
Synchronizing the Consistency Relation

Keisuke Inomata,1 Hayden Lee,1 Wayne Hu1,2

1Kavli Institute for Cosmological Physics and Enrico Fermi Institute, The University of Chicago,
Chicago, IL 60637, USA

2Department of Astronomy & Astrophysics, The University of Chicago, Chicago, IL 60637, USA

E-mail: inomata@uchicago.edu, haydenl@uchicago.edu,

whu@background.uchicago.edu

Abstract: We study the N -point function of the density contrast to quadratic order in

the squeezed limit during the matter-dominated (MD) and radiation-dominated (RD) eras

in synchronous gauge. Since synchronous gauge follows the free-fall frame of observers, the

equivalence principle dictates that in the gradient approximation for the long-wavelength

mode there is only a single, manifestly time-independent consistency relation for the N -point

function. This simple form is dictated by the initial mapping between synchronous and local

coordinates, unlike Newtonian gauge and its correspondingly separate dilation and Newtonian

consistency relations. Dynamical e↵ects only appear at quadratic order in the squeezed limit

and are again characterized by a change in the local background, also known as the separate

universe approach. We show that for the 3-point function the compatibility between these

squeezed-limit relations and second-order perturbation theory requires both the initial and

dynamical contributions to match, as they do in single-field inflation. This clarifies the role of

evolution or late-time projection e↵ects in establishing the consistency relation for observable

bispectra, which is especially important for radiation acoustic oscillations and for establishing

consistency below the matter-radiation equality scale in the MD era. Defining an appropriate

angle and time average of these oscillations is also important for making separate universe

predictions of spatially varying local observables during the RD era, which can be useful for

a wider range of cosmological predictions beyond N -point functions.
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1 Introduction

The inflation era in the early universe sets the initial condition of the cosmological perturba-

tions, which seed the cosmic microwave background (CMB) anisotropies and the large scale

structure (LSS) [1–6]. The cosmological perturbations are often characterized by the initial

comoving curvature perturbations1 ⇣I . Their power spectrum P⇣I has now been precisely

measured on the CMB scales [7], revealing a nearly scale-invariant shape. However, this in-

formation about the initial condition is essentially kinematic, following from the approximate

de Sitter symmetry of inflation, and the underlying dynamics of inflation remains largely

untested.

To gain a deeper understanding of the microphysics of inflation, it is essential to measure

higher-order correlations or non-Gaussianity of the curvature perturbations. Such measure-

ments provide a more direct window into the dynamical content of inflation, and can help

distinguish between di↵erent inflationary models [8]. Primordial non-Gaussianity can be ob-

served in the CMB bispectrum [9–12] and the statistics of large-scale structure including

scale-dependent halo bias [13, 14], and upper limits on its presence have already ruled out

some multi-field and low sound speed inflationary parameter space.

In single-field inflation models, the three-point correlation function of the curvature per-

turbations in the squeezed limit satisfies the following consistency relation [15] (see also [16–

20]):

h⇣I(q)⇣I(k1)⇣I(k2)i = �(ns(kS) � 1)P⇣I (q)P⇣I (kS) (2⇡)
3�D(q+ k1 + k2) +O(q2) , (1.1)

where �D is the Dirac delta function and

ns(kS) � 1 =
d ln k3

SP⇣I (kS)

d ln kS
, (1.2)

characterizes the tilt, with kS = (k1 � k2)/2 and q ⌧ k1, k2. This relation stems from the

fact that the long-wavelength mode, ⇣I(q), acts just as the rescaling of the spatial coordinates

up to O(q). This consistency relation can be extended to observable correlation functions

after inflation, e.g., the squeezed bispectrum h⇣I��i, which describes the correlation of the

late-time density perturbations � in the presence of the long-wavelength mode ⇣I . If future

measurements of the squeezed three-point function in the CMB anisotropies and the LSS

discover a deviation from this evolved (late-time) consistency relation, it would rule out

single-field inflation models.

Previous studies of the late-time consistency relation have so far focused on Newtonian

gauge [21, 22] and often in the context of a separate “Newtonian consistency relation” at

O(q) [23, 24]. In this paper, we present a new analysis of the consistency relation in syn-

chronous gauge, which we show has the same form as the rescaling of coordinates in the

inflationary consistency relation. Since the synchronous gauge is defined as the free-fall frame

1We put the subscript I on ! I to indicate that it is the initial value of the curvature perturbation at the
end of inßation.
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of initially comoving observers, the equivalence principle requires that the consistency re-

lations are trivial/kinematic spatial coordinate transformations up to O(q). In addition,

synchronous time slicing clarifies the separate roles of initial non-Gaussianity versus the evo-

lution of short-wavelength fluctuations in establishing the observable late-time consistency

relation.2

Moreover, the synchronous calculations at O(q2) reveal the dynamical e↵ect of the evo-

lution of short-wavelength density perturbations in the presence of a long-wavelength mode,

often approximated in the so-called separate universe approach where it is considered as a

local background cosmology [25, 28–31]. This is because the separate universe construction

is conceptually related to a free-fall frame and contains the dynamics of a long-wavelength

adiabatic mode. Consequently, synchronous gauge has the computational advantages in the

derivation of the consistency relation. Unlike in Newtonian gauge, the consistency relation in

synchronous gauge can be derived with time-independent coordinate transformations, which

are manifestly non-dynamical and highlight the equivalence principle by maintaining the same

free-fall frame throughout the superhorizon evolution. As a result, the adiabatic or gauge con-

ditions for the long mode associated with the coordinate transformation become simple in

synchronous gauge, and do not require any conditions on the matter content of the universe,

such as the neglect of the anisotropic stress of the neutrinos, as is common in other techniques.

To verify that the synchronous gauge consistency relation is satisfied for single-field infla-

tion and show how it can be violated under other types of initial non-Gaussianity, we compare

it to second-order density perturbation calculations assuming a perfect fluid during matter-

dominated (MD) and radiation-dominated (RD) eras. Second-order perturbations have been

extensively studied in the context of both the CMB [32–45] and the LSS [46–53]. In general,

the second-order density perturbations can be divided into the homogeneous part, whose evo-

lution is the same as the first-order density perturbations, and the inhomogeneous part, whose

evolution is sourced by the convolution integrals of the first-order perturbations. Importantly,

the homogeneous part includes the primordial non-Gaussianity, whereas the inhomogeneous

part leads to a purely non-primordial, late-time non-Gaussianity due to the non-linear evo-

lution of the perturbations. We show both the homogeneous and inhomogeneous parts are

needed for the consistency relation to hold and that the inhomogeneous evolution in RD is

responsible for establishing the consistency relation in MD below the horizon scale at matter-

radiation equality. Finally we show that separate universe approach gives the same result as

the second-order calculation at O(q2), if we consider an angle and time average of the latter.

This paper is organized as follows. In ¤2, we derive the late-time consistency relation in

synchronous gauge and show how its extension to O(q2) can be interpreted using the separate

universe approach. Then, we discuss the compatibility of these relations with the evolution of

second order perturbations, first from arbitrary initial non-Gaussianity conditions, and then

from single-field initial non-Gaussianity in ¤3. We devote ¤4 to the conclusion. A number of

2In synchronous gauge, constant-coordinate-time hypersurfaces coincide constant-proper-time hypersur-
faces. An advantageous feature of this property is that the linear halo/galaxy bias relation can be extended
to scales near the horizon size [25Ð27].
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appendices contain additional technical details and derivations. In Appendix A, we review

the removal of the delta function from the consistency relation. In Appendix B, we solve for

second-order perturbations in synchronous gauge. In Appendix C, we present and review the

analogous results in Newtonian gauge, and in Appendix D we perform gauge transformations

to relate the results in Newtonian and synchronous gauges as well as the initial conditions

from comoving and uniform density gauge. Appendix E collects the main variables used in

this paper.

2 Consistency Relations and Separate Universe in Synchronous Gauge

The physical essence of the cosmological consistency relations is the equivalence principle.

These relations express the fact that a local observer’s experience is insensitive to particular

gravitational perturbations—those that can be generated by coordinate transformations. As

such, it is natural to expect that the kinematic constraints that the consistency relations

capture will be most simply stated in coordinates adapted to locally freely falling observers,

which are precisely those of synchronous gauge.

In this section, we derive the kinematic consequences of these spatial coordinate transfor-

mations in synchronous gauge that mimic the e↵ect of a long-wavelength curvature perturba-

tion of wavenumber q to O(q), and translate them into soft theorems satisfied by correlation

functions of local observables. These same techniques of absorbing the long-wavelength mode

into the background, now thought of as defining a separate universe or local Friedmann-

Lemâıtre-Robertson-Walker (FLRW) background, also mimic the truly dynamical e↵ects of

the long-wavelength curvature perturbation on local observables at O(q2).

2.1 Synchronous Gauge and Free-Fall Frame

We are interested in the behavior of fluctuations around a spatially flat FLRW background

metric �gµ⌫ = gµ⌫ � ḡµ⌫ , where ḡµ⌫ is the conformally flat background metric with the scale

factor a. Synchronous gauge is defined by the requirement that the perturbations of the

metric satisfy �g0µ = 0. The line element can therefore be parameterized as

ds2 = a2(⌘)
!
�d⌘2 +

"
(1 � 2 )�ij + 2Eij

#
dxidxj

$
, (2.1)

where the metric perturbations are solely in the spatial components. In general, Eij contains

components that transform as a scalar, vector, and tensor under the spatial rotation symme-

tries of the background. In the following, we will only be interested in the dynamics of scalar

perturbations (in particular the second-order scalar perturbations induced by the first-order

scalar perturbations), so we will restrict to the scalar component of Eij , which we write as

Eij ⌘
%
@i@j
r2 � 1

3
�ij

&
Ê , (2.2)
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where Ê is a 3-scalar function.3 Throughout this work, indices of 3-vectors and 3-tensors, such

as spatial vectors, momentum vectors, and their spatial derivatives, are raised or lowered by

the comoving background spatial metric �ij , which is the same convention as in [54]. Repeated

spatial indices of 3-vectors and 3-tensors are likewise summed over even when they both are

lowered or raised.

Synchronous gauge is so named because it is the coordinate system that is established

by a set of free-fall observers who initially synchronize their clocks from their initial spatial

coordinate positions. As such, synchronous gauge retains the freedom to specify the time slice

of the synchronization and those initial spatial coordinates, leaving the residual coordinate

freedom xµ ! xµ + ⇠µ with

⇠0 =
�(x)

a
, ⇠i = @i�(x)

'
d⌘

a
+ hi(x) . (2.3)

Notice that the residual gauge freedom represented by the spatial functions �(x) and hi(x)

is non-dynamical, reflecting its origin in the choice of initial observers. It is advantageous

to choose for the time slicing synchronous observers that are initially at rest with respect

to the background expansion as a ! 0, which fixes the residual temporal freedom �(x) =

0. Since these test observers are in free fall, as long as gravity is the only relevant force

this means that their frame coincides with the one that moves with the matter, namely

comoving gauge where the matter stress-energy tensor is set to T 0
i = 0 (see Eq. (D.22)).

In general, this approximation holds above the Jeans scale of the matter rs (see [55] for

the generalization beyond general relativity). For example, in the RD era where this scale

is comparable to the horizon, rs ⇠ ⌘, corrections for a Fourier wavenumber q due to the

change in slicing are suppressed by (q⌘)2. In the MD era, the Jeans scale of the pressureless

matter vanishes, and so the correction is entirely negligible. Specifically, the 3-curvatures on

comoving and synchronous slicings physically coincide. In linear theory, since the background

is homogeneous, they coincide at each coordinate point as well, regardless of the choice of

synchronous spatial coordinates hi(x). In Fourier space, this implies that the comoving

curvature perturbation ⇣ satisfies

⇣ = � � 1

3
Ê +O(q2) , (2.4)

where the notation O(qn) throughout denotes corrections of order (qrs)n when qrs ⌧ 1. No-

tice that in the formal limit ⌘ ! 0, we have rs ! 0 and the quadratic correction vanishes.

In the inflationary context, the minimum value of rs corresponds to the horizon at the end

of inflation. Since this is negligible compared to wavelengths considered here, we will denote

this initial value as ⇣ = ⇣I and drop any O(q2) corrections initially.

3Note that our deÞnition di!ers from that of Malik & Wands in [ 54], which uses Eij |MW = " i " j E |MW .
Instead, we have split the spatial metric perturbation into the trace and traceless pieces, and absorbed all of
the trace into ".
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In Fourier space, the anisotropic metric perturbation is expressed as

Eij(q) =

%
qiqj
q2 � 1

3
�ij

&
Ê(q) . (2.5)

While a common convention is to choose hi such that lim
q! 0

Ê = 0 at finite ⇣, for pedagogy

we retain the residual gauge freedom. Without loss of generality, we can parameterize it by

the fraction of the invariant curvature perturbation that is carried individually by  or Ê as

lim
q! 0

 

⇣
= �(1 � f), lim

q! 0

1
3Ê

⇣
= �f . (2.6)

See Eq. (D.43) for the specific relationship between the spatial coordinate threading for dif-

ferent f .

2.2 Consistency Relation up to O (q)

To introduce the consistency relation, we adopt the approach used in [18, 21]. For the

adiabatic mode, the long-wavelength perturbation with the wavenumber q above the Jeans

scale should act on short-wavelength perturbations as the coordinate transformation with

deviations only at O(q2). If the perturbations originate from single-field inflation, then this

ansatz applies to the initial conditions for the short-wavelength perturbations as well.

In this case, the whole correlation function of the short-mode density perturbations in the

presence of the long mode, represented by the initial comoving curvature perturbation ⇣I , is

the same as the one without the long-wavelength curvature perturbation after an appropriate

coordinate transformation x ! x̃:

h�(x1, ⌘1) · · · �(xN , ⌘N )|⇣Ii = h�(x̃1, ⌘1) · · · �(x̃N , ⌘N )i +O(q2) , (2.7)

where the notation O(qn) in correlators implicitly means that the Fourier modes that are

included in this long-wavelength ⇣I satisfy |q · (xi �xj)| ⌧ 1 in addition to qrs ⌧ 1, i.e., that

we can Taylor expand ⇣I(xi � xj) and treat its e↵ects as a background modulation for the

short-wavelength modes order by order.

Supposing that the coordinate transformation induced by ⇣I is perturbatively small, we

obtain to O(q)

h⇣I(x)�(x1, ⌘1) · · · �(xN , ⌘N )i =
(
⇣I(x)

N)

a=1

�(x1, ⌘1) · · ·��(xa, ⌘a) · · · �(xN , ⌘N )
*
, (2.8)

where we have used h⇣Ii = 0. Here ��(xa, ⌘a) ⌘ �(x̃a, ⌘a) � �(xa, ⌘a), which correlates with

⇣I due to the coordinate change it represents. In Fourier space, the consistency relation can

be expressed as

lim
q! 0

h⇣I(q)�(k1, ⌘1) · · · �(kN , ⌘N )i =
(
⇣I(q)

N)

a=1

�(k1, ⌘1) · · ·��(ka, ⌘a) · · · �(kN , ⌘N )
*
, (2.9)
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where ��(ka, ⌘a) ⌘
+
d3xa e" ika áxa��(xa, ⌘a). In synchronous gauge, the task therefore is to

characterize the coordinate change that models the “background wave” influence of ⇣I . In

the passive coordinate transform approach, the coordinate shift

x̃i = xi + ⇠i (2.10)

corresponds to a change in the small-scale density perturbation as

��(x, ⌘) = ⇠i@i� . (2.11)

Note that under this transformation and keeping only first-order terms in ⇠i, the spatial

metric transforms as

,�gij = �gij � (@�ḡij)⇠
� � ḡi�(@j⇠

�) � ḡ�j(@i⇠
�) . (2.12)

In general, we seek to model this change at the level of a gradient approximation for ⇣I as

⇣I(x) ⇡ ⇣I(0) + xi@i⇣I(0) , (2.13)

so that the Fourier-space consistency relation is maintained to O(q).

Unlike Newtonian gauge (see Appendix C) and comoving gauge (where the translation

of spatial coordinates is time and anisotropic stress dependent [56]), this coordinate change

is purely spatial and time independent, but also carries the residual gauge freedom parame-

terized by f in Eq. (2.6). We account for the most general case by separating this coordinate

change as

⇠i = (1 � f)⇠iT + f⇠iøT , (2.14)

where T denotes  (the trace component) and T̄ denotes Ê (the trace-free component). We

can consider each piece independently, and then compose the most general consistency relation

from this linear combination, as we shall show explicitly for the three-point function in ¤2.2.3.
We loosely call the spatial threading with f = 0 and f = 1 as the (initially) “isotropic” and

“anisotropic” cases, respectively, even though evolution makes Ê 6= 0 and  6= 0 for any f as

the perturbations cross the horizon scale.

2.2.1 Isotropic-Synchronous Gauge (f = 0)

In this case, the initial comoving curvature perturbation is represented by the synchronous

gauge metric  as ⇣I = � + O(q2). Given the isotropy of the spatial metric, we can only

allow a local rescaling of the coordinates, consisting of spatial dilation and special conformal

transformations (SCT), with

⇠i|f=0 = ⇠iT ⌘ �xi + 2b · xxi � x2bi , (2.15)

where b · x = bixi. From Eq. (2.12), it follows that ⇣I transforms as

⇣̃I = ⇣I � � � 2b · x , (2.16)

– 7 –



from which we can associate the dilation � and SCT b parameters that would be required to

absorb ⇣I into the coordinate change: � = ⇣I(0) and 2bi = @i⇣I(0). Since this is purely a time-

independent spatial coordinate redefinition, this transformation behaves exactly as ⇣ would

for the growing mode of adiabatic perturbations4 to O(q) without further restrictions due to

the gauge conditions or the matter content, including any anisotropic stress it carries (see

Appendix C for the Newtonian case, where further restrictions must be taken into account).

The above coordinate change then transforms the small-scale density perturbation as

��(x, ⌘) = (�xi + 2b · xxi � x2bi)@i�(x, ⌘) . (2.17)

In Fourier space, this transformation can be expressed as

��(k, ⌘) = �
!
�(3 + ki@ki ) + i(6b · @

k

+ 2bikj@ki @kj � b · kr2
k)

$
�(k, ⌘) . (2.18)

Substituting this into Eq. (2.9), we obtain the consistency relation

lim
q! 0

h⇣I(q)�(k1, ⌘1) · · · �(kN , ⌘N )i (2.19)

= �P⇣I (q)
N)

a=1

%
3 + kia@ki

a
+ 3q · @

ka + qikja@ki
a
@kj

a
� 1

2
q · kar2

ka

&
h�(k1, ⌘1) · · · �(kN , ⌘N )i ,

where we have neglected the O(q2) contributions and used

h⇣I(q)⇣I(x = 0)i = lim
x! 0

-
⇣I(q)

'
d3k

(2⇡)3 e
ikáx⇣I(k)

.
= P⇣I (q) ,

h⇣I(q)@i⇣I(x = 0)i = lim
x! 0

-
⇣I(q)

'
d3k

(2⇡)3 (ik
i)eikáx⇣I(k)

.
= �iqiP⇣I (q) . (2.20)

Note that the correlators on both sides of Eq. (2.19) contain momentum-conserving delta

functions. Using standard operations to remove the momentum-conserving delta functions

which we review in Appendix A, we obtain

lim
q! 0

h⇣I(q)�(k1, ⌘1) · · · �(kN , ⌘N )i#= �P⇣I (q)(D + qiKi) h�(k1, ⌘1) · · · �(kN , ⌘N )i# , (2.21)

where h· · ·i = (2⇡)3�D (ktot ) h· · ·i# and the di↵erential operators

D = 3(N � 1) +
N)

a=1

kia@ki
a
, (2.22)

Ki =
N)

a=1

%
3@ki

a
+ kja@kj

a
@ki

a
� 1

2
kiar2

ka

&
(2.23)

correspond to the dilation and SCT generators (for the scaling weight of zero). As we shall

discuss in ¤2.2.3, this removal of the momentum-conserving delta function does not mean

that we remove momentum conservation. The consistency relation still enforces conservation,

but there are various ways to send q ! 0 that can be used to simplify its construction and

interpretation, especially for the O(q) term.

