth is negligible.

We can explicitly evaluate the redshift in Eq. (2) using our Gaussian wavepacket Eq. (26)

as,

z = −ν0p̂
ip̂jeAij
2

∫ λp

λe

dλ
∂hA(λ)

∂t

= −ν0p̂
ip̂jeAij
2

∫ λp

λe

dλ

[
−iω(k̄) + v̄g

σ2
x

((r − r0)− v̄g(t− t0))

]
hA(λ) . (29)

Performing the integration directly gives,
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z = − p̂
ip̂jeAij
2

hA0 e
iϕ̄e−

χ2
e
2

×
(
B

2D

(
1− e−CL−DL2

)
+
BC + 2AD

4D3/2

√
πe

C2

4D

(
Erf

C

2
√
D

− Erf
C + 2DL

2
√
D

))
, (30)

with

A = −iv̄pk̄
(
1 +

i

σxk̄

v̄g
v̄p
χe

)
, B = − v̄g

σ2
x

(Ω̂ · p̂+ v̄g) ,

C = −ik̄
(
Ω̂ · p̂+ v̄p

)(
1 +

i

σxk̄
χe

Ω̂ · p̂+ v̄g

Ω̂ · p̂+ v̄p

)
, D =

1

2σ2
x

(Ω̂ · p̂+ v̄g)
2 . (31)

Here

χe ≡ χ(re − r0, te − t0) , (32)

gives the dimensionless distance between the Earth and the center of the wavepacket at the

time of reception, and, for later convenience,

χp ≡ χ(rp − r0, tp − t0) , (33)

gives the dimensionless distance between the pulsar and the center of the wavepacket at the

time of pulsar emission. Notice that the redshift takes the form of the difference between an

L-independent Earth term and an L-dependent pulsar term.

Now, in the limit σx → ∞, the wavepacket reduces to a monochromatic wave and the

redshift is the same as Eq. (7),

lim
σx→∞

z =
p̂ip̂jeAij

2
H(k)

[
eiϕ̄e − eiϕ̄p

]
hA0 , (34)

where the phases at Earth and at the pulsar are respectively given by ϕ̄e = ϕ̄(re, te), and

ϕ̄p = ϕ(rp, tp) = ϕ̄e + k̄L(Ω̂ · p̂+ v̄p). Away from this limit, the spatial modulation broadens

the range of frequencies in the wavepacket. If we assume that this frequency spread is small,

ϵ ≡ 1

k̄σx
≪ 1 , (35)

such that |ϵχe| ≪ 1 and |ϵχp| ≪ 1, we can expand Eq. (30) with respect to ϵ as

z =
p̂ip̂jeAij

2
hA0 e

iϕ̄e−χ2
e/2
∑
n=0

Bn,e
ϵnkn

n!

∂nH(k)

∂kn

∣∣∣∣
k=k̄

− {e→ p} , (36)
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where the first term is the contribution from the Earth term, and {e → p} corresponds

to the symmetric pulsar term. The coefficients Bn,e are given by B0,e = 1, B1,e = iχe,

B2,e = (1 − χ2
e), B3,e = iχe(3 − χ2

e), B4,e = (3 − 6χ2
e + χ4

e), etc. and likewise for {e → p}.
See the next subsection for a more general expression for Bn,e. Notice that the conditions

|ϵχe| ≪ 1 and |ϵχp| ≪ 1 allow χe, χp > 1; i.e. for sufficiently small frequency spread ϵ, these

conditions allow for the reception at Earth and the emission at the pulsar both to be in the

tails of the Gaussian, and the wavepacket to lie in-between. Nevertheless, the redshift can

still be divided into terms that are local at these two events.

The physical interpretation of this form of the redshift is relatively simple. The n = 0

term is associated with the change in the amplitude and phase of the GW between pulsar

emission and Earth reception through their respective phase, ϕ̄(r, t), and distance, χ(r, t),

factors. The n = 1 term represents the leading order Taylor correction to H(k̄) to account

for the finite spread of frequencies in the wavepacket. This term then carries the dependence

on the group velocity, as we can see from

∂ lnH(k)

∂ ln k

∣∣∣
k=k̄

=
v̄g
v̄p

− Ω̂ · p̂+ v̄g

Ω̂ · p̂+ v̄p
, (37)

and vanishes if the phase and group velocities are equal. In this sense the redshift is just the

wavepacket-weighted average of the monochromatic result. We show next that this can be

obtained directly from superimposing its monochromatic components at pulsar emission and

at Earth reception. Notice also that the limit implicitly assumes that H(k) is smooth and

the Taylor expansion valid, which excludes the singular case discussed around Eq. (9), where

kΩ̂ · p̂+ ω(k) = 0, as we shall also see more directly next.

B. The superposition approach

Given the monochromatic components of the wavepacket from its Fourier transform

Eq. (24), we can alternatively superimpose the monochromatic redshifts of Eq. (7) with the

Fourier weights and phases at Earth reception and pulsar emission separately, via

z =
p̂ip̂jeAij

2
(Ie − Ip) , (38)

where

Ie =

∫
dk

2π
H(k)hA(re, te; k) , (39)
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and similarly for Ip with e → p. For each k, we propagate the initial Fourier amplitude

independently

hA(r, t; k) = eikr−iω(t−t0)hA(k, t0) = eiϕ(r,t;k)
√
2πσxe

−(k−k̄)2σ2
x/2hA0 , (40)

with a phase factor

ϕ(r, t; k) = k(r − r0)− ω(t− t0) . (41)

In particular, we employ the phases at pulsar emission and Earth reception

φe(k) = ϕ(re, te; k) , φp(k) = ϕ(rp, tp; k) , (42)

and note that for comparison with the propagation approach Eq.(34), φe(k̄) = ϕ̄e, φp(k̄) = ϕ̄p.

