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We explore a re-parameterization of the lensing amplitude tension between weak lensing (WL) and
cosmic microwave background (CMB) data and its implications for a joint resolution with the Hubble
tension. Specifically, we focus on the lensing amplitude over a scale of 12 Mpc in absolute distance
units using a derived parameter S12 and show its constraints from recent surveys in comparison
with Planck 2018. In WL alone, we find that the absolute distance convention correlates S12 with
H0. Accounting for this correlation in the 3D space S12 × ωm × h reproduces the usual levels of
2 ∼ 3σ tension inferred from S8 × Ωm. Additionally, we derive scaling relations in the S8 × h and
S12 × h planes that are allowed by ΛCDM and extrapolate target scalings needed to solve the H0

and lensing-amplitude tensions jointly in a hypothetical beyond-ΛCDM model. As a test example,
we quantify how the early dark energy scenario compares with these target scalings. Useful fitting
formulae for S8 and S12 as a function of other cosmological parameters in ΛCDM are provided, with
1% precision.

I. INTRODUCTION

Current constraints on cosmological parameters from
different experiments point to the possible inadequacy of
ΛCDM as the complete description of the Universe, as-
suming experimental and astrophysical systematics are
negligible. Several advances have been made in address-
ing these tensions on multiple fronts: theoretical develop-
ments in both modelling data and modifying ΛCDM, the
acquisition of more and better data, and considerations
of the statistical properties of parameter mismatches.

Within the context of the latter approach, Sánchez
(2020) proposed a re-parameterization of the commonly
used lensing amplitude parameter S8 (defined below), ar-
guing for a change of units in the σ8 parameter which is
defined as the RMS fluctuation of the linear density field
within a spherical top-hat of radius 8 Mpc/h. Specifi-
cally, their proposal adopts Mpc units instead of the com-
mon Mpc/h choice, with h being defined via the Hubble
constant H0 ≡ 100h km/s/Mpc. At a reference value of
h ≈ 0.67, the usual (8/h) Mpc scale of fluctuations be-
comes approximately 12 Mpc. This leads to a convenient
parameter definition σ12, analogous to σ8 but over a top-
hat of radius 12 Mpc without the typical 1/h factor, and
its corresponding lensing amplitude parameter S12. This
parametrization has been used, for instance, in deriving
cosmological parameter constraints from galaxy cluster-
ing and complementary probes as shown in Semenaite
et al. (2022) and references therein. In what follows, we
refer to the Mpc/h convention as relative distances (i.e.
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relative to the Hubble length or extragalactic distance
scale) and the Mpc convention as absolute distances.

Part of the motivation for this definition is that, be-
cause posteriors of different astrophysical probes might
or might not constrain h, the parameter σ8 is not guar-
anteed to reference the same absolute scales across ex-
periments. Therefore, the potential benefit of the σ12
convention is that the RMS power spectrum is measured
at a fixed, known scale of 12 Mpc regardless of the par-
ticular constraint on h of any probe. A drawback is that
low redshift experiments best measure relative quantities
through the conversion of redshifts and angles using the
distance scale and hence 12 Mpc may not correspond to
the best measured aspect of a given survey.

In this work, we investigate whether the proposed
change in units and the behavior of the newly intro-
duced parameters σ12 and S12 impact the degree of agree-
ment/disagreement between a subset of recent weak-
lensing 2-point correlation results (also commonly re-
ferred to as cosmic shear) (Amon et al. (2022), As-
gari et al. (2021), Hamana et al. (2020), Hikage et al.
(2019), Secco & Samuroff et al., (2022)), and Planck
2018 (Planck Collaboration 2020), and secondly, whether
these new parameters aid physical interpretation. As we
show, transitioning from S8 to S12 naturally introduces
the Hubble parameter, so we additionally explore their
functional dependence and relations of the form S8(h, . . .)
and S12(h, . . .) to gain insight into solutions of the appar-
ent tensions in both the lensing amplitude and Hubble
parameter.