4A coordinate transformation cannot change the local number density ratios of di!erent particle species,
which would be required to mimic an isocurvature mode.
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2.2.2 Anisotropic-Synchronous Gauge (f = 1)

We now discuss the case of f = 1, for which ⇣I = �Ê/3 + O(q2). Since Ê is an anisotropic

metric perturbation, this case requires an anisotropic rescaling of coordinates to model. This

leads us to consider

⇠i|f=1 = ⇠iøT ⌘ 3

/%
bibj
b2 � 1

3
�ij

&
(�� � 2x · b)xj + bi

b2 (x · b)2 � 1

3
bix2

0
, (2.24)

where � and bi are a constant scalar and vector, respectively. The derivative of ⇠iøT is given by

@j⇠
i
øT = 3

%
bibj
b2 � 1

3
�ij

&
(�� � 2x · b) � 2

"
bixj � bjx

i
#
. (2.25)

This implies that @i⇠iøT = 0, which keeps  ̃(1) =  (1) = 0 up toO(q). With this transformation,

the trace-free part of the spatial metric transforms as

Ẽij = Eij + 3

%
bibj
b2 � 1

3
�ij

&
(�+ 2x · b) . (2.26)

To see the transformation of Ê, let us focus on the perturbation at finite momentum q in the

gradient approximation around xi = 0,

Eij(x;q) =

'
d3k

(2⇡)3

%
kikj
k2 � 1

3
�ij

&
Ê(k)eikáx

=

%
qiqj
q2 � 1

3
�ij

&
Aeiqáx ⇡

%
qiqj
q2 � 1

3
�ij

&
A(1 + iq · x) , (2.27)

where we used Ê(k) = A(2⇡)3�D(k � q). We note that, for the single Fourier long mode, we

can rewrite the consistency relation, Eq. (2.8), as

hEij(x;q)�(x1, ⌘1) · · · �(xN , ⌘N )i = hEij(x;q) h�(x1, ⌘1) · · · �(xN , ⌘N )|Eij(x;�q)ii . (2.28)

The reason for the minus sign of �q in the right-hand-side (RHS) is that it gives a nonzero

value after the ensemble average with Eij(x;q); for a spectrum of modes this is equivalent to

conjugation and the condition that Eij(x) is real. To erase Eij(x;�q) with the coordinate

transformation, we then equate � = �A/3 and 2bi = iqiA/3. Since Ê corresponds to the

comoving curvature perturbation ⇣ in the case of f = 1 using Eq. (2.4), we find

⇣I(x) = �1

3
Ê(x) = �+ 2x · b , (2.29)

so that this transformation models ⇣I as desired.

On the other hand, under the coordinate shift of Eq. (2.24), the density perturbation

transforms as

��(x, ⌘) =

/%
bibj
b2 � 1

3
�ij

&
(�� � 2x · b)xj + bi

b2 (x · b)2 � 1

3
bix2

0
@i�(x, ⌘), (2.30)

��(k, ⌘) =

%
bibj
b2 � 1

3
�ij

& !
�ki@kj + i(ki@kj (2b · @

k

) � (b · k)@ki @kj )
$
�(k) . (2.31)
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k1

q

k2

k1

kS
q

k2

Figure 1. Approach to the squeezed limit with k1 or kS = (k1 � k2)/2 fixed.

Substituting � = 3⇣(0), 2bi = �3iqi⇣(0) and using Eq. (2.9), we obtain

lim
q! 0

h⇣I(q)�(k1, ⌘1) · · · �(kN , ⌘N )i = 3P⇣I (q) (2.32)

⇥
N)

a=1

%
qiqj
q2 � 1

3
�ij

& %
kia + kia(@ka · q) � 1

2
(ka · q)@ki

a

&
@kj

a
h�(k1, ⌘1) · · · �(kN , ⌘N )i .

We then remove the delta function in both sides using a generalization of the standard pro-

cedure, which we review in Appendix A. We finally obtain5

lim
q! 0

h⇣I(q)�(k1, ⌘1) · · · �(kN , ⌘N )i#= 3P⇣I (q) (2.33)

⇥
N)

a=1

%
qiqj
q2 � 1

3
�ij

& %
kia + kia(@ka · q) � 1

2
(ka · q)@ki

a

&
@kj

a
h�(k1, ⌘1) · · · �(kN , ⌘N )i# .

In the case of a general mixture of trace and trace-free pieces, the consistency relation is

simply a linear combination of Eqs. (2.21) and (2.33), which we will illustrate next with the

consistency relation for the three-point function.

2.2.3 Three-Point Consistency Relation

Let us illustrate the advantages of synchronous gauge by explicitly considering the simplest

consistency relation, namely that of the 3-point function. The 3-point function in the squeezed

limit involves derivative operations on the 2-point function in momentum space, which require

us to specify how momentum is conserved in taking the squeezed limit.

The suppression of the momentum-conserving delta functions does not mean that we

break momentum conservation as q ! 0 but rather that we have a choice as to what momenta

to leave fixed as we take this limit. For example, consider the momentum-conserving triangles

k1+k2+q = 0 in Fig. 1. We can either take q ! 0 at fixed k1 or take the midpoint approach

and fix kS = (k1 � k2)/2. While Eqs. (2.21) and (2.33) hold for any such choice and the

5Note that the consistency relation in the anisotropic-synchronous gauge ( 2.33) takes the same form as
the tensor consistency relation in comoving gauge [18, 20], except that the traceless projector qi qj

q2 ! 1
3 #ij is

replaced with a traceless-transverse polarization tensor. In contrast, the anisotropic scalar perturbations in
synchronous gauge are traceless but not transverse.
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resulting expressions are the same once converted to the same associations for k, the separate

contributions of the O(q0) and O(q) terms di↵er. We can use this fact to further simplify the

consistency relation and highlight its physical content in synchronous gauge.

As pointed out by Refs. [18, 57], originally in the context correlators in comoving gauge

evaluated on the same time surface, the principal advantage of holding kS fixed is that the

O(q) terms vanish, leaving the relations for absorbing ⇣I in the gradient approximation exactly

the same as for the homogeneous approximation. In the equal-time correlator case where

⌘ = ⌘1 = ⌘2, the two-point function on the RHS becomes P�(kS , ⌘) and has symmetric k1 and

k2 derivatives (since kS = (k1+k2)/2+O(q2)), so that momentum conservation guarantees the

vanishing of terms with
1

a q
ikia = 0 +O(q2). For unequal-time correlators the derivation of

the consistency relation in comoving gauge from coordinate transformations is more involved

due to the time-dependent translation required to maintain the gauge condition of an isotropic

spatial metric [56], which we will refer to as “isotropic threading”, especially in the presence

of neutrino anisotropic stress.6

In synchronous gauge, this notational advantage and conceptual simplicity applies to

unequal-time (⌘1 6= ⌘2) correlators as well, since the underlying coordinate transformation

has no time dependence. The explicit, most general, three-point consistency relation in

synchronous gauge to O(q) takes the form7

lim
q! 0

h⇣I(q)�(k1, ⌘1)�(k2, ⌘2)i#

P⇣I (q)P�(kS , ⌘1, ⌘2)
= �n�(kS , ⌘1, ⌘2) + 3f

"
µ2n�(kS , ⌘1, ⌘2) + (1 � 3µ2)

#
, (2.34)

where µ ⌘ k̂S · q̂ is the angle between the short and long modes, and the unequal-time power

spectrum is defined as

h�(k1, ⌘1)�(k2, ⌘2)i = (2⇡)3�D(k1 + k2)P�(k1, ⌘1, ⌘2) , (2.35)

with its (time-dependent) spectral tilt

n�(k, ⌘1, ⌘2) ⌘ d ln k3P�(k, ⌘1, ⌘2)

d ln k
. (2.36)

Notice that for f = 0, which is the usual choice for a fully gauge-fixed synchronous gauge,

the entire consistency relation to O(q) is a dilation. Hence in this synchronous gauge, the so-

called Newtonian consistency relation is also entirely subsumed into a dilation (cf. Eq. (C.15)).

Specifically, the consistency relation for f = 0 can be rewritten compactly as

lim
q! 0

h⇣I(q)�(k1, ⌘1)�(k2, ⌘2)i#= �n�(k, ⌘1, ⌘2)P⇣I (q)P�(kS , ⌘1, ⌘2) (f = 0) . (2.37)

6The neutrino anisotropic stress provides a leading-order correction to the time-dependent translation be-
tween synchronous and comoving or uniform density gauges, as can be seen from the linear gauge transforma-
tion that removes öE (see Eq. (D.22)).

7See [58] for the analogous result derived for the inßationary bispectra for comoving slicing and anisotropic
threading.
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The synchronous-gauge interpretation is that local observers cannot tell if they are moving

in the gradient of the long-wavelength curvature perturbation because they are freely falling,

even when comparing at di↵erent times. The local coordinates that they would establish

would remove the dilation that Eq. (2.37) represents, leaving no means of locally measuring

any impact of the long-wavelength mode to O(q).

In fact, if we choose f = 1 for which there is no isotropic rescaling of local spatial scales

from the initial metric, the consistency relation becomes8

lim
q! 0

h⇣I(q)�(k1, ⌘1)�(k2, ⌘2)i#

P⇣I (q)P�(kS , ⌘1, ⌘2)
= �(1 � 3µ2)(n�(kS , ⌘1, ⌘2) � 3) (f = 1) . (2.38)

Since the angle average of µ2 is 1/3, we have

lim
q! 0

h⇣I(q)�(k1, ⌘)�(k2, ⌘)i#= 0 (f = 1) , (2.39)

where the overline indicates the angle average. The angle-averaged consistency relation then

becomes trivial, and this f = 1 choice makes it clear that a local observer cannot detect the

presence of a long-wavelength mode in the gradient approximation.

2.3 Separate Universe at O (q2)

The advantage of employing synchronous gauge for adiabatic perturbations becomes even

more apparent at O(q2). Here the impact of the long-wavelength ⇣I cannot be merely ab-

sorbed into free-fall coordinates, since it changes the local density and 3-curvature that deter-

mines short-wavelength observables (see Appendix D.3). On the other hand, this background

wave still appears as a local change in the FLRW background under which short-wavelength

fluctuations evolve. The isotropic impact of this background can be described by a change in

cosmological parameters that is sometimes called the separate universe approach.

Here the advantage of synchronous gauge is that its coordinates are closely related to the

description of separate-universe observers comoving with the local expansion, as discussed

in [31, 55]. In this case synchronous gauge remains the local frame established by free-fall

observers, whereas comoving gauge can di↵er even in the choice of time-slicing if the matter

fields experience non-gravitational forces.

In the separate universe construction, synchronous perturbations are reabsorbed into the

local background by a change in the background density ⇢SU = ⇢(1 + �L) from the long-

wavelength �L, the local scale factor aSU = a(1 � ), the local FLRW curvature

KSU =
2

3
r2

2

 +
Ê

3

3

, (2.40)

where we have assumed that K = 0 in the global background, and the local Hubble parameter

HSU =

%
1 � d 

d ln a

&
H . (2.41)

8The same anisotropic angular dependence is found in the squeezed three-point function of ! in solid
inßation [ 59, 60].
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Note that the subscript “SU” indicates a local quantity in the separate universe. The small-

scale density fluctuations relative to the local background density then evolve in this separate

universe in a manner given by this change in these cosmological parameters. This construc-

tion applies even if the small-scale observables are in the nonlinear regime, and has been

successfully implemented in cosmological simulations [28, 30, 61, 62].

The only di↵erence between the separate universe and synchronous descriptions is the

absorption of the synchronous metric fluctuation into the local scale factor. In the separate

universe construction this would introduce an additional evolving dilation of short-wavelength

scales since  evolves with time at O(q2) (see [30], Eq. (44)), which is absent in synchronous

coordinates and moreover cannot be absorbed into the initial definition of synchronous spa-

tial coordinates with the gauge parameter f . E↵ectively in the fluid mechanics analogy,

synchronous spatial coordinates act as Lagrangian coordinates in contrast with the separate

universe Eulerian coordinates.

In addition, the absorption of the metric fluctuation into the scale factor only applies

to its spatial trace  and so the impact of the anisotropic piece Ê is eliminated by angle

averaging, in the same way as we treated the f = 1 case in Eq. (2.39). In fact, the separate

universe description can be generalized to encapsulate the full angular dependence by using

an anisotropic background cosmology [63]. This has also been successfully implemented in

simulations [64–67], but for simplicity we employ the FLRW separate universe and angle-

averaged correlation functions here.

3 Second-Order Perturbations in Synchronous Gauge

In this section, we assess the compatibility between the consistency relation and second-

order perturbation theory results in synchronous gauge and its dependence on initial non-

Gaussianity. Before going to the concrete calculations, we summarize the methodology of the

second-order perturbations. See Appendix B for a detailed derivation.

For simplicity we assume here a perfect fluid where the energy-momentum tensor is

expressed as

Tµ
⌫ = (⇢+ P )uµu⌫ + P �µ⌫ , (3.1)

where ⇢ is the energy density, P is the pressure, and uµ is the four-velocity. The general expres-

sion of the energy-momentum tensor with nonzero anisotropic stress is given in Appendix B.

However, an advantage of the synchronous gauge consistency relation is that anisotropic stress

does not introduce any conceptual di↵erences in its construction unlike Newtonian (see Ap-

pendix C) or comoving gauges [56] (see also Eq. (D.22)). Anisotropic stress from neutrinos

or radiative viscosity does of course inhibit its analytic verification using second-order per-

turbation theory and allows only numerical checks in general, which is why we omit it here.

We expand the density perturbation up to second order as

⇢ ⇡ ⇢̄+ ⇢(1) +
1

2
⇢(2) , (3.2)
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where the overbar indicates the background value and the superscripts denotes the order in

perturbations. We then define the n-th order density perturbation �(n) as

�(n) ⌘ ⇢(n)

⇢̄
. (3.3)

Similarly, we expand the metric perturbations up to second order as,

 ⇡  (1) +
1

2
 (2) , Eij ⇡ E

(1)
ij +

1

2
E

(2)
ij . (3.4)

We also define the transfer functions of perturbations relative to the initial comoving curvature

⇣I into the initial k-dependence and growth pieces, Tm/r and Dm/r , respectively:

�(1) (k, ⌘) = Dm/r(y)Tm/r(k)⇣
(1)
I (k) , (3.5)

where y ⌘ k⌘ with k ⌘ |k|, and the subscripts, “m” and “r”, represent a quantity during the

MD and RD eras, respectively. In the RD era, Tr(k) = 1. In the MD era, Tm(k) represents

the change in the spectrum from the end of inflation to the epoch of MD (⌘ > ⌘m) due to

the sub-Jeans-scale evolution during the prior RD epoch. In the literature, this is usually

referred to as the transfer function for the large-scale structure and has the limiting forms

Tm(k) = 1 , k⌘eq ⌧ 1 ,

Tm(k) / k" 2 ln k , k⌘eq � 1 .

The detailed form of Tm is not relevant for this work, but it can be computed using the stan-

dard Einstein-Boltzmann codes or be approximated with a fitting formula [68]. The density

growth function Dm/r then transfers these “initial” perturbations to the final perturbations

at ⌘, and its explicit form is given below. Unlike [21, 22], we explicitly account for subhorizon

evolution in the RD regime and its impact on separating the pieces of the consistency relation

that come from initial non-Gaussianity and evolution.

Consequently, the power spectrum of the density perturbation P� is related to P⇣I by

P�(k, ⌘1, ⌘2) = Dm/r(k⌘1)Dm/r(k⌘2)T
2
m/r(k)P⇣I (k) . (3.6)

At second order, the density perturbation can be expressed as

�(2) (k, ⌘) =

'
d3p1d3p2

(2⇡)3 �D(k � p1 � p2)I inhom .
m/r (u, v, y)Tm/r(p1)Tm/r(p2)⇣

(1)
I (p1)⇣

(1)
I (p2)

+
Dm/r(k⌘)

Dm/r(k⌘m/r)
�(2) (k, ⌘m/r) , (3.7)

where u ⌘ p1/k, v ⌘ p2/k, and I inhom .
m/r is the part of the second-order kernel that evolves the

second-order density field from some initial surface ⌘m/r to ⌘ under the first-order sources.

The second-order contribution at the initial surface evolves under the homogeneous equations,

which are the same as in linear theory. In general, a fraction of the initial value at ⌘m/r goes
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into each of the homogeneous modes as determined by matching at the boundary. Here

we have assumed all of the initial contributions are in the growing mode as appropriate for

taking ⌘m/r ! 0. More generally, when there are first-order-squared sources before ⌘m/r ,

this expression holds for ⌘ � ⌘m/r when only the growing mode component survives, with

�(2) (k, ⌘m/r) as the initial value of that component at ⌘m/r (see Appendix B for details).

In general, we can characterize the initial or homogeneous piece by specifying an initial

non-Gaussianity. For the three-point study, this involves the initial three-point function.

For the RD era, we can generically characterize the homogeneous term through the initial

three-point function at the end of inflation or the start of radiation domination, ⌘ = ⌘r , by

lim
q! 0

h⇣I(q)�(k1, ⌘r)�(k2, ⌘r)i#= Hr(q, kS , µ)P⇣I (q)P�(kS , ⌘r , ⌘r) (RD) , (3.8)

assuming that all k-modes are outside the horizon at ⌘r . For an initial non-Gaussianity

obeying the single-field inflationary consistency relation (1.1), the initial three-point function

also satisfies the general consistency relation (2.34),

Hr(q, kS , µ) = �n� + 3f
"
µ2n� + (1 � 3µ2)

#
+O(q2) , (3.9)

where n� = ns + 3. Here O(q2) generally contains (q⌘r)2 and for single-field inflation (q/kS)2

terms. It may also contain terms associated with the horizon scale at which slow-roll con-

ditions are violated during inflation [69]. We shall see that all of these O(q2) terms are

parametrically smaller than those generated from the inhomogeneous sourcing at late times.

For a contrasting case, where the consistency relation can be violated initially, we consider

local non-Gaussianity from multi-field inflation in Appendix C.2.

Likewise, we characterize the e↵ective initial condition for the calculation in the MD era

as

lim
q! 0

h⇣I(q)�(k1, ⌘m)�(k2, ⌘m)i#= Hm(q, kS , µ)P⇣I (q)P�(kS , ⌘m , ⌘m) (MD) . (3.10)

Here ⌘m ! ⌘eq is the beginning of the MD era whereafter we omit the radiation component.

We shall see that dynamical evolution in the RD universe through the inhomogeneous term

preserves the consistency relation, so that single-field inflation models satisfy

Hm(q, kS , µ) = �n�(kS) + 3f
"
µ2n�(kS) + (1 � 3µ2)

#
+O(q2) , (3.11)

where likewise we shall see that the O(q2) term contains (q⌘m)2 terms from the RD evolution

as well as (q/kS)2 terms from single-field inflation. The preceding RD epoch does change

n� from ns + 3 since P�(k, ⌘1, ⌘2) / k4⌘2
1⌘

2
2T

2
m(k)P⇣I (k) well after the equality but leaves

n� independent of ⌘1 and ⌘2 during that era (⌘1>⌘m and ⌘2>⌘m). Note that even for local

non-Gaussianity where the inflationary consistency relation is violated, the dilation piece that

arises from n�(kS) � (ns + 3) or Tm will remain (see Appendix C.2.1, Eq. (C.26)).
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3.1 Consistency Relation and Initial Non-Gaussianity

In the following, we will compare the second-order perturbations and the consistency relation

by computing the three-point function up to O(q). Since we focus on the case where the

long mode is always outside the Jeans scale, i.e., q ⌧ ⌘" 1 in RD and q ⌧ ⌘" 1
eq in MD, we

set Tm/r(q) = 1 for the long mode. We can then calculate the left-hand-side (LHS) of the

consistency relation by expressing the second-order perturbations as

h⇣I(q)�(k1, ⌘1)�(k2, ⌘2)i#

P⇣I (q)
= I inhom .

m/r

%
q

k1
,
k2

k1
, k1⌘1

&
Dm/r(k2⌘2)T

2
m/r(k2)P⇣I (k2) + (1 $ 2)

+
Dm/r(k1⌘1)Dm/r(k2⌘2)

Dm/r(k1⌘m/r)Dm/r(k2⌘m/r)
Hm/r(q, kS , µ)P�(kS , ⌘m/r , ⌘m/r) . (3.12)

Next, we re-express the wavenumbers k1, k2 in term of kS and µ ⌘ q̂ · k̂S using

k1 = kS

4

1 � q

kS
µ+

1

4

%
q

kS

&2

, k2 = kS

4

1 +
q

kS
µ+

1

4

%
q

kS

&2

, (3.13)

which follows from q+ k1 + k2 = 0. We then expand the inhomogeneous term in small q to

obtain

lim
q! 0

h⇣I(q)�(k1, ⌘1)�(k2, ⌘2)i#

P⇣I (q)T
2
m/r(kS)P⇣I (kS)

=
$)

s,t=0

B[s,t]
m/r(y1, y2)

%
q

kS

&s

µt

+Dm/r(k1⌘1)Dm/r(k2⌘2)Hm/r(q, kS , µ) , (3.14)

where y1 = kS⌘1, y2 = kS⌘2 here and throughout. In the following, we will give the concrete

expressions of Bm/r as appropriate. Note that the O(q) consistency relation involves s  1.