Let us explicitly evaluate the Earth term by again assuming that the spread of frequencies

in the Gaussian wavepacket is small compared to the k-dependence of other quantities in

Eq. (39). By expanding

eiφe(k) ≈ ei[ϕ̄e+φ′
e(k̄)(k−k̄)]

[
1 +

i

2
φ′′
e(k̄)(k − k̄)2 + . . .

]
(43)

and using

φ′
e(k̄) =

dφe

dk

∣∣∣∣
k̄

= χeσx , (44)

we obtain to second order in the Taylor expansions of H(k) and the phase

Ie

hA0 e
iϕ̄ee−χ2

e/2
= H(k̄) + iH ′(k̄)χeσ

−1
x +

1

2
(1− χ2

e)(H
′′(k̄) + iφ′′

e(k̄)H(k̄))σ−2
x + . . . (45)

and likewise for the pulsar term with e → p. This has the same coefficients Bn,e as the

propagation equation Eq. (36) aside from the φ′′ terms. More generally, we have

Bn,e = inχe2
n−1/2U

(
1− n

2
,
3

2
,
χ2
e

2

)
, (46)

where U(a, b, z) is the confluent hypergeometric function. We provide the detailed derivation

in Appendix B. In the stationary phase approximation these terms represent the group

velocity dispersion and are higher order corrections. Group velocity dispersion broadens the

initial wavepacket width σx during propagation after a time

t− t0 ≳ σ2
x/(∂

2ω/∂k2) . (47)

For the Gaussian wavepacket case, we can simply renormalize σx to its value near the

Earth-pulsar system in the Galaxy and ignore the broadening effect from gravitational wave
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propagation from the source to the Galaxy [19]. We shall return to this issue for the inspiral

GW in § IV, where formally the spatial wavepacket is very broad but only a small portion of

the total can affect pulsar timing across the observation baseline.

Notice also that we have explicitly assumed that H(k) itself can be Taylor expanded and

this is not true if kΩ̂ · p̂+ ω(k) = 0 where the packet has support (see Eq. (9)). In this case

the integral over k in Ie − Ip for Eq. (38) must be carried out jointly and H(k)[eiφe − eiφp ]

remains smooth.

The group velocity emerges from the monochromatic expression via the derivatives of the

dispersion relation in the Taylor expansion, as well as the characterization of the amplitude

of the gravitational wave at Earth and pulsar, and matches the explicit appearance in the

wavepacket propagation approach. We again see that the redshift associated with the total

wavepacket is simply the wavepacket-weighted average over the monochromatic expressions.

IV. INSPIRAL WAVEFORM

In this section, we analyze the PTA signal of a binary inspiral GW using the same

wavepacket formalism as with the Gaussian wavepacket of the previous section. As in the

Gaussian case, the induced pulsar redshift can be thought of as the superposition of the

redshifts of the individual monochromatic components of the wavepacket that then modifies

the overlap reduction function.

On the other hand, the GW signature of a binary inspiral has features that differ from the

Gaussian wavepacket example in a number of important ways. First, as discussed in § IVA,

the waveform is usually characterized in the temporal domain rather than spatial domain,

and its form for the inspiral case is given in § IVB. The temporal frequency content of the

full wavepacket can be very broad, as discussed in § IVC as the emission evolves from the

inspiral phase to the coalescence one – so broad that group velocity dispersion can make the

waveform distort dramatically when propagating over cosmological distances. Nonetheless,

at any given epoch it is mostly composed of a single frequency for the dominant quadrupole

mode: that of the stationary phase point. As we show in § IVD, this single frequency

per observation time can in principle evolve across the pulsar timing baseline and generate

correlations between different frequencies in the signal, each with their own distortion to the

Hellings-Downs curve. Hence the arrival times of different frequency components and their
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determination through the stationary phase approximation become the critical quantities of

interest.

A. Temporal vs. spatial domain

The first difference between the Gaussian wavepacket example and the case of a binary

inspiral is that the inspiral wavepacket is usually described in the time domain rather than

the spatial domain or analogously by its temporal frequency (ω) content at a fixed position

rather than its spatial frequency (k) at a fixed time. To connect these two descriptions, we

can write (see Eq. (25))

hA(r, t) =

∫ ∞

−∞

dω

2π

∂k

∂ω
ei(kr−ωt)hA(k(ω), t = 0) , (48)

and then take the inverse temporal Fourier transform at some fiducial r = 0 point

hA(r = 0, ω) =

∫ ∞

−∞
dteiωthA(r = 0, t) =

∂k(ω)

∂ω
hA(k(ω), t = 0)

≡ h̃(f) , (49)

where in the last line, we have given the temporal Fourier transform a distinct label h̃(f),

with the observationally received frequency f = ω/2π to avoid notational confusion below

when relating it to the spatial Fourier transform and the propagation angular frequency ω.4

In this relation, the group velocity ∂ω/∂k acts as the Jacobian transformation between the

two spaces, and we have traded spatial evaluation at a fixed time hA(k, t = 0) for temporal

evaluation at a fixed position hA(r = 0, ω) = h̃(f). If there is no screening effect in the PTA

system, and the gravitational theory is described by the modified gravity theory both at the

pulsar and at Earth, then this Jacobian would also map the spatial power spectrum of the

gravitational wave background at emission to the temporal power spectrum at reception.