This paper is organized as follows: in Section II, we an-
alyze how tension metrics change under S12; in Section
III we interpret those tension metrics and obtain fitting
formulas for the scaling of lensing amplitude parameters
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with h in ΛCDM; in Section IV we explore the desir-
able scalings of non-ΛCDM models that could potentially
solve tensions in both parameters jointly, and examine
the particular case of a model with an early dark en-
ergy (EDE) component behaving as a cosmological con-
stant at early redshifts and transiently affecting the ex-
pansion rate around matter-radiation equality (Agrawal
et al. 2019, Karwal & Kamionkowski 2016, Lin et al. 2019,
Poulin et al. 2018, Poulin et al. 2019, Smith et al. 2020),
finally concluding in Section V.

II. COSMIC SHEAR CONSTRAINTS

In order to study the lensing amplitude tension un-
der the newly-defined S12, we first derive it from the
publicly-available Markov Chain Monte Carlo (MCMC)
results where it was not a standard output, namely in
KiDS-1000 (COSEBIs)1 (Asgari et al. 2021) and HSC-
Y123 (Hamana et al. 2020, Hikage et al. 2019). We em-
ploy CosmoSIS4 (Zuntz et al. 2015) to read each existing
sample in the public chains as an input cosmology, run
the Boltzmann solver CAMB5 (Lewis et al. 2000) and
compute

σ2
12 ≡

∫
d3k

(2π)3
|W12Mpc(k)|2 Plin(k) , (1)

where W12(k) is the Fourier transform of a top-hat filter
with radius 12 Mpc and Plin is the linear matter power
spectrum. The definition above is analogous to that of
the usual σ8 parameter, except with distance units rela-
tive to h:

σ2
8 ≡

∫
d3k

(2π)3
∣∣W8/hMpc(k)

∣∣2 Plin(k) . (2)

We additionally derive the corresponding lensing ampli-
tude parameter S12 as proposed in Sánchez (2020), in
contrast with the usual definition of S8:

S12 ≡ σ12
( ωm

0.14

)0.4
, (3)

S8 ≡ σ8
(

Ωm
0.3

)0.5

, (4)

with ωX = ΩXh
2 defined as the physical density param-

eter at redshift zero for a component X. All original pa-
rameters and sampling weights are left unchanged. The

1 https://kids.strw.leidenuniv.nl/DR4/KiDS-1000_

cosmicshear.php
2 http://th.nao.ac.jp/MEMBER/hamanatk/HSC16aCSTPCFbugfix/

index.html
3 http://gfarm.ipmu.jp/~surhud/PDR1_HSCWL/Hikage/
4 https://cosmosis.readthedocs.io/en/latest/
5 http://camb.info

same postprocessing is not required for DES Y3 (Amon
et al. (2022), Secco & Samuroff et al., (2022)) and Planck
2018 temperature and polarization results (Planck Col-
laboration 2020), as those public chains6 already contain
the extra derived parameter in Eq. (1).

To compare surveys with the CMB, we compute a QDM

Gaussian tension metric based on shifts between param-
eter posteriors (Raveri et al. 2020), carried out with the
publicly available tensiometer code7 (Raveri & Doux
2021, Raveri & Hu 2019). We initially inspect that met-
ric in the 2D subspaces that are best constrained in weak
lensing, namely S12 × ωm and S8 ×Ωm. This choice is a
starting point for the present analysis based on the expe-
rience that the S8×Ωm plane contains most of the tension
information when comparing weak lensing to the CMB.
It will become clear that the same cannot be said about
the S12 × ωm subspace, so we shall look more broadly at
the full parameter space later on, in Sec. III A.

With S12 derived for all data sets, we compare the lens-
ing amplitude constraints in the S12×ωm plane with the
standard S8×Ωm plane in Fig. 1. No re-analyses or mod-
ifications to priors and nuisance parameters are implied.
Numbers on the top right correspond to the Gaussian
QDM. As each published analysis quantifies tension with
different metrics, we do not expect to exactly reproduce
their reported numbers, but simply seek to reasonably
approximate them.