3.1.1 Matter-Dominated Era

We first consider the MD era. The growth function of the first-order density perturbations is

given by

Dm(y) =
y2

10
, (3.15)

and the inhomogeneous kernel of the second-order density perturbations is given by [46, 52]

I inhom .
m (u, v, y) =

u4 + v4 + 12u2v2 � 2(u2 + v2) + 1

700
y4 , (3.16)

where we have taken ⌘m ! 0 as described in Appendix B (see Eq. (B.51)). Plugging this into

Eq. (3.12) and expanding in the squeezed limit, we find that the inhomogeneous contribution

to the three-point function vanishes up to O(q), i.e., B[s,t]
m = 0 for s = 0, 1 in Eq. (3.14). Since

Dm(k1⌘1)Dm(k2⌘2)

Dm(k1⌘m)Dm(k2⌘m)
P�(kS , ⌘m , ⌘m) =

⌘2
1⌘

2
2

⌘4
m

P�(kS , ⌘m , ⌘m) = P�(kS , ⌘1, ⌘2) , (3.17)
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it immediately follows that for an initial non-Gaussianity or homogeneous term that satisfies

the consistency relation Eq. (3.10), the late-time consistency relation of Eq. (2.34) holds:

lim
q! 0

h⇣I(q)�(k1, ⌘1)�(k2, ⌘2)i#

P⇣I (q)P�(kS , ⌘1, ⌘2)
= �n�(kS , ⌘1, ⌘2) + 3f

"
µ2n�(kS , ⌘1, ⌘2) + (1 � 3µ2)

#
(3.18)

to O(q). In particular at this order in q, the consistency relation for f = 0 becomes a pure

dilation of short-wavelength fluctuations in the long-wavelength mode, whereas for f = 1 its

angle average vanishes entirely, as expected.

3.1.2 Radiation-Dominated Era

Next, we summarize the expressions in the RD era. The growth function during the RD era

is given by

Dr(y) = �4(2 � (2 � ỹ2) cos ỹ � 2ỹ sin ỹ)

ỹ2 , (3.19)

where we have defined ỹ ⌘ y/
p
3. We will refer to the oscillatory features in this growth

function as acoustic oscillations and the change from the initial power law behavior as the

mode crossing the Jeans scale. The expressions of the inhomogeneous kernel, again taking

the initial surface ⌘r ! 0, can be found in Appendix B. For brevity, we here directly go to

the expressions of B[s,t]
r whose nonzero values for s  1 are

B[0,0]
r = �4 (ỹ2 sin ỹ2Dr(y1) + ỹ1 sin ỹ1Dr(y2) � 2Dr(y1)Dr(y2)) , (3.20)

B[0,2]
r = 12f (ỹ2 sin ỹ2Dr(y1) + ỹ1 sin ỹ1Dr(y2) � 2Dr(y1)Dr(y2)) , (3.21)

B[1,1]
r = 2(4 � 3f + (ns � 1)) (ỹ2 sin ỹ2Dr(y1) � ỹ1 sin ỹ1Dr(y2)) , (3.22)

B[1,3]
r = �6f(1 + (ns � 1)) (ỹ2 sin ỹ2Dr(y1) � ỹ1 sin ỹ1Dr(y2)) , (3.23)

where ỹ1,2 ⌘ y1,2/
p
3 = kS⌘1,2/

p
3. Unlike in the MD era, the inhomogeneous part contributes

to the three-point function up to O(q). This is because the RD growth function Dr depends

on scale so that

n�(k, ⌘1, ⌘2) ⌘ d ln k3P�(k, ⌘1, ⌘2)

d ln k
=

d

d ln k
ln

/
Dr(k⌘1)Dr(k⌘2)

D2
r (k⌘r)

0
+ n�(k, ⌘r , ⌘r) . (3.24)

For the consistency relation to hold at late times, it is not su�cient that the initial non-

Gaussianity obeys the consistency relation Eq. (3.9): the second-order perturbations must

evolve in the correct way such that the sum of the two pieces obeys dilation symmetry.

Let us check this preservation of the consistency relation explicitly. At O(q), if we assume

the initial piece obeys the consistency relation (3.8), then the total s = 0 contribution goes

as

B[0,0]
r � (ns + 3 � 3f)Dr(y1)Dr(y2) = �Dr(y1)Dr(y2)(n�(kS , ⌘1, ⌘2) � 3f) , (3.25)

B[0,2]
r + 3fnsDr(y1)Dr(y2) = 3fDr(y1)Dr(y2)(n�(kS , ⌘1, ⌘2) � 3) , (3.26)
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whereas the total s = 1 contribution vanishes:

B[1,1]
r � 2(ns + 3 � 3f) (ỹ2 sin ỹ2Dr(y1) � ỹ1 sin ỹ1Dr(y2)) = 0 , (3.27)

B[1,3]
r + 6fns (ỹ2 sin ỹ2Dr(y1) � ỹ1 sin ỹ1Dr(y2)) = 0 . (3.28)

The sum then implies that the three-point function satisfies the consistency relation

lim
q! 0

h⇣I(q)�(k1, ⌘1)�(k2, ⌘2)i#

P⇣I (q)P�(kS , ⌘1, ⌘2)
= �n�(kS , ⌘1, ⌘2) + 3f

"
µ2n�(kS , ⌘1, ⌘2) + (1 � 3µ2)

#
, (3.29)

for all times ⌘1, ⌘2 � ⌘r . Physically, the inhomogeneous piece dilates the acoustic scale of the

oscillatory small-scale perturbations, while the homogeneous or initial piece dilates the initial

scale dependence. Therefore in the subsequent MD era, an inflationary non-Gaussianity that

obeys the consistency relation once evolved through RD preserves the consistency relation for

the “initial conditions” of the MD regime (3.11), despite the change in n�(kS , ⌘m , ⌘m) 6= ns+3

induced by the Jeans scale, or horizon at matter-radiation equality that is reflected in Tm(k).

Moreover, even if the inflationary initial condition does not obey the consistency relation,

e.g., in the local non-Gaussianity case, the dilation symmetry acting on Tm(k) is enforced by

the RD inhomogeneous evolution, which is independent of the initial non-Gaussianity. We

elaborate on these issues in Appendix C.2.2.

3.2 Separate Universe and Averaging

In this section, we verify the consistency of the O(q2) three-point correlation and the sepa-

rate universe approach described in ¤2.3. In the separate universe approach, we absorb the

long-wavelength perturbation into the background, and follow the evolution of the short-

wavelength perturbations in the modified background including the O(q2) e↵ects of ⇣I on the

spatial curvature of the separate universe. Since the separate universe is taken to be locally

isotropic, this describes the angle-averaged three-point correlation [25, 28–31].

3.2.1 Matter-Dominated Era

First, let us consider the MD era case. As discussed in ¤2.3 (see [25, 70] for details), there are

in general two e↵ects for the perturbation evolution in the separate universe approach. The

first is that the changes in cosmological parameters of the local background, Eqs. (2.40) and

(2.41), modify the growth of the short-wavelength density fluctuations. Converting ⇣I to �L
the long-wavelength mode in real space using Eq. (3.5), we find

@ lnDm(kS⌘1,2)

@�L(⌘)
=

13

21

⌘2
1,2

⌘2 . (3.30)

The second is that the local density fluctuation is measured with respect to the local mean

and that is perturbed as 1 + �L, which adds 1 to the result, giving 34/21. We can then write

the short-wavelength mode in the presence of the long-wavelength mode, �L, as

�(k)|�L = �(k)|0 +
34

21

'
d3q

(2⇡)3 �(k � q)|0�L(q) , (3.31)
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where the �(k) is the density perturbation with respect to the global background and �(k)|0
is the density perturbation without the long-wavelength mode. Using this expression and

scaling the evaluation time using Dm from Eq. (3.15), we obtain

@ lnP�(kS , ⌘1, ⌘2)

@�L(⌘)
=

34

21

⌘2
1 + ⌘2

2

⌘2 . (3.32)

Next, let us calculate the same quantity using the second-order perturbations. The inho-

mogeneous term contributes at O(q2) from the B[2,0]
m and B[2,2]

m coe�cients (see Eqs. (B.53))

lim
q! 0

h⇣I(q)�(k1, ⌘1)�(k2, ⌘2)i#

P⇣I (q)T
2
m(kS)P⇣I (kS)

5
5
5
5
O(q2)

=
(5 + 2µ2)y2

1y
2
2(y

2
1 + y2

2)

3500

%
q

kS

&2

. (3.33)

The homogeneous term carries the initial non-Gaussianity and the non-Gaussianity generated

during the RD era. For single-field inflation, the former is of O(y2
1y

2
2q

2/k2
S) due the O(q2/k2

S)

corrections to Hm in Eq. (3.11), and the latter is of O(y2
1y

2
2q

2⌘2
m) due to the O(q2⌘2

m) correc-

tions. Both of these are negligible in comparison to the inhomogeneous contributions so long

as the correlation is evaluated at late times ⌘1,2 � ⌘m . Converting the initial curvature and

power spectra to density fluctuations using Eqs. (3.5) and (3.6) we obtain

lim
q! 0, y1,2% 1

h�(q, ⌘)�(k1, ⌘1)�(k2, ⌘2)i#

P�(q, ⌘, ⌘)P�(kS , ⌘1, ⌘2)

5
5
5
5
O(q2)

=
34

21

⌘2
1 + ⌘2

2

⌘2 . (3.34)

This is consistent with the separate universe approach, Eq. (3.32).

3.2.2 Radiation-Dominated Era

During the RD era, the separate universe approach again in principle gives a change in the

growth function of small-scale perturbations Dr through a change in cosmological parame-

ters [69].9 However, gravitational growth of small-scale perturbations stabilizes at the Jeans

scale and thereafter the growth of the long-wavelength density perturbation �L / ⌘2 has

no further impact on the amplitude of small-scale perturbations. In this case, the short-

wavelength acoustic oscillations to leading order in kS⌘ � 1 is given by

lim
÷yS % 1

�(kS) ' �4(1 + �L) cos(ỹS [1 +O(�L)])⇣I(kS) , (3.35)

where ỹS ⌘ kS⌘/
p
3 and we have used Dr ! �4 cos ỹS from Eq. (3.19) in Eq. (3.5).

Note that the local cosmological parameters do change the local conformal time and

hence the frequency of the oscillation by O(�L). If we were to expand this relation for a small

�L, it would appear that the phase shift provides the larger e↵ect sin(ỹS) ⇥ O(ỹS�L) since

9Although the derivation of the expression in [ 69] was done in comoving gauge for the short-wavelength
ßuctuations, this becomes the same as the expression in synchronous gauge in the subhorizon limit. On
the other hand the long-wavelength comoving density perturbation #L |com = 4 #L |synch / 3 so that the short-
wavelength response in Eq. (3.36) to #L |com would no longer take the simple separate universe form.
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it continues to accumulate over time. On the other hand, this shift is only observable by

comparing modes at very di↵erent times. In addition, as discussed in ¤2.2.3 the geometric

e↵ects induced by momentum conservation q+ k1 + k2 = 0 also alter the frequencies for the

three-point correlation and accumulate over time.

We can cleanly extract the more relevant amplitude change (1+ �L) due to the rescaling

of the local background by averaging over a cycle of the oscillation and comparing the short-

wavelength modes at equal time in the three-point correlation. We therefore get

@ lnP�(kS , ⌘, ⌘)

@�L(⌘)
= 2 , (3.36)

where the overline denotes the cycle average of the acoustic oscillation.

Next, let us see the expressions of the three-point function from the second-order pertur-

bations. In the subhorizon limit of the short-wavelength modes at equal times (⌘1 = ⌘2), the

O(q2) contribution from the B[2,t]
r terms of Eqs. (B.66)–(B.68) give

lim
q! 0, y1% 1

h⇣I(q)�(k1, ⌘1)�(k2, ⌘1)i#

P⇣I (q)P⇣I (kS)

5
5
5
5
O(q2)

= �
6%

4

9
� 16

3
µ2 + 8fµ4

&
sin(2ỹ1)ỹ

3
1 +

4

3
f(3(ns � 1) � 20) cos(2ỹ1)ỹ

2
1µ

4 (3.37)

�
/%

4 �
%
64

3
+ 4(ns � 1) � 24f

&
cos(2ỹ1)

&
µ2 +

4

9

%
33 + 38 cos(2ỹ1)

&0
ỹ2

1

7%
q

kS

&2

.

Subleading terms in the subhorizon limit are given in Appendix B. Similarly to the MD

case the contribution from the homogeneous term in Eq. (3.9) for single-field inflation is

generically suppressed as 1/(kS⌘)2 and (⌘r/⌘)2. The oscillatory terms in brackets vanish

under time averaging, leaving

lim
q! 0, ÷y1% 1

h⇣I(q)�(k1, ⌘1)�(k2, ⌘1)i#

P⇣I (q)P⇣I (kS)

5
5
5
5
O(q2)

= 16ỹ2
1

%
q

kS

&2

, (3.38)

where the double overline represents both angle and time averaging. Finally we convert the

initial curvature power spectrum to the time-averaged density power spectrum using Eq. (3.6)

to obtain

lim
q! 0, ÷y1% 1

h�(q, ⌘1)�(k1, ⌘1)�(k2, ⌘1)i#

P�(q, ⌘1)P�(kS , ⌘1)

5
5
5
5
O(q2)

= 2 , (3.39)

which is consistent with the leading-order separate universe expectation, Eq. (3.36).

4 Conclusion

In this paper, we have thoroughly analyzed the squeezed N -point function to quadratic order

in the wavenumber of the soft mode in synchronous gauge. The equivalence principle implies
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that synchronous gauge is the natural coordinate system to analyze the impact of long-

wavelength fluctuations on short-wavelength observables because it follows the free-fall frame

of observers that are initially at rest with respect to the expansion. It is then manifest that

there are no dynamical e↵ects of the gradient of the long-wavelength curvature perturbation

on short-wavelength modes in synchronous gauge. The entire impact of the long-wavelength

mode at O(q) is a time-independent change of the local spatial coordinates, making the

form of the consistency relation simple, even for late- and unequal-time correlation functions.

With the freedom to define initial spatial coordinates in synchronous gauge, for the three-

point function we can make this e↵ect as a pure dilation or remove it entirely through angle

averaging. This single relation automatically includes the so-called Newtonian consistency

relation that expresses the equivalence principle in Newtonian gauge.

At quadratic order O(q2), this background wave method also provides the perturbation

framework for the separate universe approach. In this approach, while synchronous time

slicing still defines the constant-time surfaces of the local universe, the long-wavelength mode

modifies the local 3-curvature and expansion rate. We have extended these separate universe

methods for the RD universe, for which special care must be taken in the averaging of acoustic

oscillations with respect to angle and time.

We have also analyzed the relationship between these kinematic and dynamical con-

straints on the squeezed three-point function and those predicted by second-order density

perturbations. In doing so, we paid special attention to the role of the dynamical evolution

sourced from first-order perturbations versus initial non-Gaussianity, which we refer to as

inhomogeneous vs. homogeneous contributions. In particular, we have clarified the role of

the evolution during the RD era in providing the initial conditions for the MD era for scales

below the horizon during radiation domination. During the RD era the initial second-order

contributions are responsible for the dilation of the initial scale dependence of perturbations,

whereas sourced evolution causes a dilation of the acoustic scale in the radiation and matter

transfer functions. Once this combination of e↵ects is established in the prior RD epoch, it is

maintained simply by the homogeneous evolution during the MD era. We have clarified how

this combination enters by explicitly keeping the matter transfer function Tm throughout the

calculations and the change in the tilt of the density power spectrum that it implies.

This decomposition of contributions to the consistency relation also has implications for

the squeezed limit of the observable angular bispectrum of the CMB anisotropy [71, 72]. In

this case, the long-wavelength mode which traces the large angle temperature fluctuation

dilates the angular coordinates of the small-scale temperature power spectrum, shifting their

acoustic peaks from a projection of these k-space relations from the perspective of the observer

today, which is not local in the plasma at recombination. One can likewise decompose its

pieces into an initial piece that carries the initial tilt ns � 1 of the spectrum and a first-order

sourced piece that carries the acoustic scale. Beyond single-field inflation where the former

piece can break, the latter piece still contributes as we have shown explicitly for local non-

Gaussianity in Appendix C and D. A breaking of this joint dilation of all scales would indicate

a falsification of single-field inflation.
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Beyond the consistency relation, the RD background wave and separate universe tech-

niques introduced here are useful for the prediction of the dependence of any local quantity on

the long-wavelength curvature perturbation, e.g., the formation of CMB spectral distortions

[69] and the spatial dependence of the dark matter abundance relative to the radiation. We

leave these and other applications to future work.
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A Removal of the Delta Function

In this appendix, we review the removal of the delta function from the consistency relation

in the case of f = 0 (Eqs. (2.19)–(2.21)) and f = 1 (Eqs. (2.32)–(2.33)). See also Refs. [18,

22, 74].

A.1 Isotropic-Synchronous Gauge (f = 0)

We begin with the isotropic case. On the RHS of Eq. (2.19), the derivatives act on the delta

function. First, let us treat the O(q0) term in the RHS of Eq. (2.19). Using the relation

N)

a=1

kia@ki
a
�D(ktot ) =

'
d3x

(2⇡)3x
i@ie

" i(k1+ ááá+ kN )áx

= � 3�D(ktot ) , (A.1)

with ktot ⌘
1 N

a=1 ka, we can rewrite the consistency relation at O(q0) as

lim
q! 0

h⇣I(q)�(k1, ⌘1) · · · �(kN , ⌘N )i#

= �P⇣I (q)

2

3(N � 1) +
N)

a=1

kia@ki
a

3

h�(k1, ⌘1) · · · �(kN , ⌘N )i# , (A.2)

where note again the prime means the removal of the momentum-conserving delta function,

h· · ·i = (2⇡)3�D (ktot ) h· · ·i#.

Next, let us examine the O(q) terms in Eq. (2.19). The term
1

a 3q · @
ka �D(ktot ) can

be rewritten as 3Nq · @
ktot �D(ktot ), while the second derivative of the delta function can be

expressed as

N)

a=1

%
qikja@ki

a
@kj

a
� 1

2
q · kar2

ka

&
�D(ktot ) = �3q · @

ktot �D(ktot ) . (A.3)
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In addition, Eq. (2.19) also has the first derivative of delta function multiplied by the first

derivative of h· · ·i#:

N)

a=1

qi
8
kja(@ki

a
�D(ktot ))@kj

a
+ (@kj

a
�D(ktot ))(k

j
a@ki

a
� kia@kj

a
)
9

h· · ·i#

=
N)

a=1

(qikja(@ki
a
�D(ktot ))@kj

a
h· · ·i#, (A.4)

where we have used the rotational invariance of theN -point function. Using these expressions,

we can rewrite the O(q) terms in the RHS of Eq. (2.19) as

(2.19)|O(q) = �P⇣I (q)

/
(2⇡)3(q · @

ktot �D(ktot ))

2

3(N � 1) +
N)

a=1

kia@ki
a

3

+ (2⇡)3�D(q+ ktot )
N)

a=1

qi
%
3@ki

a
+ kja@kj

a
@ki

a
� 1

2
kiar2

ka

&0
h�(k1, ⌘1) · · · �(kN , ⌘N )i#

⇡ h⇣I(q)�(k1, ⌘1) · · · �(kN , ⌘N )i#(2⇡)3(q · @
q

�D(q+ ktot )) (A.5)

� (2⇡)3�D(q+ ktot )P⇣I (q)
N)

a=1

qi
%
3@ki

a
+ kja@kj

a
@ki

a
� 1

2
kiar2

ka

&
h�(k1, ⌘1) · · · �(kN , ⌘N )i#,

where we have used the O(q0) dilation consistency relation, Eq. (A.2), in the approximation.