In practice, we use this transformation to take a time domain waveform and extract its

temporal frequency representation, h̃(f), and infer the spatial frequency content, hA(k, t = 0),

for the evaluation of the PTA overlap reduction function. For example, for the relevant Earth

term we choose coordinates where re = 0 and t = te to obtain

Ie(t) =

∫ ∞

−∞

dk

2π
hA(r = 0, te; k)H(k) = 2

∫ ∞

0

df ℜ[h̃(f)e−i2πftH(k(f))] . (50)

4 We do not write the polarization dependence explicitly in h̃(f) or in the time domain waveform, h(t) for

notational simplicity.
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Furthermore, to the extent that the waveform obeys the SPA, each frequency arrives at a

given time and this integral using the SPA just returns the evaluation of H(k) at the arrival

frequency f(t) mapped back to the spatial wavenumber k(t) times the original time domain

waveform:

Ie(t) = hA(r = 0, t)H(k(t)) , (51)

where hA(r = 0, t) carries the amplitude and phase of the GW at the Earth, as one would

expect. The same prescription would apply to Ip(t) but now the gravitational waveform is

described by the amplitude and phase at the emission time of the pulsar. Since the pulsar

term does not contribute coherently between pulsars except in the special case of Eq. (9),

from this point forward we focus exclusively on the Earth term and implicitly take Earth

centric coordinates re = 0 when evaluating h̃(f) and its time domain Fourier pair h(t).

Notice that the PTA timing correlation between two different times as in Eq. (18) now

corresponds to two arrival frequencies f(t1) and f(t2) that embed the dependence on the

group velocity. As long as this evolution is slow compared with the millisecond pulsar clocks

themselves, we can consider the residuals at each epoch to be that of a monochromatic

plane wave. The remaining modifications of the overlap reduction function will then be

characterized by the evolution of the frequency across the observational baseline, which we

set to reflect current constraints, Tobs ∼ 15yrs,

∆ ln f =
d ln f

dt
Tobs . (52)

Below, we will occasionally use the shorthand convention H(f) ≡ H(k(f)) and d lnH/d ln f

where doing so leads to no confusion. Given this dependence, we next consider the frequency

evolution and validity of the SPA for binary inspiral waveforms.

B. Time domain and near emission waveform

We adopt the binary black hole inspiral waveform predicted by GR [20] and assume that

any modified gravity effect is screened in the emission region. Under GR or before modified

propagation effects become important, the received time domain waveform can be described

as

h(t) = 2

√
6

5

GMπ2/3Q

D

(
tc − t

5GM

)− 1
4

eiϕ(t) , (53)
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where Q contains the geometric information about the binary system, such as the inclination

angle and the polarization angle, tc is arrival time of the signal from the coalescence of the

system, G is the Newtonian gravitational constant, M = (M1M2)
3/5/(M1 +M2)

1/5 is the

chirp mass for a binary black hole system with masses M1 and M2, D is the distance to the

source, and ϕ is the time-dependent phase of the gravitational wave,

ϕ(t) = −2

(
tc − t

5GM

) 5
8

+ ϕc , (54)

with ϕc = ϕ(tc). This inspiral waveform assumes t≪ tc and f < fc = (63/2πGM)−1, and we

shall see below how to remove higher frequencies by apodization.

With this form, the frequency of the GW evolves according to

df

dt
=

96

5
π8/3 (GM)5/3 f 11/3 . (55)

Notice that the equations above are invariant under the transformation

[M, f, t,D] → [M(1 + zs), f/(1 + zs), t(1 + zs), D(1 + zs)] , (56)

where zs is the cosmological redshift of the source. Therefore, from the observed waveform

we can only extract the redshifted chirp mass M = Mtrue(1 + zs) and the comoving distance

D =
∫ zs
0
dz′s/H(z′s) where H(z) here is the Hubble parameter and should not be confused

with the function H(k) that modifies the pulse redshift z. From this point forward, the

binary masses and distances in this paper will refer to these quantities.

For large distances, the waveform will distort and change its phase due to modified

propagation. Given the dispersion relation, this is simple to account for in the frequency

domain. To move between the time and frequency domains requires the stationary phase

approximation, which we next show is a good approximation in the case of the inspiral

waveform for f ≪ fc.