The most remarkable aspect of the S12 × ωm panel of
Fig. 1 is the apparent absence of a statistically signif-
icant tension between CMB and lensing data sets. As
we shall quantify in Section III B, the choice of abso-
lute Mpc units creates a dependence between S12 and
h when well-measured lensing parameters are held fixed.
Thus marginalization over the wide, but still informative
h prior8 adopted by lensing surveys not only dilutes the
cosmic shear constraining power in the S12 × ωm sub-
space but also impacts the S12 posterior. It is important
to note that h is largely prior-dominated in cosmic shear
probes alone, and therefore the usual S8 parameter in
relative distance units is constructed to not be similarly
sensitive to constraints on the Hubble parameter (Jain
& Seljak 1997). It will therefore become clear that it is
impossible to assess consistency between surveys using
S12 without matching their Hubble priors, an issue that
is not present in S8.

Since S12 constraints are diluted due to the marginal-
ization over the Hubble parameter and dependent on its

6 Chains for DES Y3 and Planck 2018 TTTEEE, low EE and low
TT including σ12 are taken from https://des.ncsa.illinois.

edu/releases/y3a2/Y3key-products. We further postprocess
the Planck chain to approximately fix the neutrino mass to min-
imum.

7 https://github.com/mraveri/tensiometer
8 For reference, KiDS and the HSC real-space analysis adopt prior

bounds h = [0.64, 0.82], the harmonic-space analysis of HSC
adopts h = [0.60, 0.90] and DES adopts h = [0.55, 0.91], all of
which are uniformly distributed.

https://kids.strw.leidenuniv.nl/DR4/KiDS-1000_cosmicshear.php
https://kids.strw.leidenuniv.nl/DR4/KiDS-1000_cosmicshear.php
http://th.nao.ac.jp/MEMBER/hamanatk/HSC16aCSTPCFbugfix/index.html
http://th.nao.ac.jp/MEMBER/hamanatk/HSC16aCSTPCFbugfix/index.html
http://gfarm.ipmu.jp/~surhud/PDR1_HSCWL/Hikage/
https://cosmosis.readthedocs.io/en/latest/
 http://camb.info
https://des.ncsa.illinois.edu/releases/y3a2/Y3key-products
https://des.ncsa.illinois.edu/releases/y3a2/Y3key-products
https://github.com/mraveri/tensiometer
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FIG. 1. Left panel: Nominal constraints in the S8 × Ωm subspace as inferred from different weak-lensing surveys (DES Y3,
HSC Y1 and KiDS-1000) compared with Planck 2018. Numbers on the top right correspond to the QDM metric estimated for
each survey in this 2D parameter subspace. Right panel: Same as left panel, but in the newly-derived S12 × ωm plane. In
comparison with the S8×Ωm results of each survey, we note that the discrepancy between shear surveys and the CMB appears
to be significantly reduced. Note that the marginal S12 constraint, unlike S8, depends strongly on each survey’s H0 prior (see
Sec. III A), complicating consistency statements based on the S12 posterior alone.

FIG. 2. Constraints on the S12 × ωm plane from different weak-lensing surveys after introducing informative priors on h.
Numbers in the upper-right corner are QDM statistics in the subspace being plotted. Note that the Planck contour is not
re-sampled in either case. Left panel: A Hubble parameter prior centered at h = 0.673, in agreement with Planck 2018 and
with comparable constraining power. We find that the QDM tension approaches the values obtained in the S8 × Ωm plane by
each surveys’ reported analyses. Right panel: Hubble parameter prior centered at h = 0.73. Tension metrics remain lower
than each survey’s nominal result (see left panel of Fig. 1). Note that this prior introduces a much larger tension in the full
parameter space (see Sec. III A).
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prior boundaries, could the addition of an external infor-
mative prior on h mitigate those effects? We explore this
consideration below, with two alternatives.

A. An External H0 Prior in Agreement with
Planck 2018

We impose an informative prior on the Hubble param-
eter in the existing DES Y3, HSC-Y1 and KiDS-1000
chains via importance sampling. Specifically, we modify
the weights of MCMC samples following a desired dis-
tribution, which we take to be a Gaussian centered at
H0 = 67.3 km/s/Mpc with a standard deviation of 0.67
km/s/Mpc, implying a relative error of about 1% in H0,
comparable to the constraining power of Planck and cen-
tered on its ΛCDM best-fit value. We hold the Planck
result fixed and do not introduce an extra prior on any
of its posteriors.