Since this approximated term matches the expansion of the delta function on the LHS of

Eq. (2.19) to O(q), we can rewrite the whole consistency relation without delta functions as

Eq. (2.21).

A.2 Anisotropic-Synchronous Gauge (f = 1)

Next, we discuss the removal of the delta function in the anisotropic case, Eq. (2.32). At

O(q0), we can use the relation

N)

a=1

kia@kj
a
�D(ktot ) = ��ij�D(ktot ) . (A.6)

From this, we can see that the term with the derivatives on the delta function in Eq. (2.32)

becomes zero due to the contraction with the traceless projector ( qi qj
q2 � 1

3�ij). We can then

remove the delta function without changing the O(q0) expression, giving

lim
q! 0

h⇣I(q)�(k1, ⌘1) · · · �(kN , ⌘N )i#|O(q0)

= 3P⇣I (q)
N)

a=1

%
qiqj
q2 � 1

3
�ij

&
kia@kj

a
h�(k1, ⌘1) · · · �(kN , ⌘N )i#. (A.7)
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At O(q), the RHS of Eq. (2.32) has the second derivative of the delta function, which can be

expressed as

N)

a=1

%
qiqj
q2 � 1

3
�ij

& %
kia@kj

a
(@

ka · q) � 1

2
(ka · q)@ki

a
@kj

a

&
�D(ktot ) = 0 . (A.8)

Also, the RHS of Eq. (2.32) has the first derivative of delta function multiplied by the first

derivative of h· · ·i#:
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where we have used the rotational invariance of theN -point function. Using these expressions,

we can rewrite the RHS of Eq. (2.32) as

(2.32) = 3P⇣I (q)

:

(2⇡)3(q · @
ktot �D(ktot ))

N)

a=1

%
qiqj
q2 � 1

3
�ij

&
kia@kj

a
(A.10)

+(2⇡)3�D(ktot )
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qiqj
q2 � 1

3
�ij

& %
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2
(ka · q)@ki

a

&
@kj

a

;

h�(k1, ⌘1) · · · �(kN , ⌘N )i#.

As with the f = 0 case, using the O(q0) relation Eq. (A.7), the first line of this equation is

the same as the first-order expansion of the delta function on the LHS of Eq. (2.32). Then,

we finally obtain the consistency relation without the delta function, Eq. (2.33).

B Second-Order Relations in Synchronous Gauge

In this appendix, we provide details of the second-order calculation in synchronous gauge. We

first present relevant second-order quantities in an arbitrary gauge in ¤B.1, and then solve the

Einstein equations in the MD and RD eras for synchronous gauge in ¤B.2. We also provide

explicit expressions for the three-point function in the squeezed limit at O(q2).

B.1 Second-Order Perturbation Theory

The line element perturbed around the flat FLRW metric can be written as

ds2 = a2(⌘)
!
�(1 + 2�)d⌘2 + 2Bid⌘dx

i + (�ij + 2Cij)dx
idxj

$
. (B.1)

A perturbed quantity can be expanded as Qijááá= Q̄ijááá+
1 $

n=1
1
n!Q

(n)
ijááá, where the overbar

indicates its background value. The inverse metric components up to second order are

g00 = �a" 2 "
1 � 2�+ 4�2 � B2

i

#
, (B.2)

g0i = a" 2 (Bi � 2�Bi � 2BkCki) , (B.3)

gij = a" 2 (�ij � 2Cij + 4CikCkj � BiBj) . (B.4)
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We remind the reader of our convention that the indices of 4-tensors are raised and lowered

with the metric gµ⌫ , while those of 3-tensors such as Bi and Cij above are raised and lowered

with �ij . To minimize confusion, in this appendix we will lower all the 3-indices whenever

possible and sum over the repeated lowered indices.

It is convenient to decompose the metric components into their 3-scalar, vector, and

tensor parts as

Bi = @iB +BT
i , (B.5)

Cij =
1

3
C�ij +Dijr" 2Ê + @(iE

T
j) + ET

ij , (B.6)

with @iB
T
i = @iE

T
i = @iE

T
ij = 0, and we have defined

C ⌘ Ckk , Dij ⌘ @i@j � 1

3
�ijr2 . (B.7)

Up to second order, the Einstein tensor components take the form

a2G0
0 = �3H2 � (2H@⌘ � r2)C � Ckl,kl + 6H2�+ 2HBk,k

� 1
2B

2
k,k +

1
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� 1
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+ 2(2Ckm,lm + 2HC#
kl � r2Ckl � C,kl)Ckl + 4H(C#� Bk,k � 3H�)�� 2H�,kBk

+ C#Bk,k � (C#
k,l + 4HCkl)Bk,l + (C#

,k + 2HC,k � C#
kl,l � 4HCkl,l)Bk , (B.8)
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+ (Bk,k � C#)�,i � (B(i,k) � C#
ik)�,k + (Bk,ki � r2Bi + 2C#

ik,k � 2C#
,i + 8H�,i)�

+ C,kB[i,k] + 2(Ci[l,k]Bk,l + Ckl,lB[k,i] + CklB[k,i]l)

+ (Cil,kl + Ckl,il � r2Cik � C,ik)Bk , (B.9)
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with H ⌘ a#/a, and the term multiplying the Kronecker delta in the spatial components Gi
j

is given by
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where the comma X,i is the shorthand expression of @iX. The energy-momentum tensor of

a fluid with density ⇢ and pressure P is given by

Tµ⌫ = (⇢+ P )uµu⌫ + Pgµ⌫ + ⌃µ⌫ , (B.12)

where uµ = dxµ/d⌧ is the 4-velocity given by

uµ = a" 1 "
1 � �+ 3
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2 + 1
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, (B.13)
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#
, (B.14)

up to second order, vi = @iv̂ is the comoving 3-velocity with v̂ the velocity potential, and

⌃µ⌫ denotes the anisotropic stress, which can be non-vanishing in the presence of e.g. free-

streaming neutrinos. It is subject to the conditions ⌃µ
µ = 0, ⌃µ⌫u

⌫ = 0, and its spatial

components can be decomposed as

⌃ij = Dij� + @(i⌃
T
j) + ⌃

T
ij , (B.15)

with @i⌃T
i = @i⌃T

ij = 0. Up to second order, we have

T 0
0 = �⇢ � (⇢̄+ P̄ )vk(vk +Bk) , (B.16)

T 0
i = (⇢+ P )(vi +Bi) + (⇢̄+ P̄ )(2vkCki � �Bi) , (B.17)

T i
j = P �ij + (⇢̄+ P̄ )vi(vj +Bj) + a" 2(Dij � 2CikDkj)� , (B.18)

where ⇢̄ and P̄ denote the background quantities obeying the Friedmann equations

H2 =
8⇡G

3
a2⇢̄ , H2 � H#= 4⇡Ga2(⇢̄+ P̄ ) . (B.19)

B.2 Synchronous Gauge

We now specialize to synchronous gauge by setting � = Bi = 0. We focus on scalar pertur-

bations, and therefore set all vector and tensor perturbations to zero, and relabel the spatial

trace of the metric as  = �1
3C to make contact with the notation used in the rest of the
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paper. This leaves  and Ê as the metric perturbations with the residual gauge freedom

of choosing the time slicing and spatial threading of synchronous coordinates reflecting the

choice of initial free-fall observers. In synchronous gauge, the second-order Einstein equations

take the form

6H #� 2r2
%
 +

1

3
Ê

&
+ 3H2� = S00 , (B.20)

�2@i

%
 +

1

3
Ê

&#

� 3(1 + P̄/⇢̄)H2@iv̂ = S0i , (B.21)

Ê##+ 2HÊ#+ r2
%
 +

1

3
Ê

&
� 12⇡Ga2r2� = N̂ijSij , (B.22)

6 ##+ 12H #� 2r2
%
 +

1

3
Ê

&
� 9H2(P � P̄ )/⇢̄ = Skk , (B.23)

where N̂ij ⌘ 3
2r" 2Dij and we have used the background equations and the second-order

source terms Sµ⌫ consist of first-order quantities

S00 = �3H2(1 + P̄/⇢̄)v2
i + 3( #2 + 2

,k) +
1

6
Ê#2 � 5

6
Ê2

,i � 4

3
(9H #� 6r2 � 2r2Ê) 

� 1

2
E#2

,ij +
1

2
E2

,ijk � 2

3
(6HE#+ 3 + Ê),klE,kl +

2

9
(6HÊ#+ r2Ê + 3r2 )Ê , (B.24)

S0i = 3H2<
(� + (P � P̄ )/⇢̄)vi � 2(1 + P̄/⇢̄)( vi � Eijvj +

1
3Êvi)

=
� E#

ij ,j + 2E,ij 
#
,j

+
2

3
Ê#

,jE,ij � 4

3
Ê,jE

#
,ij + E,ijkE

#
jk � 4( #+ 1

3Ê
#),i � 4( + 1

3Ê),i 
#� 1

3
Ê# ,i

+
2

3
Ê #

,i � 1

9
Ê#Ê,i +

2

9
ÊÊ#

,i , (B.25)

Sij = 3(1 + P̄/⇢̄)H2vivj � E,iklE,jkl +
1

3
E,ijk(3 + 4Ê),k + 2(2HE + E#),ikE

#
,jk

+ 2E,ikE
##
,jk � 2( + 1

3Ê)E##
,ij � 2( + 1

3Ê),ikE,jk � 3( + 1
3Ê),i( + 1

3Ê),j

� 2E,ij(@
2
⌘ + 2H@⌘ � r2)( + 1

3Ê) � ( #+ 4H + 4
3(Ê

#+HÊ))E#
,ij

� 2(2 � 1
3Ê)( + 1

3Ê),ij + 16⇡Ga2 Dij� +
1

3
�ijSkk , (B.26)

Skk = 3( 2
,k � #2) +

5

6
(Ê#2 � Ê2

,k) � 5

2
E#2

,kl +
1

2
E2

,klm � 4(3 ##+ 6H #� 2r2( + 1
3Ê)) 

� 2(2E##+ 4HE#+ 1
3Ê + ),klE,kl +

2

3
(2Ê##+ 4HÊ#+ r2( + 1

3Ê))Ê , (B.27)

with E ⌘ r2Ê. As in the main text, we hereafter assume a perfect fluid with a constant

equation of state ⇢ = wP and vanishing anisotropic stress � = 0. The 00, trace, and trace-

free equations are then three equations with three unknowns Ê, , �. The 0i equation then

determines the final matter variable v̂. We can combine the 00 and trace equations in two
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di↵erent ways to get

 ##+H #� 1

2
(1 + 3w)H2� =

1

2
(Skk � S00) , (B.28)

 ##+ (2 + 3w)H #� 1

9
(1 + 3w)r2(3 + Ê) =

1

6
(Skk + 3wS00) . (B.29)

Combining (B.28), (B.29), and (B.22) in various ways, these equations can be decoupled into

the ordinary di↵erential equations

LOO = SO (B.30)

for the variables O 2 {Ê, , �}. The di↵erential operators LO take the form

L öE ⌘
%
@3
y +

2(4 + 3w)

(1 + 3w)y
@2
y +

w(1 + 3w)2y2 + 8

(1 + 3w)2y2 @y +
2w(1 + 3w)y2 � 8

(1 + 3w)2y3

&
@y , (B.31)

L! ⌘ �1

3
L öE +

4w

(1 + 3w)y3 (y@y � 1)@y, (B.32)

L� ⌘
%
@2
y � 12w

(1 + 3w)y2

%
y@y +

1 � 9w

6w

&
+ w

& %
y@y +

3(1 + w)

1 + 3w

&
, (B.33)

in terms of the dimensionless variable y ⌘ k⌘. The order of each di↵erential operator indicates

the number of pure gauge modes on top of the two physical (growing and decaying) solutions;

there are two gauge modes for Ê and C, and a single gauge mode for �. The source terms

are given by

k2S öE ⌘ w

2
S00 +

1 + 3w

3
N̂ijSij +

1

6
Skk +

%
@y +

2(2 + 3w)

(1 + 3w)y

&
@yN̂ijSij , (B.34)

k2S! ⌘ �w

6
S00 � 1 + 3w

9
N̂ijSij � 1

18
Skk +

1

6y

%
@y +

4

(1 + 3w)y

&
@y(Skk + 3wS00) , (B.35)

k2S� ⌘ 1

12

!
24(1 + w) + (1 + 3w)(11 + 9w)y@y + (1 + 3w)2y2@2

y

$
@yS00 � 2

3
@ySkk

� 1 + 3w

36
y
! "
(1 + 3w)y@y + (5 + 9w)

#
(2N̂ijSij + Skk) + 6@2

ySkk

$
. (B.36)

Since the source terms start at second order, the first-order perturbations obey the homo-

geneous equations (B.30), which admit analytic solutions for a constant w in terms of the

generalized hypergeometric functions. At early times, the independent solutions have the

following power-law behavior:

lim
⌘! 0

Ê(1) (k, ⌘) � y2, y1" 4
1+3 w , y

1! 2
1+3 w

, y0 , (B.37)

lim
⌘! 0

 (1) (k, ⌘) � y2, y3" 4
1+3 w , y" 1" 2

1+3 w , y0 , (B.38)

lim
⌘! 0

�(1) (k, ⌘) � y2, y3" 4
1+3 w , y" 1" 2

1+3 w . (B.39)

– 28 –



For the two metric variables, the constant mode in the curvature perturbation  (1) + 1
3Ê

(1)

corresponds to the growing mode in the density solution, which scales as y2. As discussed in

¤2.1 (see Eq. (2.6)), there is a residual spatial gauge freedom that is fixed by the choice of

initial observers as to how to assign the curvature to the two metric perturbations individually.

In the cases where the constant curvature is assigned to one or the other entirely, f = 0 or

f = 1 in the main text, then the other will scale as y2. The other two power-law solutions

correspond to the decaying mode and the residual gauge freedom in setting the initial time

surface. We shall make these assignments more concrete in the MD and RD cases below, but

in general we set them to zero.

We will be particularly interested in solving the equation for the second-order density

perturbation in the MD and RD eras with w = 0 and w = 1/3. We will express the first- and

second-order solutions in terms of the initial first-order curvature perturbation as

�(1) (k, ⌘) = Dm/r(y)Tm/r(k)⇣
(1)
I (k) , (B.40)

�(2) (k, ⌘) =

'
d3p1d3p2

(2⇡)3 �D(k � p1 � p2)Im/r(u, v, y)Tm/r(p1)Tm/r(p2)⇣
(1)
I (p1)⇣

(1)
I (p2) ,

(B.41)

with

Im/r (u, v, y) = I inhom .
m/r (u, v, y) + Ihom.

m/r (u, v, y) . (B.42)

The inhomogeneous kernel I inhom .
m/r captures the part that is generated by the dynamical

evolution from the initial time surface to late times, and the homogeneous part Ihom.
m/r is fixed

by the initial condition at early times. In the following, we will solve the inhomogeneous

solution using the Green’s function, and leave the homogeneous solution to be specified by

the type of initial non-Gaussianity.

B.2.1 Matter-Dominated Era

We start by solving Eqs. (B.31)–(B.33) at first order. For w = 0, the solutions are simple

power-law functions. From (B.37)–(B.39), it follows that10

lim
⌘! 0

Ê(1) (k, ⌘) = c öEy
2 + d öEy

" 3 + e öEy
" 1 + f öE , (B.43)

lim
⌘! 0

 (1) (k, ⌘) = c! y
2 + d! y

" 1 + e! y
" 3 + f! , (B.44)

lim
⌘! 0

�(1) (k, ⌘) = c�y
2 + d�y

" 1 + e�y
" 3 , (B.45)

where cO , dO , eO , fO depend on k. We set the decaying mode of adiabatic perturbations to

zero by setting dO = 0. In terms of the choice of synchronous observers, eO corresponds to the

initial time slicing of synchronization, and our choice of eO = 0 specifies that the observers

10 Note that the restriction $ " 0 only applies to the gauge mode associated withe! , since each of the other
modes is given by a single power-law function.
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are at rest with respect to the background expansion. The time-independent gauge freedom

fO then corresponds to their initial spatial coordinates, which we parameterize according to

(2.6) as

f öE = �3fTm(k)⇣ (1)
I (k) , f! = (f � 1)Tm(k)⇣ (1)

I (k) . (B.46)

Physically, this condition arises from the fact that the 3-curvature on our eO = 0 synchronous

slicing coincides with that of comoving slicing outside the sound horizon or maximal Jeans

scale for any f . For first order perturbations this implies ⇣ = � � 1
3Ê and Tm(k) transfers

the initial ⇣ to the MD epoch.

The constraint equations between the variables and the initial condition on the growing

mode fix the cO coe�cients to be

c öE = �3c! = �c� = � 1

10
Tm(k)⇣ (1)

I (k) . (B.47)

Matching with (B.40), we find

Dm(y) =
y2

10
, (B.48)

which gives (3.5) and (3.15) in the main text. Finally, the 0i Einstein equation (B.21) implies

v
(1)
i = 0. This completes the specification of the first-order solutions.

The second-order perturbations obey the inhomogeneous equations (B.30). To solve

these, we use the Green’s functions obeying LOGO(⌘, ⌘#) = �D(⌘ � ⌘#); these are

G öE(⌘, ⌘
#) = �3G! (⌘, ⌘

#) =
⌘2⌘#

30

%
1 � ⌘#

⌘

&3 %
1 +

3⌘#

⌘
+

⌘#2

⌘2

&
✓(⌘ � ⌘#) , (B.49)

G�(⌘, ⌘
#) =

⌘2

30

%
2 � 5⌘#3

⌘3 +
3⌘#5

⌘5

&
✓(⌘ � ⌘#) . (B.50)

Focusing on the second-order density perturbation, we integrate the Green’s function G� over

the source from ⌘m to ⌘ to obtain

I inhom .
m (u, v, y) =

u4 + v4 + 12u2v2 � 2(u2 + v2) + 1

2100y3 (3y7 � 7y5y2
m + 7y2y5

m � 3y7
m) , (B.51)

where ym ⌘ k⌘m . Notice that the lower boundary at ⌘m (or ym) contributes to terms that

correspond to the growing mode c�, decaying mode d�, and temporal gauge mode e� of linear

theory (B.45) at ⌘ > ⌘m . These homogeneously evolving contributions represent the evolution

of the impact of the sources at the boundary. Conversely, with a model where there are

sources at ⌘ < ⌘m there will also be homogeneous contributions to each of these modes at the

boundary. At ⌘ � ⌘m only the growing mode component of contributions from ⌘m or before

survive. Moreover if we take ⌘m ! 0 these terms formally disappear, the inhomogeneous term

includes all sourced contributions, and Eq. (B.51) reduces to Eq. (3.16). The homogeneous

term then represents the “true” unsourced initial conditions, which we assume are initially in
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the growing mode. Hereafter we implicitly assume this approach of sending the initial surface

to zero time.

Interestingly, the inhomogeneous solution is independent of the purely spatial gauge free-

dom parameterized by f , whereas the consistency condition depends on f . As discussed in

the main text and shown explicitly below, the MD consistency relation comes directly from

non-Gaussianity at the initial surface and not from the sourced second-order evolution.

With ⌘m ! 0, the homogeneous part Ihom.
�,m provides a growing mode solution c�, a

time-independent function of u and v, that depends on the initial second-order perturbation.

While this can be fully fixed with a full specification of this solution, its implications for the

three-point function at late times can be fixed by specifying the initial three-point function

as given by Eq. (3.10) through Hm .