C. Frequency domain and stationary phase approximation

We begin with small distances to the GW source, where propagation effects have not yet

modified the waveform. We can then apply the stationary phase approximation directly to

the time domain expression Eq. (53). In this limit, the frequency domain waveform takes the

following form in the stationary phase approximation Eq. (A5),

h̃(f) =
Q

D
(GM)5/6f−7/6 exp[iΨ(f)] , (57)
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FIG. 3. The frequency domain waveform for the binary inspiral following Eq. (57) with a redshifted

chirp mass M = 1.3× 1010M⊙. We apply apodization at both the high and low-frequency ends

(see text) and highlight the positions of the coalescence frequency fc as well as the typical PTA

relevant frequency f = 50nHz.
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FIG. 4. Time domain comparison between the stationary phase approximation and Fourier transform

of the apodized binary black hole frequency domain GW waveform as shown in Fig. 3. By convention,

t = 0 is the arrival time of the coalescence frequency fc. The dashed vertical line indicates the

arrival time of the typical PTA relevant frequency f = 50nHz.
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where f ≥ 0, and

Ψ(f) = 2πftc − ϕc −
π

4
+

3

4
(8πGMf)−5/3 , (58)

and as we shall see below more generally there is a modification to Ψ(f) due to propagation

over cosmological distances.

Note that following Appendix A with Eq. (57) and (58), one can verify that using the

stationary phase approximation to perform the inverse Fourier transform recovers the time

domain waveform Eq. (53). The derivative of the phase yields the arrival time of each

frequency

tGR
a (f) =

∂Ψ

∂(2πf)
= tc − 5(8πf)−8/3 (GM)−5/3 . (59)

Notice that the frequency in Eq. (57) extends unphysically to f > fc, corresponding

to t → tc where fc = (63/2πGM)−1 is the coalescence frequency. To obtain a realistic

waveform, we use the Hann function to taper h̃(f) from its original value to zero between

(0.4fc, fc). Similarly, the Hann function taper also applies to the other end (fmin, 1.6fmin)

where fmin = 5nHz is close to the lower limit of the detector frequency band. We illustrate this

apodized frequency domain waveform in Fig. 3 with a redshifted chirp massM = 1.3×1010M⊙

corresponding to the maximal plausible SMBH mass5 [21] (chosen to maximize the frequency

evolution), highlighting the position of fc and the typical PTA relevant frequency 50 nHz.

To explicitly verify the validity of the stationary phase approximation for this realistic

waveform, we have numerically computed the time domain waveform from the apodized

frequency domain waveform using both the SPA approach, following Eq. (A5), and the

discrete Fourier transform. In Fig. 4, we compare these different schemes demonstrating

excellent agreement between them in the inspiral regime. The lack of agreement around

the coalescence time is due to the remaining rapid frequency evolution after the arbitrary

apodization which results in non-zero values for t > 0 in the direct transform, while SPA

predicts exactly zero in this region. Notice that we choose the convention to make t = 0

correspond to the arrival time of the coalescence frequency fc, and this differs from tc which

for the inspiral waveform is the arrival time of the unphysical f → ∞ mode. We also show

the arrival time of the typical PTA relevant frequency f = 50 nHz together with fc. Notice

that we have chosen |t(f = 50 nHz)| to be comparable to the Tobs ∼15-year PTA observation

time window, again to maximize the frequency evolution. We will return to this example in

5 We obtain the chirp mass based on the assumption that the two black holes have same masses in this

binary system.

20



−1 0 1 2 3 4 5 6

t/yr

−20000

−15000

−10000

−5000

0

5000

10000

15000

20000
h

MG: FT

MG: SPA

t = ta(fc)

122.5 125.0 127.5 130.0 132.5 135.0 137.5

t/yr

t = ta(f = 50nHz)

FIG. 5. The time domain waveform at reception with modified gravity (here, massive gravity)

corresponding to Figs. 3 and 4 for the waveform in GR. Here we have chosen M = 1.3× 1010Msun,

D = 8.77 kpc, and mg = 2.1 × 10−23 eV. Blue and orange curves indicate the predictions of the

stationary phase approximation and superposition methods respectively. By convention, t = 0

corresponds to the arrival time of coalescence frequency fc shown in the left panel. The typical

PTA relevant frequency f = 50nHz is shown in the right panel. Note the gap in time that reflects

the propagation time delay and reversal of the waveform.

§ IVD, where a large frequency evolution corresponds to a large fractional deviation from

the monochromatic overlap reduction function.

In modified gravity (MG), there is a correction to the phase arising from the propagation

(see e.g. [22])

∆Ψ(f) = −
∫ zs

0

dz′s
H(z′s)

(2πf − k) , (60)

that can be larger than the emission term in Eq. (58) for cosmological source redshifts.

Even if the frequency evolution is rapid in the emission waveform, the waveform at Earth

may exhibit a much slower evolution and smaller deviations from a monochromatic overlap

reduction function.

This phase shift is compatible with local propagation at the group velocity since ta(f) =

∂Ψ(f)/∂(2πf) gives

tMG
a (f) = tGR

a (f) +

∫ zs

0

dz′s
H(z′s)

(
1

vg(f, z′s)
− 1

)
, (61)

where the second term is the time delay due to propagation with MG.
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To make these considerations concrete, we focus on massive gravity as a specific example

of modified gravity. The dispersion relation for massive gravity is

ω2 = k2 +
m2

g

(1 + zs)2
, (62)

so that the group velocity vg ≡ ∂ω/∂k = k/ω. Using this, Eq. (60)-(61) becomes

∆Ψ(f) = −
∫ zs

0

dz′s
H(z′s)

(
2πf −

√
(2πf)2 − m2

g

(1 + zs)2

)
, (63)

yielding

tMG
a (f) = tGR

a (f) +

∫ zs

0

dz′s
H(z′s)

 2πf√
4π2f 2 −m2

g/(1 + z′s)
2
− 1

 . (64)

Following the same procedure as before, but now with this modified phase and arrival

time, we can apply the SPA for the transformation from the frequency to the time domain in

MG. Since modes where f < mg/2π do not propagate, for the frequency domain apodization,

we have fmin → max(mg/2π, fmin) and will choose mg = 2π × 5 nHz ≈ 2.1× 10−23eV as an

example.