We show the result of this exercise in the left panel of
Fig. 2 for the S12 × ωm subspace constraints as well as
the 1-dimensional posterior on h, now artificially made
tighter for all surveys (usually, their posteriors would be
approximately flat within the h plot limits). On the top
right of both panels, we again compute theQDM metric as
a proxy for the level of agreement between each individual
survey and the CMB.

When the h posterior in the lensing surveys is in agree-
ment with Planck’s and similarly constrained, we find
that the QDM metrics indicate a level of tension that
closely approaches the reported values in the S8 × Ωm
plane (left panel of Fig. 1). The level of consistency of
both DES Y3 and KiDS vs. CMB reaches a QDM ≈ 2.5σ,
in line with the current paradigm for the lensing am-
plitude tension as derived from the usual S8 definition.
This means that, with lensing amplitudes measured over
an unambiguous absolute scale of 12 Mpc and h fixed to
be in agreement with the CMB value, S12 largely recovers
the same tension statements that are made with relative
distance units as quoted via S8.

No significant change occurs in the S8 × Ωm sub-
space after importance sampling on h since, as mentioned
above, the S8 lensing constraint is by construction largely
insensitive to the Hubble parameter.

Next we consider how much tension is obtained if the
Hubble parameter on all cosmic shear surveys is exter-
nally informed by a prior in large disagreement with
Planck 2018 and in agreement with a subset of recent
local measurements.

B. An External H0 Prior in Agreement with
SH0ES

As a counterpoint, we pick the H0 value measured
by the SH0ES collaboration (Riess et al. 2022). We
again postprocess the MCMC chains of each weak-lensing
survey via importance sampling by introducing an in-

formative Gaussian prior on H0 that is now centered
at H0 = 73.0 km/s/Mpc with standard deviation 0.73
km/s/Mpc, again representing a 1% relative error that
approximates the best fit and constraining power of the
local Hubble value of Riess et al. (2022). With this pro-
cedure, we quantitatively explore how the weak-lensing
posteriors on S12 × ωm would shift if the late Universe
expands faster than suggested by the CMB.

The result is shown in the right-hand panel of Fig. 2,
again with QDM values on the top-right. We now find a
reduction of about 1σ in the level of tension as seen by the
QDM metric in the S12 × ωm subspace, when compared
to the reported S8 tension values for each survey (left
panel of Fig. 1). Both DES Y3 and KiDS-1000 now find
relative statistical agreement with Planck’s constraints in
this subspace at the 1.4 and 1.3σ levels respectively. We
also note that in all cases presented, HSC shows overall
better agreement with the CMB.

This exercise clearly introduces a large tension in the
full space of cosmological parameters shared by all exper-
iments due to the hidden h dimension, which we address
in Sec. III A. Additionally, an important caveat unac-
counted for in this picture is that Planck’s S12 posterior
should shift if h is different from 0.673 and the Universe
is required to follow ΛCDM. We shall see in Sec. III B
that a solution to both tensions cannot be obtained at
h = 0.73 in that vanilla model.

In summary, both importance sampling exercises
above show that lensing-amplitude-tension statements
derived from S12 in WL depend on constraints on h. In
what follows, we explore interpretations of this in the
context of ΛCDM and other cosmological models.

III. INTERPRETATION IN ΛCDM

A. The Full Parameter Space

While the tension metrics reported so far have focused
on the 2D subspaces S8 × Ωm and S12 × ωm, it is clear
we must account for their dependence on H0. Also, in
general, tension assessments between experiments must
rely on the full space of shared (cosmological) parame-
ters (Lemos et al. 2021, Raveri & Doux 2021), and im-
portantly also benefit from matched priors and modeling
choices (Chang et al. 2018, Longley et al. 2022). Indeed,
we can show in what follows that some of the effects seen
in Figs. 1 and 2 are clarified when looking more broadly
at the full cosmological parameter space.

Focusing on DES as a representative case, we first ver-
ify that apart from the subspaces of Figs. 1 and 2 the
next parameter direction of interest is h. The posteriors
on other parameters such as the spectral index ns cor-
relate too weakly with S8 and S12 (see discussion in the
next Section), and including or excluding those directions
from the tension calculations does not make significant
differences in QDM.