We here summarize the expressions of the O(q2) inhomogeneous terms of the three-point

function, parameterized as

h⇣I(q)�(k1, ⌘1)�(k2, ⌘2)i#

P⇣I (q)T
2
m(kS)P⇣I (kS)

=
$)

s,t=0

B[s,t]
m (y1, y2)

%
q

kS

&s

µt +Hm(kS , µ, ⌘m)
⌘2

1⌘
2
2

⌘4
m

, (B.52)

where Bm denotes the contribution from the inhomogeneous solution. The nonzero coe�cients

for s = 2 are

B[2,0]
m =

y2
1y

2
2(y

2
1 + y2

2)

700
, B[2,2]

m =
y2

1y
2
2(y

2
1 + y2

2)

1750
, (B.53)

Notice that since the inhomogeneous contributions have no s = 0, 1 components, the validity of

the consistency relation relies entirely on the initial condition. If Hm satisfies the consistency

condition initially, as it does when this initial non-Gaussianity arises from single-field inflation,

then it is trivially preserved by matter-dominated evolution. This holds because matter-

dominated evolution has no intrinsic scale and the consistency relation in synchronous gauge

is then a pure remapping of initial scales.

B.2.2 Radiation-Dominated Era

The first-order solutions in the RD era take the form

Ê(1) (k, ⌘) = c öE
sin ỹ � ỹ >Ci(ỹ)

ỹ
+ d öE

cos ỹ + ỹ Si(ỹ)

ỹ
+ e öE log ỹ + f öE , (B.54)

 (1) (k, ⌘) = c!
cos ỹ + ỹ sin ỹ � ỹ2( >Ci(ỹ) � ỹ" 2)

ỹ2 + d!
sin ỹ � ỹ cos ỹ � ỹ2 Si(ỹ)

ỹ2

+ e! (ỹ
" 2 � log ỹ) + f! , (B.55)

�(1) (k, ⌘) = c�
�2 + (2 � ỹ2) cos ỹ + 2ỹ sin ỹ

ỹ2 + d�
(2 � ỹ2) sin ỹ � 2ỹ cos ỹ

ỹ2 + e�ỹ
" 2 , (B.56)

where ỹ ⌘ y/
p
3, and we have defined >Ci(ỹ) ⌘ Ci(ỹ) � log ỹ � �E + 1 with the property

>Ci(0) = 1. We have parameterized the solutions so that the k-dependent coe�cients cO , dO ,
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eO , and fO have the same meanings as in the MD case. The growing mode condition again

sets dO = eO = 0. The constraint equations together with the initial condition fix

c öE = �1

3
c! = �3

2
c� = �6⇣ (1)

I (k) , (B.57)

while fO are fixed according to (B.46). The transfer function in (B.40) is then given by

Dr(y) = �4(2 � (2 � ỹ2) cos ỹ � 2ỹ sin ỹ)

ỹ2 , (B.58)

which was shown in (3.19). This scales as y2 in the y ! 0 limit, as expected, and reduces to

Dr(y) ⇠ �4 cos ỹ at late times. The 0i Einstein equation finally gives

v̂(1) =

p
3(2 cos ỹ + ỹ sin ỹ � 2)

kỹ
. (B.59)

Moving on to the second-order solution, the Green’s functions for the equation (B.30) in

the RD era are given by

G öE(k, ⌘, ⌘
#) =

ỹ#

4k̃3

/
sin(ỹ � ỹ#) + ỹ#cos(ỹ � ỹ#)

ỹ
+ log

"
ỹ/ỹ##� 1

+ (cos ỹ#+ ỹ#sin ỹ#)(Ci(ỹ#) � Ci(ỹ)) + (sin ỹ#� ỹ#cos ỹ#)(Si(ỹ#) � Si(ỹ))

0
✓(⌘ � ⌘#) , (B.60)

G! (k, ⌘, ⌘
#) =

ỹ#

8k̃3

/
(2 + ỹỹ#) cos(ỹ � ỹ#) + (2ỹ � ỹ#) sin(ỹ � ỹ#)

ỹ2 + 2(log
"
ỹ/ỹ##� ỹ" 2) � 1

+ (2 cos ỹ#+ ỹ#sin ỹ#)(Ci(ỹ#) � Ci(ỹ)) + (2 sin ỹ#� ỹ#cos ỹ#)(Si(ỹ#) � Si(ỹ))

0
✓(⌘ � ⌘#) , (B.61)

G�(k, ⌘, ⌘
#) =

2ỹ sin(ỹ � ỹ#) + (2 � ỹ2) cos(ỹ � ỹ#) � 2 + ỹ#2

3(k̃ỹ)2
✓(⌘ � ⌘#) , (B.62)

with k̃ ⌘ k/
p
3.

Integrating the Green’s function G� over the source from ⌘r to ⌘ and then sending ⌘r ! 0

gives the inhomogeneous solution for the second-order density perturbation, which can be

expressed in the squeezed limit as

I inhom .
r (u, v, y) =

1

2 � ỹ2

!
Dr(y), ỹ sin ỹ, ỹ

2
$
·M� ·

?

@
@
@
@
@
@
@
@
@
@
A

u" 2(1 � v)2

u" 2(1 � v)3

u" 2(1 � v)4

1

1 � v

(1 � v)2

u2

B

C
C
C
C
C
C
C
C
C
C
D

+O(u3) , (B.63)
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where
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. (B.64)

Since Dr(k⌘) ⇠ ⌘2 at early times, this way of organizing various terms manifests that the

second-order density kernel vanishes as we approach the initial time surface at ⌘r ⇡ 0. More

precisely, the above solution scales as ⌘4 as ⌘ ! 0.

Unlike the MD case, the inhomogeneous solution in RD has a nonzero contribution at

O(q0) at late times. The parameterization of the three-point function is given by

h⇣I(q)�(k1, ⌘1)�(k2, ⌘2)i#

P⇣I (q)P⇣I (kS)
=
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µt+Hr(kS , µ, ⌘r)
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D2
r (kS⌘r)

, (B.65)

where the s = 0, 1 components were shown in (3.20)–(3.23), and the nonzero components for

s = 2 are
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ỹ2
1 � 2

� 8

ỹ2
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2

ỹ2
2 � 2

S2 + 1$2

0
(B.68)

+ 24(ns � 1)(D1 � S1)(D2 � S2) � 3
8
(ns � 1)2 + kSn

#
s

9%
D1D2 � D1S2 + 1$2

2

&7
,

where Di ⌘ Dr(yi), Si ⌘ ỹi sin ỹi, ns is evaluated at kS , and n#
s = dns(kS)/dkS . Note that

the terms proportional to µ4 vanish for the f = 0 gauge choice.
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C Relations in Newtonian Gauge

In this appendix, we focus on the three-point function in Newtonian gauge in parallel to

that in synchronous gauge, discussed in the main text and Appendix B. We discuss the

consistency relation up to O(q) and the second-order density perturbations up to O(q2) in

Newtonian gauge. For the second-order perturbations, we use the results in [75], which takes

the non-Gaussianity to be spatially local in uniform density gauge. Unlike in the main text

and Appendix B, we do not explicitly split the contributions into the homogeneous and the

inhomogeneous ones in this appendix. Instead, we use the total kernel for the second-order

density perturbation. Note that, even if we separate the homogeneous and inhomogeneous

contributions from the total kernel in Newtonian gauge, this does not correspond to the homo-

geneous and the inhomogeneous contributions in synchronous gauge. This is because there is

no time-slicing invariant way to split the homogeneous and the inhomogeneous contributions.

Since our synchronous condition sets its time slicing to be the same as comoving and uniform

density gauge as ⌘ ! 0, that split has a well-defined meaning for local non-Gaussianity (see

Appendix D.1).

We take the following metric notation in Newtonian gauge:

ds2 = a2(⌘)
!
�(1 + 2�)d⌘2 + (1 � 2 )�ijdx

idxj
$
, (C.1)

with � = �(1) + 1
2�

(2) + · · · and  =  (1) + 1
2 

(2) + · · · , where the dots mean higher order

in perturbation theory.

C.1 Dilation and Newtonian Consistency Relation

Unlike in synchronous gauge, the consistency relation in Newtonian gauge requires not only a

time-independent or initial spatial coordinate transformation but also time-dependent space

and time transformation, complicating both its form and an interpretation [21, 22, 76].

Requiring the coordinate transformation to maintain the gauge condition g0i = 0 and

gij |i&= j = 0, we obtain:

⌘̃ = ⌘ + ✏(⌘) + x · ⇠(⌘) , (C.2)

x̃i = xi(1 + �+ 2b · x) � x2bi +

' ⌘

⇠i d⌘ . (C.3)

Under this coordinate transformation, � and  in Eq. (C.1) transforms as

�̃ = �� ✏#� x · ⇠#� H(✏+ x · ⇠) , (C.4)

 ̃ =  + �+ 2x · b+H(✏+ x · ⇠) . (C.5)

By choosing �̃ =  ̃ = 0, the new coordinate absorbs the long-wavelength modes of � and  

up to O(q) if

� = ✏#+ x · ⇠#+H(✏+ x · ⇠) , (C.6)

 = �� � 2x · b � H(✏+ x · ⇠) . (C.7)
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However, for the new coordinates to absorb the physical mode, the parameters �, ✏ and ⇠

must satisfy the adiabatic condition [77], which requires the long-wavelength mode to satisfy

the Einstein equations with a finite wavenumber q. These conditions can be expressed as

(H#� H2)v̂ = ( #+H�) , (C.8)

where recall that v̂ is the velocity potential and

� =  � 8⇡G� , (C.9)

where � is the anisotropic stress. Substituting Eqs. (C.6) and (C.7) into Eq. (C.8), we obtain

v̂ = �(✏+ x · ⇠) . (C.10)

Also, the long-wavelength comoving curvature (⇣ = � +Hv̂) can be expressed as

⇣I = �+ 2x · b . (C.11)

From this, we can see � = ⇣I(x = 0) and 2bi = @i⇣I(x = 0). Using Eq. (C.9), we obtain

✏#+ 2H✏ = �� � 8⇡G� , (C.12)

⇠i
#
+ 2H⇠i = �2bi � 8⇡G@i� . (C.13)

Under these conditions, the coordinate change in Eqs. (C.2) and (C.3) can erase the physical

long-wavelength mode up to O(q).

In the absence of anisotropic stress (� = 0), we can solve for ✏ and ⇠i in terms of the

growth function of v̂, which satisfies

V ##+ 2HV #� 1 = 0 . (C.14)

Namely, Eqs. (C.12) and (C.13) lead to ✏ = �V #(⌘)⇣I and ⇠i = �V #(⌘)@i⇣I . Then follow-

ing [21, 22], the consistency relation in Newtonian gauge under the perfect fluid condition is

given by

lim
q! 0

h⇣I(q)�(k1, ⌘1) · · · �(kN , ⌘N )i#

P⇣I (q)
= � (DN + qiKi

N) h�(k1, ⌘1) · · · �(kN , ⌘N )i# , (C.15)

where11

DN = D +
N)

a=1

V #(⌘a)

%
@⌘a +

⇢̄#(⌘a)

⇢̄(⌘a)

&
, (C.16)

Ki
N = Ki +

N)

a=1

/
V #(⌘a)

%
@⌘a +

⇢̄#(⌘a)

⇢̄(⌘a)

&
@ki

a
+ V (⌘a)k

i
a + 4V #(⌘a)

⇢̄#(⌘a)

⇢̄(⌘a)

K" (ka⌘a)

K�(ka⌘a)

kia
k2
a

0
, (C.17)

11 Note that the last term in Eq. ( C.17) is omitted in [ 22] (their Eq. (92)).
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and recall that D and Ki were defined in (2.22) and (2.23). Throughout, we put the subscript

“N” when we would like to emphasize that the Newtonian gauge expressions are di↵erent

from the synchronous gauge expressions. Although V has an arbitrary additive, temporally-

constant term, it does not appear in the final results because of the momentum conservation
1

a k
i
a = 0. We here use K instead of D for the growth function to clarify that it is for

Newtonian gauge, which are defined by

�(1) (k, ⌘) = K�,m/r(x)Tm/r(k)⇣
(1)
I (k) , (C.18)

�(1) (k, ⌘) = K" ,m/r(x)Tm/r(k)⇣
(1)
I (k) . (C.19)

Under the perfect fluid condition �(1) =  (1) , the growth functions during the MD and RD

eras become [75]

K�,m(y) =
6

5
+

y2

10
, K�,r(y) =

4(ỹ(2 � ỹ2) cos ỹ � 2(1 � ỹ2) sin ỹ)

ỹ3 , (C.20)

K" ,m(y) = �3

5
, K" ,r(y) =

2(ỹ cos ỹ � sin ỹ)

ỹ3 . (C.21)

Given V #(⌘) = ⌘/5 during the MD era, DN and KN become

DN,m = D +
N)

a=1

⌘a
5

%
@⌘a � 6

⌘a

&
, (C.22)

Ki
N,m = Ki +

N)

a=1

/
⌘a
5

%
@⌘a � 6

⌘a

&
@ki

a
+

⌘2
a

10
kia � 24

5

kia
k2
a

K" ,m(ka⌘a)

K�,m(ka⌘a)

0
, (C.23)

while during the RD era we have V #(⌘) = ⌘/3 and

DN,r = D +
N)

a=1

⌘a
3

%
@⌘a � 4

⌘a

&
, (C.24)

Ki
N,r = Ki +

N)

a=1

/
⌘a
3

%
@⌘a � 4

⌘a

&
@ki

a
+

⌘2
a

6
kia � 16

3

kia
k2
a

K" ,r(ka⌘a)

K�,r(ka⌘a)

0
. (C.25)

For the MD era, the squeezed three-point function then takes the form

lim
q! 0

h⇣I(q)�(k1, ⌘1)�(k2, ⌘2)i#

P⇣I (q)
= �(DN,m + qiKi

N,m)K�,m(kS⌘1)K�,m(kS⌘2)T
2
m(kS)P⇣I (kS) ,

=

/
3(144 � y2

1y
2
2)

125
� (12 + y2

1)(12 + y2
2)(ñs � 1)

100
(C.26)

+
qµ

kS

y2
1 � y2

2

1000
(168 � 12(y2

1 + y2
2) � y2

1y
2
2 � 24(ñs � 1))

0
T 2

m(kS)P⇣I (kS) ,

with

ñs(k) � 1 ⌘ d ln k3T 2
m(k)P⇣I (k)

d ln k
= ns � 1 + 2

d lnTm

d ln k
. (C.27)
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Here we follow the convention that ns denotes the tilt of the initial curvature power spectrum

P⇣I and ñs(k) denotes its tilt in the MD era after evolution through the RD era. The

correspondence to the tilt of the synchronous gauge density power spectrum in the main text

is ñs(k) = n�(k) � 3 for ⌘ > ⌘m .

The O(q) piece of Eq. (C.26) is the so-called Newtonian consistency relation during MD.

We note that this equation is exact rather than leading order in y1,2 � 1 as in Ref. [22] due

to our inclusion of the last term in Eq. (C.17), and corrects typographical errors in Ref. [21]

(their Eq. (62)). It also generalizes the results in both [21, 22] to scales below the horizon at

matter-radiation equality by including Tm and the modified tilt ñs.

We remark that O(q) terms are nonzero when ⌘1 6= ⌘2, while those in synchronous

gauge are always zero. This highlights one of the advantages of synchronous gauge. In

synchronous gauge, the time coordinate is always the proper time of free-falling observers at

each spatial point. This leaves only the initial time-independent spatial coordinate choice

to distinguish local and synchronous coordinates, even when comparing perturbations at

di↵erent times. On the other hand, in Newtonian gauge the consistency relation is associated

with the time-dependent coordinate transformation, which leads to time-dependent operators

in the consistency relation. These time-dependent operators give nonzero O(q) terms for

⌘1 6= ⌘2 even in the kS reference convention.

Similarly, the O(q0) and O(q) terms during the RD era are given by

lim
q! 0

h⇣I(q)�(k1, ⌘1)�(k2, ⌘2)i#

P⇣I (q)
= �(DN,r + qiKi

N,r)K�,r(kS⌘1)K�,r(kS⌘2)P⇣I (kS)

=

6%
1 � ns +

8(16 � 7(ỹ2
1 + ỹ2

2) + 3ỹ2
1ỹ

2
2)

3(2 � ỹ2
1)(2 � ỹ2

2)

&
K�,r(y1)K�,r(y2)

�
%
16(2 + 2ỹ2

1 � ỹ4
1)

3ỹ1(2 � ỹ2
1)

sin ỹ1K�,r(y2) + 1 $ 2

&

+
qµ

kS

/
(ỹ2

1 � ỹ2
2)(ns � 1 � ỹ2

1ỹ
2
2 + 2(ỹ2

1 + ỹ2
2) � 6)

3(2 � ỹ2
1)(2 � ỹ2

2)
K�,r(y1)K�,r(y2) (C.28)

+
2

3

%
(ns � 3)ỹ4

1 � 2(ns � 5)ỹ2
1 � 2(ns + 1)

ỹ1(2 � ỹ2
1)

sin ỹ1K�,r(y2) � 1 $ 2

&07
P⇣I (kS) ,

where recall ỹ = y/
p
3. Here we have again expressed the results in terms of the tilt of the

initial curvature spectrum, which is related to the tilt of the synchronous gauge density power

spectrum at ⌘r in the main text as ns = n�(k, ⌘r , ⌘r)� 3. Using the above expressions, we can

express the three-point function in the large ỹ1 and ỹ2 limit up to O(q) as

lim
q! 0, y1,2% 1

h⇣I(q)�(k1, ⌘1)�(k2, ⌘2)i#

P⇣I (q)P⇣I (kS)
=

64(ỹ2 cos ỹ1 sin ỹ2 + ỹ1 sin ỹ1 cos ỹ2)

3

� qµ

kS

3(ỹ2
1 � ỹ2

2) cos ỹ1 cos ỹ2

16
+O(q2) . (C.29)

As with the MD epoch, this Newtonian consistency relation in the RD era has an unequal-time

contribution at O(q).
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C.2 Three-Point Function from Local Non-Gaussianity

Next, we show the expressions of the second-order density perturbations in Newtonian gauge.

Unlike in Appendix B, we take a specific choice of initial non-Gaussianity in this appendix,

which amounts to specifying the homogeneous term of second-order density perturbations

(see Appendix D). In particular, we follow [75] in choosing the local-type non-Gaussianity

where the second-order curvature in uniform density gauge ⇣
(2)
� at ⌘ ! 0 is parameterized

as [43]

⇣
(2)
� (x) = 2(bNL + 1)[⇣ (1)

� (x)]2 . (C.30)

Note that bNL = 0 corresponds to the single-field, slow-roll, inflationary prediction. Strictly

speaking, for this to apply in the MD epoch given an initial local non-Gaussianity from

inflation, all modes should be well outside the horizon at matter-radiation equality. We shall

see that applying this ansatz directly in the MD era on smaller scales, without evolving

second-order perturbations through the RD era, will miss the full impact of dilation on scales

where Tm(k) 6= 1 and technically violate the consistency relation for any bNL .