We compare the SPA prediction to the superposition results for a relatively small distance

D = 8.77 kpc, comparable to our nearest supermassive black hole at the center of the Galaxy,

in Fig. 5, demonstrating that SPA remains valid at reception in this case and can be used to

the arrival times of various frequency components of the waveform. Notice the much larger

and inverted temporal separation between the arrival of fc (left panel) and f = 50 nHz (right

panel) as compared with Fig. 4. Since lower frequencies propagate slower, the latter arrives

after the former, despite being emitted earlier. The amplitude of the time domain GW also

decreases despite the frequency domain amplitude remaining the same because the same

emission power is now spread out over a longer arrival time. In the SPA this can be directly

computed from Eq. (64) for the modified arrival times(
hMG(t(f))

hGR(t(f))

)2

=
∂tGR/∂f

∂tMG/∂f
. (65)

We can quantify these effects more directly in the limit f ≫ mg/2π which is a good

approximation in the displayed region of Fig. 4. Here

∆ta ≡ tMG
a − tGR

a ≈ m2
g

8π2f 2
Deff , (66)
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with

Deff =

∫ zs

0

dz′s
H(z′s)(1 + z′s)

2
, (67)

where the extra factor of (1 + z′s)
2 with respect to D comes from the redshifting of the GW

frequency with respect to mg which reduces the propagation delay at high redshift. For a

given frequency, there is an effective distance where tMG
a (f)− tc = 0,

Dcross =
5

32π2/3
f−2/3(GM)−5/3m−2

g . (68)

For Deff > Dcross this frequency is received after tc despite being emitted before coalescence,

effectively time reversing the waveform. Note that Dcross increases at lower frequencies

implying that at a fixed Deff , sufficiently low frequencies arrive in the normal time ordering,

but recall that we have a lower limit on the propagation frequency such that f ≫ m/2π in

the expansion of ∆ta.

We can also derive the amplitude change implied by Eq. (65) and (66) for the large Deff

case where ∂tMG/∂f ∝ Df−3. Since ∂tGR/∂f ∝ f−11/3 and hGR(t(f)) ∝ (t(f))−1/4 ∝ f 2/3,

the amplitude scales as hMG(t(f)) ∝ f 1/3D−1/2, which can be very small for large distances

but is actually a less steep frequency dependence or “chirp” than in GR. Correspondingly in

Fig. 5, the effect of apodization is much more pronounced around the t = 0 arrival time of fc

compared to the chirp in Fig. 4.

More generally, this propagation time delay between frequency components is the result

of group velocity dispersion, i.e., the frequency dependence of vg(f). However, unlike the

Gaussian case, the manifestation of this waveform distortion is to spread out the arrival

times of neighboring frequencies and hence to make the wave more monochromatic over a

given observation time. In particular around the arrival time of f = 50nHz in Fig. 5, the

arrival frequency evolves negligibly across the 15yr PTA baseline. We shall now see that

when this propagation time delay dominates, the overlap reduction function become closer

to the simple monochromatic form given in § II.

D. Cross-Frequency Overlap Reduction Function

Having verified the SPA for the inspiral waveform, we can now use the stationary phase

frequency as a function of arrival time, f(t), to assess the modifications to the overlap

reduction function. Even though at each arrival time the redshift induced by the GW follows
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the monochromatic form of Eq. (7) to a good approximation, the correlated residuals at two

different arrival times involve a cross-correlation between two different frequencies. To the

extent to which the arrival frequency evolves over the temporal baseline of the observation

time, Tobs, the overlap reduction function is also modified from its monochromatic form.

Specifically, the modification of Eq. (18) becomes

R(t1, p̂1)R
∗(t2, p̂2) =

H (f1(t1), p̂1)H
∗ (f2(t2), p̂2)

(2π)2f1(t1)f2(t2)

p̂i1p̂
j
1e

A
ij

2

p̂k2 p̂
l
2e

B
kl

2
hA0 (t1)h

B∗
0 (t2) . (69)

Hence, the overlap reduction function reads

Γ(ξ, t1, t2)cross ≡
1

2

∑∞
ℓ=2

2ℓ+1
4π
Cℓ(t1, t2)Pℓ(cos ξ)∑∞
ℓ=2

2ℓ+1
4π
Cℓ

, (70)

with the total power spectrum

Cℓ(t1, t2) =
1

2ℓ+ 1

∑
m

aℓm(t1)a
∗
ℓm(t2) + h.c.

=
π

8

cℓ(vp(t1))c
∗
ℓ(vp(t2))

(2π)2f1(t1)f2(t2)

(ℓ− 2)!