While the left- and right-hand panels of Fig. 1 show
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very different tension metrics, looking at DES vs. Planck
in the 3D spaces [S8,Ωm, h] and [S12, ωm, h] reveals
nearly identical QDM values of 2.1σ. Note that this level
of tension is relatively close to the QDM = 2.4σ obtained
in the 2D space given by [S8,Ωm], but significantly dif-
ferent from the QDM = 1.0σ inferred in the [S12, ωm]
subspace.

Additionally, after applying the tight prior h ≈ 0.673
in lensing as shown in the left-hand panel of Fig. 2,
we find QDM ≈ 2.5σ in DES vs. Planck in all of the
3D or 2D subspaces [S8,Ωm, h], [S12, ωm, h], [S8,Ωm]
and [S12, ωm]. Finally, with the external prior h ≈
0.73 applied to lensing we find, in shorthand notation:
QDM ([S8,Ωm, h]) = QDM ([S12, ωm, h]) = 5.4σ between
DES and Planck, while in the 2D spaces of the same ex-
periments there is a clear difference: QDM ([S8,Ωm]) =
2.5σ vs. QDM ([S12, ωm]) = 1.4σ. Of course, the larger
tension in the 3D space is mainly coming from the dis-
crepancy in h in this case. Note again that this does not
mean that the main tension in ΛCDM can be removed
by changing h alone, as Planck’s S8 and S12 posterior
would also change with a shift in h.

The results above reiterate that the correlation be-
tween S12 and h in the weak-lensing surveys needs to
be taken into account for a fair representation of ten-
sion between those data sets and the CMB and that S12

constraints from lensing surveys are informed by their
choice of h prior. Below, we explore the reasons for this
correlation in ΛCDM from a semi-analytic perspective.

B. ΛCDM Scaling Relations

We derive simple scalings between the lensing ampli-
tudes S8 and S12 and the Hubble parameter in the con-
text of ΛCDM to help interpret the results of the previous
sections.

In ΛCDM, the dependence of σ8 and S8 on different
cosmological parameters can be well approximated with a
fitting formula presented in Hu & Jain (2004). The func-
tional form of this fit can be understood as follows. The
normalization As for the initial curvature power spec-
trum is set at k = 0.05 Mpc−1. Hence, this must be
related to σ8 by evolving density perturbations to the
present using the matter transfer functions which depend
on ωm, ωb, and the growth function, and then tilting with
ns to the scale corresponding to 8h−1 Mpc.

We maintain the functional form, but update the fit
coefficients below:

σ8 ≈
(

As
3.135× 10−9

)1/2 ( ωb
0.024

)−0.272 ( ωm
0.14

)0.513
× (3.123h)

(ns−1)/2

(
h

0.72

)0.698(
G0

0.76

)
, (5)

with the growth function solution at z = 0 in ΛCDM well

approximated by:

G0 ≈ 0.76

(
Ωm
0.27

)0.236(
1− 0.014

∑
mν

0.06eV

)
. (6)

The updated fitting formula in Eq. (5) is accurate to 1%
relative error in ∆σ8/σ8 within a 10σ range of the Planck
2018 best-fit ΛCDM parameters (ωb, ωm, As, h, ns) in any
direction in this 5D space. The fit is improved to within
0.5% relative error if, instead of the fitting form (6) for
the growth function, the integral solution in the absence
of neutrino mass is used as the baseline:

G0 =

(
5

2
Ωm

∫ 1

0

da

(aH(a)/H0)
3

)

×
(

1− 0.014

∑
mν

0.06eV

)
. (7)

The formulae above can be used to obtain a clear de-
generacy direction in the S8 × h plane for Planck data.
We consider the S8 definition in Eq. (4) and approximate
σ8 using Eq. (5). The tight measurement of the angular
scale θs of the sound horizon in ΛCDM, indeed the pa-
rameter best constrained by the CMB (Hu et al. 2001),
fixes ωmh

1.2. Reading off the remaining dependence on
h, this procedure yields approximately:

SPlanck
8 (h) ∝ h−2.3 (ΛCDM) (8)

if As, ns and ωb are held fixed.
We can similarly obtain a fitting formula for σ12 in