We express the second-order perturbation as

�
(2)
N (k, ⌘) =

'
d3p1d3p2

(2⇡)3 �D(k � p1 � p2)Jm/r(u, v, y)Tm/r(p1)Tm/r(p2)⇣
(1)
I (p1)⇣

(1)
I (p2) ,

(C.31)

where we have used the symbol J for the kernel, as opposed to I in synchronous gauge, to

clarify the di↵erence of the gauge. This leads to the three-point function

h⇣I(q)�(k1, ⌘1)�(k2, ⌘2)i#

P⇣I (q)
= K�,m/r(k2⌘2)Jm/r

%
q

k1
,
k2

k1
, k1⌘1

&
T 2

m/r(k2)P⇣I (k2) + 1 $ 2 , (C.32)

with kernels given below (see Eqs. (C.34) and (C.43)). In general we can again expand this

expression in the squeezed limit in powers of q as

lim
q! 0

h⇣I(q)�(k1, ⌘1)�(k2, ⌘2)i#

P⇣I (q)T
2
m/r(kS)P⇣I (kS)

=
)

s,t

C̃[s,t]
m/r(y1, y2)

%
q

kS

&s

µt , (C.33)

where we used the notation C̃ to parameterize the total squeezed bispectrum for local non-

Gaussianity in Newtonian gauge, as opposed to B used in synchronous gauge, which just

includes the inhomogeneous part but applies to any type of initial non-Gaussianity. In Ap-

pendix D, we will also see that the results in this appendix once gauge transformed to syn-

chronous gauge are consistent with those in Appendix B for the homogeneous contributions

of local non-Gaussianity.
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C.2.1 Matter Era

In the MD era, the second-order Newtonian-gauge kernel J is given by [52, 75]12

Jm(u, v, y) =
3(15 + 20bNL + 6(u2 + v2) � 9(u4 + v4) + 18u2v2)

25

+
59 + 140bNL � 125(u2 + v2) � 18(u4 + v4) + 36u2v2

700
y2

+
2 + 3(u2 + v2) � 5(u4 + v4) + 10u2v2

1400
y4 . (C.34)

Note that this form ignores any previous epoch of radiation domination by sending ⌘m ! 0,

so that all modes start above the horizon with local non-Gaussianity from Eq. (C.30). We

shall return to this point below when discussing the apparent violation of the consistency

relation. In the squeezed limit with u ⌧ 1 and |v � 1| ' O(u), Jm can be expressed as

Jm(u, v, y) =
5bNL (y2 + 12) � 3y2 + 36

25
� (y2 + 46)y2 + 288

100
(v � 1) (C.35)

�
"
27y4 + 466y2 + 8064

#

1400
(v � 1)2 +

"
13y4 � 178y2 + 4032

#

1400
u2 +O(u3) .

The nonzero coe�cients in (C.33) up to O(q) are then given by

C̃[0,0]
m (y1, y2) =

3(144 � y2
1y

2
2)

125
+

bNL (12 + y2
1)(12 + y2

2)

25
, (C.36)

C̃[1,1]
m (y1, y2) = �y2

1 � y2
2

1000

"
480bNL + 12(y2

1 + y2
2) � 168 + 144(ñs � 1) + y2

1y
2
2

#
. (C.37)

Using the above expressions, we can reassemble the three-point function up to O(q) as

lim
q! 0

h⇣I(q)�(k1, ⌘1)�(k2, ⌘1)i#

P⇣I (q)T
2
m(kS)P⇣I (kS)

=
3(144 � y2

1y
2
2)

125
+

bNL (12 + y2
1)(12 + y2

2)

25
(C.38)

� qµ

kS

y2
1 � y2

2

1000

"
480bNL + 12(y2

1 + y2
2) � 168 + 144(ñs � 1) + y2

1y
2
2

#
+O(q2) .

In general, satisfying the consistency relation (C.26) would require bNL ! (1 � ñs(kS))/4

whereas bNL =const. If we assume local non-Gaussianity is the only source of non-Gaussianity

in the MD era as we do here, then the consistency relation is violated for any bNL and

any scales with Tm(kS) 6= 1, i.e., those that approach or are within the horizon at matter-

radiation equality. As discussed in the main text for synchronous gauge, this is because

the inhomogeneous contributions to the second-order density perturbation during the RD

era are responsible for carrying the dilation of the Jeans or acoustic scale. We return to

how consistency is restored by radiation dominated evolution in Newtonian gauge below (see

discussion following Eq. (C.45)).

12 The second-order kernelJ in this paper corresponds to A2uvI in [75], where A = 3 / 5 for the MD era and
A = 2 / 3 for the RD era.
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We now derive the analogue of the separate universe constraints in Newtonian gauge.

Expanding the three-point function up to O(q2) gives

C̃[2,0]
m (y1, y2) =

13y2
1y

2
2(y

2
1 + y2

2) + 156(y2
1 + y2

2) � 398y2
1y

2
2 + 1896(y2

1 + y2
2) + 78624

14000

+
bNL (y2

1y
2
2 � 12(y2

1 + y2
2) � 432)

200

+ (ñs � 1)
432 � 3y2

1y
2
2 + 5bNL (12 + y2

1)(12 + y2)2

1000
, (C.39)

C̃[2,2]
m (y1, y2) =

y2
1y

2
2(y

2
1 + y2

2)

14000
+

31y2
1y

2
2

7000
+

9(y4
1 + y4

2)

700
� 531(y2

1 + y2
2)

1750
� 54

125

+ bNL

%
7

200
y2

1y
2
2 +

9(y2
1 + y2

2)
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54

5

&
� (ñs � 1)

%
bNL

25
(12 + y2

1)(12 + y2
2)

+
y2

1y
2
2(y

2
1 + y2

2) + 12(y4
1 + y4

2) + 44y2
1y

2
2 + 552(y2

1 + y2
2) + 13824

2000

&

+
"
(ñs � 1)2 + kSñ

#
s

# 432 � 3y2
1y

2
2 + 5bNL (12 + y2

1)(12 + y2)2

1000
. (C.40)

Taking the angle average in the limit of y1 � 1 and y2 � 1, we obtain

lim
q! 0, y1,2% 1

h⇣I(q)�(k1, ⌘1)�(k2, ⌘2)i#

P⇣I (q)T
2
m(kS)P⇣I (kS)

5
5
5
5
O(q2)

=

%
34

21
� n�(kS , ⌘1, ⌘2)

6

&
y2

1y
2
2(y

2
1 + y2

2)

1000

%
q

kS

&2

,

(C.41)

where we have used n�(k, ⌘1, ⌘2) = ñs(k) + 3 + O(1/y2
1,2) in Newtonian gauge. Unlike in

synchronous gauge, the growth function in Newtonian gauge depends on the horizon scale

and therefore the tilt of the density power spectrum depends on ⌘1 and ⌘2, though its time-

dependent parts are subdominant in y1,2 � 1. In the case of a subhorizon long-wavelength

mode q⌘ � 1, we can rewrite this expression as

lim
q! 0, y1,2% 1, q⌘% 1

h�(q, ⌘)�(k1, ⌘1)�(k2, ⌘2)i#

P�(q, ⌘, ⌘)P�(kS , ⌘1, ⌘2)

5
5
5
5
O(q2)

=

%
34

21
� n�(kS , ⌘1, ⌘2)

6

&
⌘2

1 + ⌘2
2

⌘2 . (C.42)

Note that, except for the term proportional to n�, this expression is the same as Eq. (3.34)

for synchronous gauge. The n� term denotes the e↵ect of the dilation, which comes from the

di↵erence between the spatial coordinates in Newtonian and synchronous gauges, whereas

the time slicing shift causes only a small e↵ect in the MD era due to the subhorizon growth

of density fluctuations. The n� term comes from the combination of O(y4(v � 1)) term in

Eq. (C.35) and the expansion of K�,m(k⌘)T 2
m(k)P⇣I (k) with respect to kS . We will concretely

see that the O(y4(v � 1)) term is cancelled by the spatial gauge shift from Newtonian to

synchronous gauge in Appendix D.
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C.2.2 Radiation Era

The homogeneous and inhomogeneous kernels during the RD era in the squeezed limit (u, |v�
1| ⌧ 1) are given by

Jr(u, v, y) = �16(ỹ4 � 3(bNL + 2)ỹ2 + 3bNL + 8) sin ỹ + 8ỹ(3(bNL + 2)ỹ2 � 2(3bNL + 8)) cos ỹ

3ỹ3

�
4

"
(ỹ4 + 20ỹ2 � 34) sin ỹ + ỹ

"
ỹ4 � 6ỹ2 + 34

#
cos ỹ

#

3ỹ3 (v � 1)

�
4

"
(�4ỹ4 + 3ỹ2 + 34) sin ỹ + ỹ(2ỹ4 � 9ỹ2 � 34) cos ỹ

#

3ỹ3 (v � 1)2 (C.43)

+
4(2ỹ6 � 49ỹ4 + 333ỹ2 � 300) sin ỹ � 4ỹ(23ỹ4 + 193ỹ2 � 300) cos ỹ

45ỹ3 u2 +O(u3) ,

where note again ỹ = y/
p
3. See [75] for the full expression of Jr . The nonzero coe�cients

in (C.33) up to O(q) are then given by
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4bNL +
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1ỹ
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2)

&
K�,r(y1)K�,r(y2) ,
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%
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, (C.44)

C̃[1,1]
r (y1, y2) =

(ỹ2
1 � ỹ2

2)(4(bNL + ns " 1
3 ) � 1

3(ỹ
2
1ỹ
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sin ỹ1K�,r(y2) � 1 $ 2

3

. (C.45)

Notice that unlike specifying local non-Gaussianity directly in MD, here there is a self-

consistent choice that verifies the consistency relation: bNL = (1 � ns)/4. Substituting this

into Eqs. (C.44) and (C.45) reproduces Eq. (C.28). This initial consistency condition is then

dynamically preserved for any later ⌘1, ⌘2 in the RD era. For this value of the initial local

non-Gaussianity, evolution through the RD era then restores consistency in the MD era as

well by supplying the missing conversion of bNL ! (1 � ñs(kS))/4 that includes the dilation

of Tm(kS) discussed below Eq. (C.38).

Using the above expressions, we can express the three-point function in the large y1 and

y2 limit up to O(q) as

lim
q! 0, y1,2% 1

h⇣I(q)�(k1, ⌘1)�(k2, ⌘1)i#

P⇣I (q)P⇣I (kS)
=

64(ỹ2 cos ỹ1 sin ỹ2 + ỹ1 sin ỹ1 cos ỹ2)

3

� qµ

kS

3(ỹ2
1 � ỹ2

2) cos ỹ1 cos ỹ2

16
+O(q2) , (C.46)

which is the same as Eq. (C.29). Notice that the initial consistency relation plays no role in

this y1,2 � 1 limit. As discussed at the end of ¤3.1, in the RD era the e↵ect of dilation on the
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scale of the sinusoidal acoustic oscillations dominates over that of the initial power spectrum,

though both pieces are explicitly verified if the consistency condition holds initially using the

exact coe�cients above.

Expanding the coe�cients at O(q2) as

C̃[2,t]
r (y1, y2) =

$)

`

C̃[2,t]
r,` (y1, y2)(ns � 1)` , (C.47)

the nonzero components for ` = 0 are
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7ỹ2

1ỹ
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3ỹ1(2 � ỹ2
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1ỹ
2
2 + 6))
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and the nonzero components for ` > 0 are

C̃[2,0]
r,1 (y1, y2) = C̃[2,2]

r,2 (y1, y2)

=

%
bNL

2
+

3ỹ2
1ỹ
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, (C.50)

C̃[2,2]
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%
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1)(2 � ỹ2
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� 32(ỹ4
1 � 2ỹ2

1 � 2)(ỹ4
2 � 2ỹ2

2 � 2)

3ỹ1ỹ2(2 � ỹ2
1)(2 � ỹ2

2)
S̃1S̃2 , (C.51)

where Ki ⌘ K�,r(yi) and S̃i ⌘ sin ỹi. Then, the time-angle averaged correlation function with

⌘1 = ⌘2 becomes

lim
q! 0, y1% 1

h⇣I(q)�(k1, ⌘1)�(k2, ⌘1)i#

P⇣I (q)P⇣I (kS)

5
5
5
5
O(q2)

=

%
224

15
� 16

3
bNL � 8

3
(ns � 1)

& %
q

kS

&2

ỹ2
1 , (C.52)

where the double overline means both the time and angle average. Even if we substitute the

single-field condition bNL = (1 � ns)/4, the expression still has (ns � 1) dependent term as

lim
q! 0 y1% 1

h⇣I(q)�(k1, ⌘1)�(k2, ⌘1)i#

P⇣I (q)P⇣I (kS)

5
5
5
5
O(q2)

=

%
16 � 16
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� 4

3
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& %
q

kS

&2

ỹ2
1 . (C.53)

Similar to the MD era case, the origin of the (ns �1)-dependent term is the O((v�1)ỹ2 cos ỹ)

term in Eq. (C.43). Apart from that, the (ns � 1)-independent term is also di↵erent from

that in synchronous gauge, Eq. (3.38). In Appendix D, we will also see that the (ns � 1)

dependent or independent terms in the RD era are modified with the spatial and time shift,

respectively, in the transformation from Newtonian to synchronous gauge.

D Relations Between Gauges

In this appendix, we show how the various consistency relations and separate universe ex-

pressions are related in di↵erent gauges via a second-order gauge transformation. We begin

in ¤D.1 with the active view of gauge transformations at second order and discuss their inter-

pretation as a change in time slicing and spatial threading associated with the chosen gauge

constraints. In ¤D.2, we then transform the second-order Newtonian gauge treatment for

local non-Gaussianity in Appendix C to synchronous gauge. By doing so, we gain geometric

intuition as to why the Newtonian gauge consistency relations are simplified in synchronous

gauge. In addition, this provides a cross-check for the general synchronous gauge derivation

in Appendix B, which is valid for any type of initial non-Gaussianity. Finally in ¤D.3, we

relate the curvature perturbation to the 3-geometry of the time slicing and show how ini-

tial non-Gaussianity in uniform density gauge and the various spatial coordinatizations of

synchronous gauge are related.

D.1 Second-Order Gauge Transformations

Let us first summarize the gauge transformation properties of the quantities that we use (see

Ref. [54] for a detailed derivation). Unlike in the main text, we take the active approach

for interpreting ⇠µ as the generator of the gauge transformation. A (tensorial) quantity T

transforms as

>T = e£ ! T , (D.1)
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where the tilde denotes a gauge-transformed quantity and £⇠ is the Lie derivative with respect

to ⇠µ. Hereafter, we neglect third-order perturbations. Then, the perturbation of the quantity

is given by

T = T̄+T(1) +
1

2
T(2) . (D.2)

Similarly, the generating vector ⇠µ = (↵,�,i) can be expanded as

⇠µ = ⇠µ(1) +
1

2
⇠µ(2) =

%
↵(1) +

1

2
↵(2) , �

(1)
,i +

1

2
�

(2)
,i

&
. (D.3)

Up to second order, perturbations transform under (D.1) as

>T = T , (D.4)

>T
(1)

= T(1) +£⇠(1) T , (D.5)

>T
(2)

= T(2) +£⇠(2) T+£2
⇠(1) T+ 2£⇠(1) T(1) . (D.6)

The Lie derivatives with respect to ⇠µ of a scalar ', a vector vµ, and a tensor tµ⌫ are given

by

£⇠' = ⇠�',� , (D.7)

£⇠vµ = vµ,↵⇠
↵ + v↵⇠

↵
, µ , (D.8)

£⇠tµ⌫ = tµ⌫,�⇠
� + tµ�⇠

�
, ⌫ + t�⌫⇠

�
, µ . (D.9)

Since the energy density ⇢ is a scalar and the background ⇢̄ does not transform, the density

contrast � = ⇢/⇢̄ obeys the following scalar transformation rule:

>� = � +
⇢̄#

⇢̄
↵+ ↵

%
1

2

⇢̄##

⇢̄
↵+

1

2

⇢̄#

⇢̄
↵#+ �#+

⇢̄#

⇢̄
�

&
+ �,k

%
�,k +

1

2

⇢̄#

⇢̄
↵,k

&
. (D.10)

The 4-velocity vector uµ obeys the vector transformation rule. From the i-component, we

can obtain the transformation of the velocity potential,

>̂v
(1)

+ >B(1) = v̂(1) +B(1) � ↵(1) . (D.11)

The metric obeys the tensor transformation rule. The metric perturbations are given by

gµ⌫ = ḡµ⌫ + �gµ⌫ . Then, we obtain

,�gµ⌫ = �gµ⌫ + ḡµ⌫,�⇠
� + ḡµ�⇠

�
,⌫ + ḡ�⌫⇠

�
,µ + �gµ⌫,�⇠

� + �gµ�⇠
�
,⌫ + �g�⌫⇠

�
,µ

+
1

2
ḡµ⌫,�↵⇠

�⇠↵ +
1

2
ḡµ⌫,�⇠

�
,↵⇠

↵ + ḡµ�,↵⇠
↵⇠�,⌫ + ḡ�⌫,↵⇠

↵⇠�,µ + ḡ�↵⇠
�
,µ⇠

↵
,⌫

+
1

2
ḡµ�

8
⇠�,⌫↵⇠

↵ + ⇠�,↵⇠
↵
,⌫

9
+

1

2
ḡ�⌫

8
⇠�,µ↵⇠

↵ + ⇠�,↵⇠
↵
,µ

9
. (D.12)
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From the first-order part of the 0i and ij components, we get

>B(1) = B(1) � ↵(1) + �(1) #
, (D.13)

>̂
E

(1)
= Ê(1) + r2�(1) , (D.14)

> (1) =  (1) � H↵(1) � 1

3
r2�(1) , (D.15)

and the first and the second order parts of the 00 components give

>� = �+H↵+ ↵#+
1

2
↵

"
↵##+ 5H↵#+ (H#+ 2H2)↵+ 4H�+ 2�##

+ ↵#(↵#+ 2�) +
1

2
�,k

"
↵#+H↵+ 2�

#
,k
+

1

2
�#
,k

"
↵,k � 2Bk � �#

,k

#
. (D.16)

To go from Newtonian to synchronous gauge, we must erase � while keeping B,i = 0. From

Eq. (D.16), we can then relate � in Newtonian gauge to the gauge transformation parameter

↵ as

0 = �+H↵+ ↵#+
1

2
↵

"
↵##+ 5H↵#+ (H#+ 2H2)↵+ 4H�+ 2�##

+ ↵#(↵#+ 2�) +
1

2
�,k

"
↵#+H↵+ 2�

#,k
+

1

2
�#
,k

"
↵,k � �#

,k

#
. (D.17)

By imposing B,i = 0 in both side of Eq. (D.13), we can also relate ↵ to � at first order as

�(1) =

'
d⌘ ↵(1) + Ce , (D.18)

where Ce is an integration constant.

Before going to the concrete gauge transformation from Newtonian to synchronous, let us

briefly comment on uniform density and comoving gauges here. The uniform density gauge

condition at first order is given by

�(1) = 0, Ê(1) = 0 . (D.19)

Meanwhile, the comoving gauge condition at first order is given by

v̂(1) +B(1) = 0, Ê(1) = 0 . (D.20)

To go from synchronous to uniform density gauge, the first-order gauge transformation pa-

rameters need to satisfy

↵(1) = � ⇢̄

⇢̄#�
(1)
S , �(1) = �r" 2Ê

(1)
S . (D.21)

where the subscript “S” denotes quantities in synchronous gauge. Because �S / (q⌘)2 for the

growing mode outside the horizon, we have ↵(1) = 0 up to O(q). Using (D.10) we can then

see that ↵(2) = 0 to O(q) as well, for the synchronous f = 0 gauge where Ê
(1)
S = O((q⌘)2).
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Since the time slicing is independent of the induced density perturbation from the �(1) change

in the spatial threading between surfaces, the time slicing of synchronous gauge for any f

and uniform density gauge coincide in second-order perturbation theory in this limit as well.

We shall see in Eqs. (D.51) and (D.96) that this also has the consequence that ⇣� = � for

f = 0, since the intrinsic 3-geometries of the same time slice must agree. The equivalence of

uniform density and comoving gauge slicing and ⇣� = ⇣ follows the same logic because the

comoving gauge density perturbation scales as (q⌘)2 as well.

Synchronous gauge di↵ers from uniform density and comoving gauges in the spatial

threading of the time slices. To move from synchronous gauge to comoving gauge, the first-

order gauge transformation parameter should satisfy

↵(1) = v̂
(1)
S , �(1) = �r" 2Ê

(1)
S . (D.22)

We can again see that the time slicing remains the same to leading order in the superhori-

zon limit if v̂(1)
S = 0 initially. For both uniform density and comoving gauges, the spatial

coordinates di↵er due to the isotropic condition Ê(1) = 0. Since ÊS depends on r2� from

Eq. (B.22), the above gauge parameter � depends on � itself. This indicates that, in order to

obtain the isotropic threading of spatial coordinates in uniform density or comoving gauges

in the presence of the time-dependent anisotropic stress by a coordinate change, we need

to perform the time-dependent spatial coordinate change �(1) that depends on � at leading

O(q0). This complicates the derivation and interpretation of the consistency relation in uni-

form density or comoving gauges for unequal-time correlators (see also the discussion in the

beginning of ¤2.2.3).