(ℓ+ 2)!
⟨h+0 (t1)h+∗

0 (t2) + h×0 (t1)h
×∗
0 (t2)⟩+ h.c. , (71)

where cℓ(vp) is the coefficient defined in Eq. (14), and vp(t1,2) are the phase velocities of

the corresponding arrival frequencies, f1,2, arrive at times t1,2, respectively. Notice that the

gravitational wave amplitude h+,×
0 again drops out of the ORF. When t1 = t2, or more

specifically, f1 = f2, the result reduces to the monochromatic case Eq.(19). Deviations of

Γcross from the monochromatic result, Γm, therefore depend on the arrival frequency evolution

across the timing baseline.

1. Nearby source

For pegagogical purposes, we begin by considering a source located very close to Earth

D → 0 with an extremely massive GW source with M = 1.3× 1010M⊙ corresponding to the

GW waveform of Fig. 4. Notice that the frequency evolves significantly over a Tobs ∼ 15 yr

observational time due to the proximity of 50nHz to the coalescence frequency with such a

high chirp mass.

Specifically we take two frequencies that are separated in arrival time by

ta(f2 = 50 nHz)− ta(f1 = 34nHz) ≈ 15 years . (72)
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We also maximize the deviations from GR by taking a large graviton mass mg/2π = 5nHz.

For this parameter choice, the phase velocities at the two frequencies are

vp(34 nHz) = 1.011 , vp(50 nHz) = 1.005 . (73)

In Fig. 6, we show these corresponding monochromatic predictions for the whole overlap

reduction function Γ(ξ) and their deviations from GR, δΓ = Γ − ΓGR. We also show the

cross frequency prediction in Fig. 6. Notice that the change from the two monochromatic

results is a substantial fraction of the net deviation from GR, and therefore the frequency

evolution is important to include. More quantitatively for the two monochromatic results,

δΓm(π)|f1 = 0.012 and δΓm(π)|f2 = 0.021, which substantially differ. On the other hand, the

cross result should be very close to the mean of these two. Since the phase velocity is close to

the speed of light, we can understand this behavior analytically. Notice that vp−1 = ε ∝ f−2

and the deviation δΓm in Eq. (22) is linear in this quantity up to logarithmic corrections. The

linear correction in the product of cℓ(vp) implies that the combination of the two frequencies

is well approximated by the monochromatic result at the inverse variance mean value,

f̄ =

√
2f 2

1 f
2
2

f 2
1 + f 2

2

. (74)

In our example the predicted δΓm(π)|f̄ = 0.0172 whereas the cross frequency result is

δΓcross(π) ≡ Γ(π)f1,f2 − ΓGR(π) = 0.0171. Using the mean frequency accounts for the

deviations, δΓm(π)|f2 − δΓm(π)|f1 = 0.009, that are linear in ε∆ ln f , where ∆ ln f =

ln f2 − ln f1, and leaves the next leading order δΓcross − δΓm|f̄ ∼ O(ε2∆ ln f), due to the

expansion of cℓ when |∆ ln f | ≪ 1. In this case where ∆ ln f = 0.38 is order unity, the

correction is O(ε2) and since εf̄ | = 0.008, the residual δΓcross − δΓm|f̄ ≈ 10−4 scales as

expected.

Therefore for other parameter choices the main considerations are the values of ε, the

deviation in the phase velocity, and ∆ ln f - the frequency evolution between the observations.

While the difference in the full cross ORF from GR scales as ε∆ ln f , the difference between

the cross and monochromatic at the mean frequency scales as ε2∆ ln f .

2. Distant source

We now turn to the opposite extreme, where the source is located at a large distance

from Earth, so that the second term of Eq. (64), namely the delay due to the modified
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FIG. 6. Left panel: dashed blue line: the Hellings-Downs ORF in GR; red and green lines:

the monochromatic ORF defined in Eq. (19) at f = 50nHz (vp = 1.005) and f = 34nHz

(vp = 1.011) respectively; solid blue line: the ORF with cross-frequency correlation, (f1 = 34nHz

and f2 = 50nHz). Notice the cross-frequency correlation is very close to the monochromatic ORF

with the mean frequency (see text). Right panel: deviation from the Hellings-Downs curve with the

same parameters as the left panel. The amplitude of the difference compared to HD curve can be

well estimated by the end point ξ = π.

dispersion relation, dominates. In the mg/2π ≪ f limit, this corresponds to an effective

distance Deff ≫ Dcross ∝ f−2/3M−5/3m−2
g (see Eq. (67) and (68)).

In this limit, the arrival time can be approximated by the propagation delay Eq. (66).

The change in the arrival frequency across the observation baseline is

∆ ln f ≈
∣∣∣∣∂ ln f∂ta

∣∣∣∣Tobs ≈ ∣∣∣∣∂ ln f∂∆ta

∣∣∣∣Tobs ≈ Tobs
2∆ta

∝ m−2
g D−1

eff . (75)

In the example shown in Fig. 5 with mg = 2π × 5 nHz ≈ 2.1× 10−23 eV, and Deff ≈ D =

8.77kpc, we have f2 = 50nHz and ∆ ln f ≈ 0.056 for the same Tobs ≈ 15yr. The mean

frequency can be obtained from Eq.(74), f̄ = 48.5 nHz. Notice that the chirp mass drops out

of frequency evolution (75) in this Deff ≫ Dcross limit, so our example applies to any M.