ΛCDM simply by noting that one must recover σ8 = σ12
at h = 2/3. Also valid to 1% relative error within a 10σ
range of Planck 2018’s best fit, we find

σ12 ≈ 0.948×
(

As
3.135× 10−9

)1/2 ( ωb
0.024

)−0.272

×
( ωm

0.14

)0.513
(2.082)

(ns−1)/2

(
G0

0.76

)
, (9)

and using the definition (3) while fixing ωmh
1.2, As, ωb

and ns, we obtain

SPlanck
12 (h) ∝ h−1.9 (ΛCDM). (10)

The scalings presented in equations (8) and (10) show
that ΛCDM sets a steep dependence between the lensing
amplitude parameters and the Hubble value, and that
much like S8, the S12 parameter also carries the property
of “higher lensing amplitude at lower H0” and vice-versa
to fit the data at fixed ωmh

1.2.
In an analogous way, we can also approximately predict

the scaling between S12×h for a weak-lensing survey. We
can write the relationship between S12 and S8 implied by
the fitting formulae (5) and (9) using the definitions (3)
and (4):

S12 ≈ 0.906

(
h

Ωm

)0.1(
3

2
h

)(1−ns)/2

S8. (11)
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To extract the dependence on h, we can identify the
best constrained parameter directions in lensing alone.
In DES particularly, the main constrained direction (de-
rived as a principal component) deviates slightly from
the usual S8 definition, and the parameter that is most
de-correlated with Ωm is ΣDES

8 ≡ σ8(Ωm/0.3)0.586 (see
Secco & Samuroff et al., (2022) Sec. VI.A). Considering
that fixed parameter, we obtain

SDES
12 ≈ 0.817

h0.1

Ω0.186
m

(
3

2
h

)(1−ns)/2

ΣDES
8 . (12)

Finally, inspecting the correlation between Ωm×h in the
DES cosmic-shear posterior, we fit the direction Ωm ∼
h−1, closely related to the linear power spectrum “shape
parameter” Γ (Efstathiou et al. 1992, Eisenstein & Hu
1999). Reading off the approximate dependence between
S12 and the Hubble parameter by fixing ΣDES

8 and Ωmh,
and taking ns ≈ 0.96, we obtain

SDES
12 ∝ h0.3 (ΛCDM). (13)

While Eq. (11) is general and assumes only ΛCDM, the
constrained directions that led to Eq. (13) are specific
to DES and may change with the different coverage of
redshift and angular scales utilized by different surveys.

The scalings (8), (10) and (13) above can be visualized
in Fig. 3, which shows Planck and DES posteriors on the
S12(8) × h subspace. We note that the ΛCDM scalings
derived semi-analytically closely match the true posterior
degeneracy directions.

What this means for the importance-sampling exer-
cises presented in Section II is that a re-parameterization
of the lensing amplitude in terms of S12 cannot resolve
both tensions if ΛCDM is enforced. To elaborate, going
back to the example of Section II B (an H0 prior in agree-
ment with Riess et al. (2022) - right panel of Fig. 2), and
artificially “shifting” Planck’s constraint on h to match
the SH0ES result by requiring the plotted posterior to
slide along the degeneracy lines of S12 × h in Eq. (10)
and ωm × h (ωm ∝ h−1.2) would qualitatively again lead
to tension between weak lensing and Planck, with SPlanck

12

significantly lower than lensing surveys. The top panel
of Fig. 3 shows this trend by shifting the Planck poste-
rior in the S12 × h plane. It is worth emphasizing that
these simple shifts along degeneracy directions do not re-
flect the result of refitting the Planck data with a SH0ES
prior, so for that reason we do not quote QDM values in
this exercise.