D.2 Second-Order Kernel from Local Non-Gaussianity

We now derive second-order results for local non-Gaussianity in synchronous gauge by using

the results of Newtonian gauge and performing the gauge transformation between the two. By

doing so we also extract the inhomogeneous kernel in synchronous gauge which is independent

of the initial non-Gaussianity.

D.2.1 Matter-Dominated Era

We first discuss the gauge transformation in the MD era. The synchronous gauge conditions,

Eqs. (D.17) and (D.18), leave two free temporal integration constants (free spatial functions)

that correspond to the initial choice of synchronous time slicing and spatial coordinates.

Throughout, we fix the initial time slicing by imposing that lim⌘! 0 ↵ = 0, which corresponds

to eO = 0 in Appendix B. For the spatial coordinate gauge fixing, we first take lim⌘! 0 � = 0

which corresponds to taking f öE = 0 in Appendix B or equivalently f = 0.13 For this case,

13 From this fully gauge-Þxed f = 0 synchronous gauge, we can reach any other f via a further time-
independent spatial transformation %as we shall explicitly show at the end of this section.
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we obtain from Eqs. (D.17) and (D.18),

↵(1) (k, ⌘) =
⌘

5
Tm(k)⇣ (1)

I (k) , (D.23)

�(1) (k, ⌘) =
⌘2

10
Tm(k)⇣ (1)

I (k) . (D.24)

Also, we are neglecting the decaying mode in Newtonian gauge, which sets dO = 0 in syn-

chronous gauge and leaves only the growing mode. During the MD era, we can rewrite

Eq. (D.10) as

>� = � � 6

⌘
↵+ ↵

%
21

⌘2↵ � 3

⌘
↵#+ �#� 6

⌘
�

&
+ �,k

%
�,k � 3

⌘
↵,k

&
. (D.25)

At first order, this gives

�
(1)
S (k, ⌘) =

y2

10
Tm(k)⇣ (1)

I (k) , (D.26)

where we here denote the quantity in synchronous gauge by the subscript “S” and the above

expression is consistent with Eq. (B.48). At second order, we can express Eq. (D.25) in

Fourier space as

�
(2)
S (k) = �

(2)
N (k) � 6

⌘
↵(2) (k) + (Um(u, v, y) + Vm(u, v, y))Tm(p1)Tm(p2)⇣

(1)
I (p1)⇣

(1)
I (p2) ,

(D.27)

with u = p1/k, v = p2/k. Note that we have omitted the time arguments, and we will also

sometimes omit the wavenumber arguments when they are not important. Here and in the

rest of this appendix, we use the shorthand convention

F (k,p1,p2) ⌘
'

d3p1d3p2

(2⇡)3 �D(k � p1 � p2)F (k,p1,p2) , (D.28)

to denote implicit convolution. The U and V terms correspond to the terms proportional to

↵(1) and �(1) in Eq. (D.25), respectively, and are explicitly given by

Um(u, v, y) ⌘ 36

25
+

2

10

8
uyK#

�,m(uy) � 6K�,m(uy) + (u $ v)
9

= � 2

25
(18 + y2) � 4

25
y2(v � 1) � 2

25
y2(v � 1)2 � 2

25
y2u2 +O(u3) , (D.29)

Vm(u, v, y) ⌘ u2 + v2 � 1

20

%
K�,m(uy) +K�,m(vy) � 6

5

&
y2

=
y2(12 + y2)

100
(v � 1) +

y2(12 + 5y2)

200
(v � 1)2 +

y2(12 + y2)

200
u2 +O(u3) . (D.30)

Let us here determine ↵(2) . Using Eq. (D.17), we can obtain

0 = �(2) +H↵(2) + ↵(2) #
+Wm(u, v, y)Tm(p1)Tm(p2)⇣

(1)
I (p1)⇣

(1)
I (p2) , (D.31)
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where

Wm(u, v, y) ⌘ �18

25
� 3(u2 + v2 � 1)

100
y2 . (D.32)

In Newtonian gauge, �(2) is related to  (2) as [75]

�(2) =  (2) + 4(�(1) )2 � F (2)
m , F (2)

m =
20

3
r" 2N̂ij(�

(1)
,i �

(1)
,j ) . (D.33)

In Fourier space, we have

F (2)
m (k) =

20

3

1 + 2(u2 + v2) � 3(u2 � v2)2

8

%
3

5

&2

Tm(p1)Tm(p2)⇣
(1)
I (p1)⇣

(1)
I (p2) , (D.34)

and  (2) during the MD era is given by [75]

 (2) (k, ⌘) = J! ,m(u, v, y)Tm(p1)Tm(p2)⇣
(1)
I (p1)⇣

(1)
I (p2) , (D.35)

J! ,m(u, v, y) ⌘ 9(2(u2 + v2) � 3(u2 � v2)2 � 5 � 10bNL )

75
� 3(2 + 3(u2 + v2) � 5(u2 � v2)2)

700
y2 .

Combining these expressions, we get
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I (p2) , (D.36)
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1 + 2(u2 + v2) � 3(u2 � v2)2
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&
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Plugging these into Eq. (D.31), we get the following equation for ↵(2) :

↵(2) #
+

2

⌘
↵(2) = �(J" ,m(u, v, y) +Wm(u, v, y))Tm(p1)Tm(p2)⇣

(1)
I (p1)⇣

(1)
I (p2) , (D.38)

whose solution is given by

↵(2) = k" 1J↵,m(u, v, y)Tm(p1)Tm(p2)⇣
(1)
I (p1)⇣

(1)
I (p2) , (D.39)

J↵,m(u, v, y) ⌘ � 1

y2

' y
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dȳ ȳ2 (J" ,m(u, v, ȳ) +Wm(u, v, ȳ)) (D.40)

=
9

25
y

/
10

9
bNL � 4

3
(v � 1) � 56 + y2

21
(v � 1)2 +

28 + y2

21
u2

0
+O(u3) ,

where we have set the integration constant to zero, consistent with our choice of initial time

slicing for synchronous observers. From this expression, we can see that J↵,m is subdominant

in the limit y � 1 compared to Vm , which has O(y4) terms (see Eq. (D.30)). Combining

these expressions, we finally obtain the kernel of �(2)
S for f = 0 as

�
(2)
S (k) = Im(u, v, y)Tm(p1)Tm(p2)⇣

(1)
I (p1)⇣

(1)
I (p2) , (D.41)

If=0
m (u, v, y) = �6

y
J↵,m(u, v, y) + Jm(u, v, y) + Um(u, v, y) + Vm(u, v, y)

=
1 + 4bNL � 5(u2 + v2)

20
y2 +

1 � 2(u2 + v2) + 12u2v2 + u4 + v4

700
y4 (D.42)

= y2
/
bNL � 1

5
� 1

2
(v � 1) � 175 � 4y2

700
(v � 1)2 � 35 � 2y2

140
u2

0
+O(u3) .
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The O(y4) terms, which determine the O(q2) expressions of the three-point function in the

late time limit (y � 1), appear only in Jm and Vm (see Eq. (C.41) for Jm). In particular,

the O(y4(v � 1)) term in Vm cancels the O(y4(v � 1)) in Jm . More specifically, the n� terms

in the three-point function in the Newtonian gauge at O(q2) in Eq. (C.42) are cancelled

by the gauge transformation term coming from �,k�,k in Eq. (D.25). In other words, the

appearance of the O(q2) term as the dilation e↵ect in Newtonian gauge originates from the

di↵erence between the spatial coordinates in Newtonian and synchronous gauges induced by

the first-order long-wavelength mode, as anticipated below Eq. (C.42).

We have so far derived the kernel in synchronous gauge with f = 0 by the gauge trans-

formation from Newtonian gauge. We here perform the gauge transformation from f = 0 to

a general f in synchronous gauge, which leads to Ê = 0 ! �3f⇣I in the superhorizon limit.

From Eq. (D.14), this gauge transformation is just the spatial shift given by

�(x) =

'
d3q

(2⇡)3

3f eiqáx

q2 ⇣I(q) . (D.43)

From Eq. (D.10), we see that the second-order density is transformed as

�̃(2) = �(2) + 2�(1)
,i �

(1)
,i . (D.44)

In Fourier space, we can approximate the gauge shift between synchronous gauges as

!
2�(1)

,i �
(1)
,i

$
(k1, ⌘1) ' �6fDm(k2⌘1)

k2 · q
q2 Tm(k2)⇣

(1)
I (q)⇣ (1)

I (k2)

= �6fDm(vk1⌘1)
1 � v2 � u2

2u2 Tm(k2)⇣
(1)
I (q)⇣ (1)

I (k2) , (D.45)

where we have focused on the kernel for
E
⇣I(q)�(2) (k1)�(1) (k2)

F
with �(q), u = q/k1, and

v = k2/k1. The kernel from the gauge term then becomes

Fm(u, v, y) = �3f

%
Dm(vy)

1 � v2 � u2

2u2 + (u $ v)

&
(D.46)

= 3f
Dm(y)

2

2

1 + 2(v � 1) + (v � 1)2 + 2
(v � 1) + 5

2(v � 1)2 + 2(v � 1)3 + 1
2(v � 1)4

u2

3

,

up to O(u2), where we have symmetrized the kernel with respect to u and v in the first line.

The second-order kernel for general f is then given by

Im(u, v, y) = If=0
m (u, v, y) + Fm(u, v, y) . (D.47)

Using this kernel, we finally obtain the following expression for the local non-Gaussianity

ansatz in synchronous gauge:

h⇣I(q)�(k1, ⌘1)�(k2, ⌘2)i#

P⇣I (q)T
2
m(kS)P⇣I (kS)

=
$)

s,t=0

Q̃[s,t]
m (y1, y2)

%
q

kS

&s

µt . (D.48)
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The nonzero coe�cients of Q̃[s,t] in s  2 are

Q̃[0,0]
m =

%
(bNL � 1)

25
+

3f

100

&
y2

1y
2
2 ,

Q̃[0,2]
m =

3f

100
(n� � 3) y2

1y
2
2 ,

Q̃[2,0]
m =

%
(�7 � 3bNL + (bNL � 1)n�)

200
+

3f

800
(n� � 3)

&
y2

1y
2
2 +

(y2
1 + y2

2)y
2
1y

2
2

700
,

Q̃[2,2]
m =

%
(�5 + 55bNL + (6 � 16bNL )n� + (bNL � 1)(n2

� + kSn
#
�))

200

+
3f

400
(15 � 8n� + n2

� + kSn
#
�)

&
y2

1y
2
2 +

y2
1y

2
2(y

2
1 + y2

2)

1750
,

Q̃[2,4]
m =

f

800
(�105 � 15n2

� + n3
� � 14kSn

#
� + n�(71 + 3kSn

#
� + k2

Sn
##
� ))y

2
1y

2
2 . (D.49)

Notice again that if we mimic the single-field initial condition by replacing bNL ! (4 �
n�(kS))/4, then Q̃[0,t] terms become consistent with Eq. (2.34), though bNL is constant in kS
in the local non-Gaussianity model (C.30). For a more general value of bNL , there remains

a O(q0) piece that does not simply reflect the relationship between local and synchronous

initial spatial coordinates. Instead, the squeezed bispectrum represents a modulation of the

amplitude of the local short-wavelength power spectrum in the long-wavelength mode, and

produces locally observable e↵ects such as the scale dependence of halo bias [13]. More-

over, there are no inhomogeneous contributions up to O(q) in the MD era, so all e↵ects are

determined by the choice of an initial non-Gaussianity.

Finally, with these full expressions for local non-Gaussianity in synchronous gauge via

gauge transformation from Newtonian gauge, we can compare the results to Appendix B,

for the same initial non-Gaussianity. To make contact with those results, we first need to

extract the initial non-Gaussianity and define the homogeneous term at some initial surface

⌘m . Using Eq. (D.47) and imposing I inhom .
m = 0 at ⌘m ! 0, we can find the homogeneous

part as

Ihom.
m (u, v, y)

Dm(y)
=

1 + 4bNL � 5(u2 + v2)

2
� 3f

(1 � v2 � u2)(u2 + v2)

2u2v2 . (D.50)

Notice that, in ⌘m ! 0, the homogeneous piece is purely in the growing mode Dm since all

of the sourced terms are grouped into the inhomogeneous term. We have also confirmed that

this expression of the homogeneous kernel can be obtained directly by using the expressions

of the uniform density second order curvature in synchronous gauge. Specifically, c(2)
� (u, v) in

Eq. (D.96) corresponds to Ihom.
m (u, v, y)/(10Dm(y)) and

lim
y! 0

⇣
(2)
� = lim

y! 0
⇣ (2) = � lim

y! 0
 (2) |f=0

=2(bNL + 1)Tm(p1)Tm(p2)⇣
(1)
I (p1)⇣

(1)
I (p2) , (D.51)
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where the first line comes from the equivalence of the time slicing between these gauges and

that the spatial coordinates are chosen in the same way to make the spatial metric isotropic,

i.e., isotropic threading.

Subtracting the homogeneous piece from Eq. (D.47) returns the inhomogenous result

from Appendix B,

I inhom .
m (u, v, y) =

u4 + v4 + 12u2v2 � 2(u2 + v2) + 1

700
y4 , (D.52)

and demonstrates the consistency of these second-order relations between synchronous gauge

and Newtonian gauge via gauge transformation. Finally, the explicit homogeneous bispectrum

terms, or equivalently Hm , can be extracted from Q̃ � B for local non-Gaussianity

Hm(q, kS , µ)
⌘2

1⌘
2
2

⌘4
m

=
$)

s,t=0

(Q̃ � B)[s,t]
m (y1, y2)

%
q

kS

&s

µt , (D.53)

where the concrete expressions of B are already shown in Eq. (B.53) and Q̃ in Eq. (D.49).

D.2.2 Radiation-Dominated Era

Next, we discuss the gauge transformation in the RD era. Similar to the MD case, we take

this in two steps. We first perform the gauge transformation to the synchronous gauge with

f = 0, and then to the one with a general f . From Eqs. (D.17) and (D.18), we can obtain

↵(1) (k, ⌘) = k" 1K↵,r(y)⇣
(1)
I (k) , K↵,r(y) ⌘ 2

p
3(ỹ � sin ỹ)

ỹ2 , (D.54)

�(1) (k, ⌘) = k" 2K�,r(y)⇣
(1)
I (k) , K�,r(y) ⌘ 6

%
sin ỹ

ỹ
� C̃i(ỹ)

&
. (D.55)

We have imposed ↵,� ! 0 in the limit of ⌘ ! 0 to determine the integration constants, similar

to the MD era case. Note again these conditions correspond to taking dO = eO = f = 0 in

Appendix B. During the RD era, we can rewrite Eq. (D.10) as

>� = � � 4

⌘
↵+ ↵

%
10

⌘2↵ � 2

⌘
↵#+ �#� 4

⌘
�

&
+ �,k

%
�,k � 2

⌘
↵,k

&
. (D.56)

From the first-order equation, we obtain

�
(1)
S (k) = �4(2 � (2 � ỹ2) cos ỹ � 2ỹ sin ỹ)

ỹ2 ⇣
(1)
I (k) , (D.57)

which is consistent with Eq. (B.58). At second order, we can express Eq. (D.56) in Fourier

space as

�
(2)
S = �

(2)
N � 4

⌘
↵(2) + (Ur(u, v, y) + Vr(u, v, y))⇣

(1)
I (p1)⇣

(1)
I (p2) , (D.58)
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where U and V correspond to the terms proportional to ↵(1) and �(1) in Eq. (D.56), respec-

tively, and are given by

Ur(u, v, y) ⌘ K↵,r(uy)

uvy2

8
10K↵,r(vy) � 2vyK#

↵,r(vy) + v2y2K#
�,r(vy) � 4vyK�,r(vy)

9
+ (u $ v) ,

Vr(u, v, y) ⌘ u2 + v2 � 1

4

/
K�,r(uy)

u2

%
2K�,r(vy) � 4

vy
K↵,r(vy)

&
+ (u $ v)

0
. (D.59)

We here see the expression of ↵(2) in Eq. (D.58). Using Eq. (D.17), we can obtain

0 = �(2) +H↵(2) + ↵(2) #
+Wr(u, v, y)⇣

(1)
I (p1)⇣

(1)
I (p2) , (D.60)

where

Wr(u, v, y) ⌘
/
K↵,r(uy)

2uy

%
vyK##

↵,r(vy) + 5K#
↵,r(vy) +

K↵,r(vy)

vy
+ 4K" ,r(vy) + 2vyK#

" ,r(vy)

&

+K#
↵,r(uy)

"
K#

↵,r(vy) + 2K" ,r(vy)
#
+ (u $ v)

0

+
u2 + v2 � 1

4

/
K�,r(uy)

u2

%
K#

↵,r(vy) +
1

vy
K↵,r(vy) + 2K" ,r(vy)

&

+
K#

�,r(uy)

uv

"
K↵,r(vy) � K#

�,r(vy)
#
+ (u $ v)

;

. (D.61)

In the RD era, �(2) is related to  (2) as [75]

�(2) =  (2) + 4(�(1) )2 � F (2)
r , (D.62)

F (2)
r = r" 2N̂ij

!
6�(1)

,i �
(1)
,j + 2⌘

8
�(1)
,i �

(1)
,j

9#
+ 2⌘2�(1)

,i

#
�(1)
,j

#$
, (D.63)

with the corresponding Fourier space expression

F (2)
r (k) = Zr(u, v, y)⇣

(1)
I (p1)⇣

(1)
I (p2) , (D.64)

Zr(u, v, y) ⌘ 1 + 2(u2 + v2) � 3(u2 � v2)2

16

!
6K" ,r(uy)K" ,r(vy)

+ 4uyK#
" ,r(uy)K" ,r(vy) + 2uvy2K#

" ,r(uy)K
#
" ,r(vy) + (u $ v)

$
,

For  (2) , we have

 (2) = J! ,r(u, v, y)⇣
(1)
I (p1)⇣

(1)
I (p2) , (D.65)
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where J! ,r(u, v, y) in the squeezed limit (u ⌧ 1, |v � 1| ' O(u)) is given by [75]

J! ,r(u, v, y) '
4

""
�8 � 3bNL + 2ỹ2

#
sin ỹ + (8 + 3bNL )ỹ cos ỹ

#

3ỹ3

+
2

""
17 � 8ỹ2

#
sin ỹ + ỹ

"
ỹ2 � 17

#
cos ỹ

#

3ỹ3 (v � 1)

�
2

""
17 � 7ỹ2

#
sin ỹ + ỹ

"
4ỹ2 � 17

#
cos ỹ

#

3ỹ3 (v � 1)2

+
2

""
�2ỹ4 + 57ỹ2 � 150

#
sin ỹ + ỹ

"
13ỹ2 + 150

#
cos ỹ

#

45ỹ3 u2 +O(u3) . (D.66)

Combining these expressions, we get

�(2) (k, ⌘) =

%
2

3

&2

J" ,r(u, v, y)⇣
(1)
I (p1)⇣

(1)
I (p2) , (D.67)

J" ,r(u, v, y) ⌘ J! ,r(u, v, y) + 4K" ,r(uy)K" ,r(vy) � Zr(u, v, y) . (D.68)

This allows us to rewrite Eq. (D.60) as

↵(2) #
+

1

⌘
↵(2) = �(J" ,r(u, v, y) +Wr(u, v, y)) ⇣

(1)
I (p1)⇣

(1)
I (p2) . (D.69)

Solving this equation, we obtain

↵(2) = k" 1J↵,r(u, v, y)⇣
(1)
I (p1)⇣

(1)
I (p2) , (D.70)

J↵,r(u, v, y) ⌘ �1

y

' y

0
dȳ ȳ (J" ,r(u, v, ȳ) +Wr(u, v, ȳ))

=

p
3(ỹ(14 + 12bNL + 7 cos ỹ) � 3(7 + 4bNL ) sin ỹ)

3ỹ2

+

p
3(ỹ(�6ỹ2C̃i(ỹ) � 3ỹ2 � 6 cos ỹ + 4) + (ỹ2 + 2) sin ỹ)

6ỹ2 (v � 1)

�
p
3(3ỹ(�6ỹ2C̃i(ỹ) � 7ỹ2 + 52) + (21ỹ2 � 128) sin ỹ + 4ỹ(ỹ2 � 7) cos ỹ)

12ỹ2 (v � 1)2

�
p
3(90ỹ2(ỹC̃i(ỹ) + sin ỹ) + 3(19ỹ3 � 540ỹ + 400 sin ỹ) +

"
13ỹ2 + 420

#
ỹ cos ỹ)

180ỹ2 u2

+O(u3) , (D.71)

where we have again set the integration constant to zero to focus on the growing mode.