The total deviation from GR in the cross frequency ORF, δΓcross(π) = 0.0128, remains

comparable to the D → 0 case since εf̄ ≈ 0.005 is independent on distance. On the other

hand, the frequency evolution is an order of magnitude smaller, δΓm|f1 − δΓm|f2 ≈ 0.001,

which scales as ε∆ ln f as expected. Moreover this small evolution is well captured by

evaluation of the monochromatic deviation at the mean f̄ : δΓcross(π) − δΓm(π)|f̄ ≈ 10−6.

This is consistent with our scaling expectation ε2∆ ln f .
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Scaling this distance to cosmological scales ∼ 1Gpc using Eq. (75) makes this correction

extremely small at this large graviton mass. At smaller mg, ∆ ln f and the change due to

frequency evolution can be larger but the overall deviation in the ORF from GR is also

smaller (See Eq. (22) with ε = vp − 1 ≈ m2
g/(8π

2f 2) in this limit). Lowering the chirp

mass M raises the distance Dcross at which the propagation time delay dominates, but

correspondingly decreases the frequency evolution as ∆ ln f ∝ M5/3 if Deff ≪ Dcross. In

principle the frequency can evolve faster or be double valued for Deff ∼ Dcross, or more

specifically where ∂ta/∂ ln f = 0. However, this scenario would require fine-tuning that

is only feasible for single-source events and cannot be consistently maintained across a

population of sources.

V. CONCLUSION AND DISCUSSION

In this paper we have considered the implications of relaxing the assumption of a stochastic

gravitational wave background consisting of uncorrelated monochromatic plane waves in

the analysis of timing residuals from PTAs. While there are good reasons for assuming a

stochastic background behaves in this manner, if the background is composed of unresolved

astrophysical sources then in principle there could be a markedly different correlated signal.

Moreover, gravitational waves from sources propagate causally as wavepackets which result in

differences if there is a modification to General Relativity involving their dispersion relation

that is not just characterized by the phase of monochromatic components.

To understand the GW propagation effects on PTA observations, we began by exploring

the simple thought example of a Gaussian wavepacket. Here we highlighted and resolved the

apparent paradox that the wavepacket travels at the group velocity whereas the monochro-

matic results depend only on the phase velocity at the Earth and the pulsars. Using both a

propagation approach and a superposition approach at the Earth and pulsars, we showed

that the group velocity enters into the amplitude and stationary phase value of the Earth

and pulsar terms and effectively averages the monochromatic result over the frequency

distribution of the wavepacket. Furthermore, the wavepacket distorts during propagation if

the group velocity dispersion becomes significant across the long distance to the gravitational

wave source. As expected, when the Gaussian wavepacket is narrow in the frequency domain,

the correction to the PTA response remains minimal, even in the context of modified gravity
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theories.

Building on this understanding of wavepacket effects, we considered realistic waveforms

corresponding to Supermassive Black Hole Binary inspiral signals of nearby and distant

sources. We found that the frequency evolution of the chirp together with the frequency-

dependent delays of the modified dispersion relation induces cross-frequency correlations in

the PTA signals, changing the overlap reduction function (ORF). However, for sources at

cosmological distances and the dispersion relation of massive gravity, the long time delays

between different frequencies implied by the group velocity dispersion distorts the wavepacket

making it closer to monochromatic across a realistic PTA temporal baseline of ∼ 15yrs.

When the frequency evolution across this baseline is small, the induced cross-frequency ORF

can be well estimated by the monochromatic result at the mean frequency of two arrival

frequencies.

Therefore, for these astrophysical sources at cosmological distances, the monochromatic

assumption remains valid for analysis and can be effectively used to constrain deviations

from GR. Nevertheless, in nearby single-source events, it is possible in the future [23] to

detect the influence of these waveform effects, offering new opportunities to test GR.

For other cosmological sources such as primordial gravitational waves, or those originating

from phase transition in the early universe, the uncorrelated monochromatic assumption

should be even more valid. For other binary sources, such as primordial black hole binaries, if

they merge at high redshift, the resulting frequency will be redshifted to the nanohertz band

and may also contribute to the SGWB. For these more general sources we have provided

scaling relations for the overlap reduction function given the frequency evolution and the

amplitude of the phase velocity differences, to assess the extent to which these effects could

be important in tests of GR.
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Appendix A: Stationary phase approximation

This section serves as a reminder of the standard stationary phase approximation technique.

The stationary phase approximation is used to evaluate oscillatory integrals under the

assumption that the phase changes slowly with respect to the variable of integration. This

technique can be applied to both Fourier and inverse Fourier transforms. For illustration, we

begin with the Fourier domain; the inverse process can be achieved by simply changing the

variables.

For a given Fourier domain waveform with a known phase function

h̃(f) = |h̃(f)|eiΨ(f) , (A1)

the time domain waveform can be obtained through an inverse Fourier transform,

h(t) ≡
∫ ∞

−∞
e−2πifth̃(f)df . (A2)

We find the stationary phase point through,

dΨ

df

∣∣∣∣
f0

= 2πt , (A3)

and then expand the phase around this value as

Ψ(f) ≈ Ψ(f0) + (f − f0)Ψ
′(f0) +

1

2
(f − f0)

2Ψ′′(f0) . (A4)

The waveform can therefore be approximated as

h(t) ≈ |h̃(f0)|eiΨ(f0)−2πif0t

∫ ∞

−∞
e

i
2
(f−f0)2Ψ′′(f0)df

= |h̃(f0)|
√

2π

|Ψ′′(f0)|
ei[Ψ(f0)−2πf0t±π

4
] , (A5)

where ± corresponds to positive (negative) Ψ′′(f0) respectively, and we have used the Gaussian

integral ∫ ∞

0

eiax
2

dx = eiπ sgn(a)/4

√
π

4|a| (A6)

in the final step.
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Appendix B: Coefficients of redshift expansion

Here we provide details of the derivation of the coefficients in the redshift expansion in

Eq. (36). Combining Eq. (39) and (40), we may express Ie as,

Ie =
√
2πσxh

A
0

∫
dk

2π
H(k)e−

(k−k̄)2σ2
x

2 eiφe(k)

≈
√
2πσxh

A
0 e

iϕ̄e

∫
dk

2π
H(k)e−

(k−k̄)2σ2
x

2 eiφ
′
e(k̄)(k−k̄) , (B1)

where we have neglected the dispersion of the group velocity, dnφe/dk
n|k=k̄ = 0.

We can further Taylor expand H(k) around k = k̄, and use the saddle point approximation

to express the integral as a sum of a series of Gaussian integrals,

Ie ≈
√
2πσxh

A
0 e

iϕ̄e
∑
n=0

dnH(k)

n!dkn

∣∣∣∣
k=k̄

∫
dk

2π
(k − k̄)ne−

(k−k̄)2σ2
x

2
+iχeσx(k−k̄)

=
√
2πσxh

A
0 e

iϕ̄e−
χ2
e
2

∞∑
n=0

H(n)(k̄)

n!

∫
d∆k

2π

(
∆k + i

χe

σx

)n

e−
∆k2σ2

x
2 , (B2)

where ∆k = k − k̄ − iχe

σx
, and H(n)(k̄) represents the n-th derivative of H(k) evaluated at

k = k̄.

Using the binomial expansion,(
∆k + i

χe

σx

)n

=
n∑

m=0

n!

m!(n−m)!

(
i
χe

σx

)n−m

∆km , (B3)

and the Gaussian integral∫
d∆k

2π
∆kme−

∆k2σ2
x

2 =


1
2π
Γ
(
m+1
2

) (σ2
x

2

)−m+1
2

for even m

0 for odd m
, (B4)

we can express the coefficients Bn,e as,

Bn,e =
σx√
2π
σn
x

n∑
m=0,even

n!

m!(n−m)!

(
i
χe

σx

)n−m

Γ

(
m+ 1

2

)(
σ2
x

2

)−m+1
2

= inχe2
n−1
2 U

(
1− n

2
,
3

2
,
χ2
e

2

)
, (B5)

where U(a, b, z) is the confluent hypergeometric function. This gives the results in Eq. (46).
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central kinematics and black hole mass of 4c+37.11,” The Astrophysical Journal 960, 110

(2024).

[22] Jose Maria Ezquiaga, Wayne Hu, Macarena Lagos, Meng-Xiang Lin, and Fei Xu, “Modified

gravitational wave propagation with higher modes and its degeneracies with lensing,” JCAP

08, 016 (2022), arXiv:2203.13252 [gr-qc].

[23] Gabriella Agazie et al. (NANOGrav), “The NANOGrav 15 yr Data Set: Bayesian Limits on

Gravitational Waves from Individual Supermassive Black Hole Binaries,” Astrophys. J. Lett.

951, L50 (2023), arXiv:2306.16222 [astro-ph.HE].

32

http://dx.doi.org/10.1103/PhysRevD.107.044007
http://arxiv.org/abs/2208.12538
http://arxiv.org/abs/2208.12538
http://arxiv.org/abs/2408.10122
http://arxiv.org/abs/2310.07537
http://arxiv.org/abs/2310.07537
http://dx.doi.org/ 10.3847/1538-4357/835/1/21
http://arxiv.org/abs/1609.06758
http://arxiv.org/abs/2405.11755
http://arxiv.org/abs/2407.21567
http://dx.doi.org/10.1088/1475-7516/2021/11/048
http://arxiv.org/abs/2108.10872
http://dx.doi.org/ 10.1103/PhysRevD.49.2658
http://dx.doi.org/ 10.1103/PhysRevD.49.2658
http://arxiv.org/abs/gr-qc/9402014
http://dx.doi.org/ 10.3847/1538-4357/ad14fa
http://dx.doi.org/ 10.3847/1538-4357/ad14fa
http://dx.doi.org/10.1088/1475-7516/2022/08/016
http://dx.doi.org/10.1088/1475-7516/2022/08/016
http://arxiv.org/abs/2203.13252
http://dx.doi.org/10.3847/2041-8213/ace18a
http://dx.doi.org/10.3847/2041-8213/ace18a
http://arxiv.org/abs/2306.16222

	Testing Gravity with Realistic Gravitational Waveforms in Pulsar Timing Arrays
	Abstract
	Contents
	Introduction
	Monochromatic GWs
	Gaussian wavepacket
	The propagation approach
	The superposition approach

	Inspiral Waveform
	Temporal vs. spatial domain
	Time domain and near emission waveform
	Frequency domain and stationary phase approximation 
	Cross-Frequency Overlap Reduction Function
	Nearby source
	Distant source


	Conclusion and Discussion
	Acknowledgments
	Stationary phase approximation
	Coefficients of redshift expansion
	References