Combining these expressions, we finally obtain the kernel of �(2)
S for f = 0:

�
(2)
S (k, ⌘) = Ir(u, v, y)⇣

(1)
I (p1)⇣

(1)
I (p2) , (D.72)

If=0
r (u, v, y) ⌘ �4

y
J↵,r(u, v, y) + Jr(u, v, y) + Ur(u, v, y) + Vr(u, v, y)
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= � 4

ỹ2

/
4(bNL + 1) � 2(bNL + 1)(2 � ỹ2) cos ỹ � (4(bNL + 1) � ỹ2)ỹ sin ỹ

+

%
2 � 4 � 2ỹ2 � ỹ4

2
cos ỹ � (2 � ỹ2)ỹ sin ỹ

&
(v � 1) (D.73)

�
%
15 � 180 � 90ỹ2 + 7ỹ4

12
cos ỹ � 180 � 22ỹ2 � 4ỹ4

12
ỹ sin ỹ

&
(v � 1)2

+

%
9 + ỹ2 � 324 � 126ỹ2 � 31ỹ4

36
cos ỹ � 324 � 14ỹ2 + ỹ4

36
ỹ sin ỹ

&
u2

0
+O(u3) .

For the time- and angle-averaged three-point function h⇣��i at O(q2) in the limit of ỹ � 1,

only the � 4
⌘↵� in Eq. (D.56) modifies the term independent of (ns � 1) in the Newtonian

result Eq. (C.52), and the �,k�
,k in Eq. (D.56) cancels the (ns � 1) term in Eq. (C.52). This

can be easily checked by calculating the time- and angle-averaged three-point function only

with the two terms, � 4
⌘↵� and �,k�

,k.

Similar to Eq. (D.46), the kernel for the gauge transformation to a general f in the RD

era is given by

Fr(u, v, y) = �3f

%
Dr(vy1)

1 � v2 � u2

2u2 + (u $ v)

&
. (D.74)

The kernel for a general f is then given by

Ir(u, v, y) = If=0
r (u, v, y) + Fr(u, v, y) . (D.75)

With this kernel, the local non-Gaussianity ansatz in synchronous gauge becomes

h⇣I(q)�(k1, ⌘1)�(k2, ⌘2)i#

P⇣I (q)P⇣I (kS)
=

$)

s,t=0

Q̃[s,t]
r (y1, y2)
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q

kS

&s

µt . (D.76)

The nonzero Q̃ for s  2 are

Q̃[0,0]
r = (4bNL + 4 + 3f)D1D2 � 4(S2D1 + S1D2) , (D.77)

Q̃[0,2]
r = 3f((ns � 1) � 7)D1D2 + 12f(S2D1 + S1D2) , (D.78)

Q̃[1,1]
r = (8bNL + 2(ns � 1))(S2D1 � S1D2) , (D.79)
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(ỹ2
1 � 2)(ỹ2
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2
1 � 24bNL + 5ỹ4
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1ỹ
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1ỹ
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2(ỹ2
1 � 2)(ỹ2
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1ỹ
2
2 � 2ỹ2
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where Di ⌘ Dr(yi), Si ⌘ ỹi sin ỹi, n
##
s = d2ns(kS)/dk2

S , and we have considered the limit of

⌘r/⌘1,2 ⌧ 1 for simplicity, as we did in ¤3.
To see the correspondence to Appendix B, similar to the MD era case, we here split the

kernel as Ir = Ihom.
r + I inhom .

r . Imposing I inhom . = 0 at ⌘r ! 0 in Eqs. (D.73)–(D.75), we

obtain the following expression of the homogeneous kernel:

Ihom.
r (u, v, y) = Dr(y)

/
1

2

"
4(bNL � 1) � 10(v � 1) � 5(v � 1)2 � 5u2#

(D.83)

+ 3f

2
1

2
+ (v � 1) +

1

2
(v � 1)2 +

(v � 1) + 5
2(v � 1)2 + 2(v � 1)3 + 1

2(v � 1)4

u2

3

+O(y2
I )

0
,
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where we have also confirmed that this expression of the homogeneous kernel can be obtained

directly by using the expressions of the uniform density second order curvature in synchronous

gauge, similar to the MD era case. Also, after some calculations, one can find that the

inhomogeneous part (I inhom .
m = Im � Ihom.

m ) is the same as Eq. (B.63) in the same limit.

Similar to the MD era case, we can also extract the explicit homogeneous bispectrum

terms or equivalently Hr from Q̃ � B for local non-Gaussianity

Hr(kS , µ, ⌘r)
Dr(y1)Dr(y2)

D2
r (kS⌘r)

=
$)

s,t=0

(Q̃ � B)[s,t]
r (y1, y2)

%
q

kS

&s

µt, (D.84)

where the concrete expressions of B are already shown in Eqs. (B.66)–(B.68) and Q̃ in

Eqs. (D.77)–(D.82).

D.3 Second-Order Curvature and 3-Geometry

In this section, we clarify the relation between the intrinsic spatial curvature of the constant

time slice R3 and the curvature perturbation ⇣� at second order, and examine the spatial

gauge dependence of these quantities. Note that the intrinsic 3-geometry depends only on

the choice of time slicing, which we have shown is initially the same for synchronous, comoving

and uniform density gauge as ⌘ ! 0, but its spatial coordinatization and representation in

terms of the trace and tracefree part of the spatial metric can di↵er.

At second order, the intrinsic spatial curvature is given by [54]14

a2R3 = 4r2( + 1
3Ê) � 4Ckm,mCkn,n + 3Cmn,kCmn,k � Ckk,nCmm,n (D.85)

+ 4Cmn(Cmn,kk + Ckk,mn � Cmk,nk � Ckn,mk) + 2(2Ckk,jCjn,n � Ckn,mCmn,k) .

For the separate universe approach, the intrinsic spatial curvature from long-wavelength mode

gives the local FRW curvature in Eq. (2.40)

R3 = 6KSU/a
2
SU . (D.86)

As usual, the first-order intrinsic curvature is given by the Laplacian of the curvature pertur-

bation � � 1
3Ê. In synchronous gauge, the second-order intrinsic curvature can be expressed

as

a2R3 = 4r2( + 1
3Ê)

+ 6 2
,i � 5

3
Ê2

,i + E2
,ijk + 4(4 + 1

3Ê)( + 1
3Ê),kk � 4E,ij( + 1

3Ê),ij . (D.87)

While the specific form of the intrinsic curvature on superhorizon scales is independent of the

background, for concreteness let us consider the MD case. The second-order solutions for the

14 This Þxes the relative normalization factor of 2 between the second-order and Þrst-order-squared quantities
in Eq. (C.13) of [ 54].
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metric and density perturbations are given by

Ê(2) =

/
21(u6 + v6 � u2v2(u2 + v2 + 10)) � 23(u4 + v4) � 17(u2 + v2) + 19

11200
y4

+c
(2)
öE
(u, v)y2 + f

(2)
öE
(u, v)

0
Tm(p1)Tm(p2)⇣

(1)
I (p1)⇣

(1)
I (p2) , (D.88)

 (2) =

/
5(u4 + v4) + 4u2v2 � 10(u2 + v2) + 5

1400
y4

+c
(2)
! (u, v)y2 + f

(2)
! (u, v)

0
Tm(p1)Tm(p2)⇣

(1)
I (p1)⇣

(1)
I (p2) , (D.89)

�(2) =

/
u4 + v4 + 12u2v2 � 2(u2 + v2) + 1

700
y4 + c

(2)
� (u, v)y2

0
Tm(p1)Tm(p2)⇣

(1)
I (p1)⇣

(1)
I (p2) ,

(D.90)

where we have split the solutions into their inhomogeneous and homogeneous parts. The

Einstein equations impose the following relations between the coe�cient functions:

c
(2)
! (u, v) = c

(2)
öE
(u, v) +

3(u2 � v2 + 1)(u2 � v2 � 1)

40

� 9f
((u � v)2 � 1)((u+ v)2 � 1)(u2 + v2)(u2 + v2 � 1)

40u2v2 , (D.91)

f
(2)
! (u, v) = �1

3
f

(2)
öE
(u, v) +

3(u4 + v4) � 6u2v2 � 2(u2 + v2) � 9 + 40c(2)
öE

12

� 3f
3(u8 + v8) � 6u4v4 � 5(u6 + v6) � 3u2v2(u2 + v2 + 4) + u4 + v4 + u2 + v2

16u2v2

+ 9f2 ((u � v)2 � 1)((u+ v)2 � 1)(u2 + v2 � 1)

16u2v2 , (D.92)

c
(2)
öE
(u, v) = �c

(2)
� (u, v) � 3(u4 + v4) � 6u2v2 + 8(u2 + v2) � 3

40

+ 3f
(3(u4 + v4) � 6u2v2 + 2(u2 + v2) � 5)(u2 + v2)(u2 + v2 � 1)

160u2v2 . (D.93)

In (D.87), f (2)
! and f

(2)
öE

cancel, and we can eliminate c
(2)
! and c

(2)
öE

in favor of c(2)
� . Plugging

these solutions into (D.87) gives

R
(2)
3 =

k2

a2

/
40c(2)

� (u, v) +
u4 + v4 + 6u2v2 � 2(u2 + v2) + 1

10
y2

0
Tm(p1)Tm(p2)⇣

(1)
I (p1)⇣

(1)
I (p2) ,

(D.94)

where we have also shown the full y-dependent part. For f 6= 0, we thus see that R3 only

di↵ers due to the change in spatial coordinates assigned to the same invariant curvature, in

the same way as for the density perturbation itself, hence all of the dependence on f can be

absorbed into c
(2)
� .
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We can also compare the above to the second-order curvature perturbation in uniform-

density gauge. Note the quantities that are associated with the expansion of 3-curvature

related metric quantities at first order are no longer directly related to the 3-curvature at

second order. In this case, the “curvature perturbation” ⇣� is defined to be the trace of the

spatial metric in uniform density gauge. From perturbations defined with alternate gauge

conditions of B = Ê = 0, it reads in the superhorizon limit [54, 78]

lim
y! 0

⇣
(2)
� = � (2) � H ⇢̄

⇢̄#�
(2)

+H@⌘(⇢̄�(1) )2

⇢̄#2 + 2
⇢̄

⇢̄#�
(1) ( (1) "

+ 2H (1) ) +
⇢̄2

⇢̄#2 (�
(1) )2

%
H#+ 2H2 � H ⇢̄##

⇢̄#

&
. (D.95)

In synchronous gauge where B = 0, the density perturbation scales as y2, and thus does not

survive in the y ! 0 limit. In the same limit, the choice of f = 0 for the threading sets Ê = 0.

This implies that

lim
y! 0

⇣
(2)
� = � (2) |f=0

=

%
10c(2)

� (u, v)|f=0 +
3 + 5(u2 + v2)

2

&
Tm(p1)Tm(p2)⇣

(1)
I (p1)⇣

(1)
I (p2) , (D.96)

which gives the relation (D.51) for the case of local non-Gaussianity.

E Notation and Conventions

Symbol Meaning Reference

⇣ Comoving curvature perturbation as a function of k, ⌘ (2.4)

⇣I Initial comoving curvature perturbation ⇣(k, 0) (1.1)

⇣� Uniform-density curvature perturbation (C.30)

 Trace part of the metric perturbation (2.1)

Ê Traceless scalar part of the metric perturbation (2.2)

f Ratio between the traceless part and the curvature pertur-

bation in the superhorizon limit, limq! 0
öE

3⇣ = �f

(2.6)

� Density perturbation (3.3)

�D Dirac delta function (1.1)

q Soft momentum, q ⌧ k1, k2 (1.1)

kS Hard momentum, kS = (k1 � k2)/2 (1.1)

µ Angle between soft and hard momenta, µ ⌘ k̂S · q̂ (2.34)

⌘ Conformal time (2.1)

⌘m Conformal time at the beginning of the MD era (3.10)
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Symbol Meaning Reference

⌘r Conformal time at the beginning of the RD era (3.8)

y Dimensionless time variable, y ⌘ k⌘ (3.5)

y1,2 Dimensionless time variable with kS and ⌘1,2, y1,2 ⌘ kS⌘1,2 (3.14)

ỹ Dimensionless time variable (rescaled by sound speed),

ỹ ⌘ k⌘/
p
3

(3.19)

ỹ1,2 Dimensionless time variable (rescaled by sound speed) with

kS and ⌘1,2, ỹ1,2 ⌘ kS⌘1,2/
p
3

(3.20)

>Ci(x) Modified cosine integral, >Ci(x) ⌘ Ci(x) � log x � �E + 1 (B.54)

F Implicit convolution of F (D.28)

ns Tilt of curvature power spectrum, ns � 1 ⌘ d ln k3P⇣I /d ln k (1.1)

n� Tilt of density power spectrum, n� ⌘ d ln k3P�/d ln k (2.34)

ñs Tilt of curvature power spectrum with the transfer function

in the MD era, ñs � 1 ⌘ d ln k3T 2
mP⇣I /d ln k

(C.27)

bNL Local non-Gaussianity parameter (C.30)

Dm/r Growth function in synchronous gauge (3.5), (3.15), (3.19)

Km/r Growth function in Newtonian gauge (C.17)

Tm/r Transfer function (3.5)

Im/r Second-order density kernel in synchronous gauge (B.41)

I inhom .
m/r Inhomogeneous part of Im/r (3.7), (3.16), (B.63)

Jm/r Second-order density kernel in Newtonian gauge (C.31)

Hm/r Homogeneous part of h⇣��i in synchronous gauge (3.8), (3.10)

B[s,t]
m/r Inhomogeneous part of h⇣��i in the expansion of (q/kS)sµt

in synchronous gauge

(3.14)

Q̃[s,t]
m/r h⇣��i in the expansion of (q/kS)sµt with the local non-

Gaussianity ansatz in synchronous gauge

(D.48)

C̃[s,t]
m/r h⇣��i in the expansion of (q/kS)sµt with the local non-

Gaussianity ansatz in Newtonian gauge

(C.33)
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[67] J. Stücker, A. S. Schmidt, S. D. M. White, F. Schmidt and O. Hahn, Measuring the tidal
response of structure formation: anisotropic separate universe simulations using treepm, Mon.
Not. Roy. Astron. Soc. 503 (2021) 1473–1489, [2003.06427].

[68] D. J. Eisenstein and W. Hu, Power spectra for cold dark matter and its variants, Astrophys. J.
511 (1997) 5, [astro-ph/9710252].

[69] D. Zegeye, K. Inomata and W. Hu, Spectral Distortion Anisotropy from Inflation for Primordial
Black Holes, 2112.05190.

[70] Y. Li, W. Hu and M. Takada, Super-Sample Signal, Phys. Rev. D 90 (2014) 103530,
[1408.1081].

[71] P. Creminelli, C. Pitrou and F. Vernizzi, The CMB bispectrum in the squeezed limit, JCAP 11

(2011) 025, [1109.1822].

[72] E. Pajer, F. Schmidt and M. Zaldarriaga, The Observed Squeezed Limit of Cosmological
Three-Point Functions, Phys. Rev. D 88 (2013) 083502, [1305.0824].

[73] C. Pitrou, X. Roy and O. Umeh, xPand: An algorithm for perturbing homogeneous cosmologies,
Class. Quant. Grav. 30 (2013) 165002, [1302.6174].

[74] W. D. Goldberger, L. Hui and A. Nicolis, One-particle-irreducible consistency relations for
cosmological perturbations, Phys. Rev. D 87 (2013) 103520, [1303.1193].

[75] K. Inomata, Analytic solutions of scalar perturbations induced by scalar perturbations, JCAP
03 (2021) 013, [2008.12300].

[76] S. Weinberg, Cosmology. Oxford University Press, Oxford, UK, 2008.

[77] S. Weinberg, Adiabatic modes in cosmology, Phys. Rev. D 67 (2003) 123504,
[astro-ph/0302326].

– 63 –

https://doi.org/10.1016/j.physletb.2022.137018
https://doi.org/10.1016/j.physletb.2022.137018
https://arxiv.org/abs/2109.13154
https://doi.org/10.1088/1475-7516/2013/10/011
https://arxiv.org/abs/1210.0569
https://doi.org/10.1103/PhysRevD.90.063506
https://arxiv.org/abs/1307.8114
https://doi.org/10.1088/1475-7516/2016/09/007
https://arxiv.org/abs/1511.01465
https://doi.org/10.1093/mnrasl/slu187
https://doi.org/10.1093/mnrasl/slu187
https://arxiv.org/abs/1409.6294
https://doi.org/10.1088/1475-7516/2017/02/025
https://arxiv.org/abs/1610.01059
https://doi.org/10.1093/mnras/sty1430
https://arxiv.org/abs/1803.03274
https://doi.org/10.1088/1475-7516/2021/04/041
https://arxiv.org/abs/2011.06584
https://doi.org/10.1093/mnras/staa1579
https://doi.org/10.1093/mnras/staa1579
https://arxiv.org/abs/2003.10052
https://doi.org/10.1093/mnras/stab473
https://doi.org/10.1093/mnras/stab473
https://arxiv.org/abs/2003.06427
https://doi.org/10.1086/306640
https://doi.org/10.1086/306640
https://arxiv.org/abs/astro-ph/9710252
https://arxiv.org/abs/2112.05190
https://doi.org/10.1103/PhysRevD.90.103530
https://arxiv.org/abs/1408.1081
https://doi.org/10.1088/1475-7516/2011/11/025
https://doi.org/10.1088/1475-7516/2011/11/025
https://arxiv.org/abs/1109.1822
https://doi.org/10.1103/PhysRevD.88.083502
https://arxiv.org/abs/1305.0824
https://doi.org/10.1088/0264-9381/30/16/165002
https://arxiv.org/abs/1302.6174
https://doi.org/10.1103/PhysRevD.87.103520
https://arxiv.org/abs/1303.1193
https://doi.org/10.1088/1475-7516/2021/03/013
https://doi.org/10.1088/1475-7516/2021/03/013
https://arxiv.org/abs/2008.12300
https://doi.org/10.1103/PhysRevD.67.123504
https://arxiv.org/abs/astro-ph/0302326


[78] K. A. Malik and D. Wands, Evolution of second-order cosmological perturbations, Class. Quant.
Grav. 21 (2004) L65–L72, [astro-ph/0307055].

– 64 –

https://doi.org/10.1088/0264-9381/21/11/L01
https://doi.org/10.1088/0264-9381/21/11/L01
https://arxiv.org/abs/astro-ph/0307055

	1 Introduction
	2 Consistency Relations and Separate Universe in Synchronous Gauge
	2.1 Synchronous Gauge and Free-Fall Frame
	2.2 Consistency Relation up to O(q)
	2.3 Separate Universe at O(q²)

	3 Second-Order Perturbations in Synchronous Gauge
	3.1 Consistency Relation and Initial Non-Gaussianity
	3.2 Separate Universe and Averaging

	4 Conclusion
	A Removal of the Delta Function
	A.1 Isotropic-Synchronous Gauge (f=0)
	A.2 Anisotropic-Synchronous Gauge (f=1)

	B Second-Order Relations in Synchronous Gauge
	B.1 Second-Order Perturbation Theory
	B.2 Synchronous Gauge

	C Relations in Newtonian Gauge
	C.1 Dilation and Newtonian Consistency Relation
	C.2 Three-Point Function from Local Non-Gaussianity

	D Relations Between Gauges
	D.1 Second-Order Gauge Transformations
	D.2 Second-Order Kernel from Local Non-Gaussianity
	D.3 Second-Order Curvature and 3-Geometry 

	E Notation and Conventions