The behavior of the weak-lensing-inferred S12 is also
easily understood with the scaling in Eqs. (11) and
(13). Firstly, they suggest a reduction in tension in the
S12 × ωm subspace at higher h, which is indeed what is
seen in Fig. 2. Secondly, as referred to in Sec. II, the di-
lution of constraining power in S12 comes from its depen-
dence on the poorly-measured h parameter when fixing
the best-constrained lensing directions S8 (or ΣDES

8 ) and
Ωmh. That dependence originates both from the shift in
physical scale created by the factors of h in Eq. (11), as

0.70 0.75 0.80 0.85

S12 ≡ σ12(ωm/0.14)0.4
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FIG. 3. Visualizing the ΛCDM scaling relations in Eqs. (8),
(10) and (13). Red filled contours correspond to DES Y3
without an additional external prior on h, solid blue contours
show the original Planck ΛCDM posteriors and dashed blue
contours show Planck posteriors that are artificially shifted
along the ΛCDM degeneracy lines. Top panel: S12×h scal-
ings of Planck and DES, with h = 0.73 still leading to a lensing
amplitude tension between the CMB and weak lensing (not to
mention a large H0 tension). Bottom panel: At h = 0.70,
ΛCDM could in principle accommodate a lower S8 for Planck
that is in agreement with weak-lensing surveys (see text for
caveats).
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well as the shift in amplitude created by the Ωm and ωm
factors in the definitions (3) and (4) at fixed Ωmh.

More accurate tension measurements could be ob-
tained with actual Monte Carlo sampling of the Planck
likelihood with a SH0ES prior, but the qualitative conclu-
sion should be similar: the ΛCDM scaling cannot solve
both the H0 and lensing-amplitude tensions simultane-
ously if H0 = 73.0 km/s/Mpc. In other words, the reso-
lution of the lensing tension with Planck in ΛCDM would
not simply be that Planck is incorrect about H0.

An interesting and related question is: what would
be the H0 value for which the vanilla ΛCDM scalings
would bring both lensing and H0 into agreement? The
answer is a model close to the pre-Planck ΛCDM concor-
dance (Hinshaw et al. 2013): the scaling at fixed ωmh

1.2,
ωb, As and ns provided by Eq. (8) brings both DES Y3
and Planck 2018 into qualitative concordance at around
H0 = 70.0 km/s/Mpc (e.g. the result of Freedman et al.
(2019) based on a calibration of the tip of the red gi-
ant branch). The same conclusion would hold for the
other Stage-III lensing experiments given the relatively
small scatter between them. This scenario is shown on
the bottom panel of Figure 3. While this is an inter-
esting perspective, it naturally introduces the puzzle of
how could both Planck’s and SH0ES’s posteriors shift by
several standard deviations after the careful treatment of
the data and systematics presented by those teams.

The discussion above follows from enforcing ΛCDM as
the underlying cosmological model. Below, we drop that
model requirement and explore alternatives qualitatively.

IV. BEYOND-ΛCDM MODELS

A. Phenomenological Targets

We explore phenomenological scalings of S8(h) and
S12(h) under a new cosmology that could, in principle,
shift the Planck lensing amplitude parameters into agree-
ment with WL values. We focus still on Planck temper-
ature and polarization only.

Such scalings could be seen as “theory targets” and
their particular forms depend on the value of H0 at which
one aims to solve tensions – as we noted in the previous
section for instance, ΛCDM provides the correct scaling
for solving both tensions at H0 = 70.0 km/s/Mpc.

We create the scaling target in S8 × h simply as a
power-law that connects the best-fit Planck ΛCDM point
in that space (S8 = 0.833, H0 = 67.3) to the “concor-
dance” point given by the best-fit DES Y3 cosmic shear
S8 and best-fit SH0ES H0: (S8 = 0.755, H0 = 73.0). The
scaling target for S8 is then:

SPlanck
8 (h) ∝ h−1.2 (non−ΛCDM target) . (14)

For a less strict agreement to within about a standard
deviation from the lensing best fit, the scaling with hβ

may lie within the range β = [−1.7,−0.7], where β <

−1.2 underpredicts the Planck S8 value in comparison
with lensing, and β > −1.2 overpredicts it.

Analogously, we define the S12 × h target scaling as
a power-law between the Planck best fit in that space
(S12 = 0.815, H0 = 67.3) to the DES+SH0ES point
(S12(h = 0.73) = 0.753, H0 = 73.0), which yields:

SPlanck
12 (h) ∝ h−1.0 (non−ΛCDM target) , (15)

where we employed the scaling in Eq. (13) to obtain
the DES S12(h = 0.73) value. The less strict range
β = [−1.5,−0.5] in S12(h) ∼ hβ provides a qualitative
agreement within a standard deviation of DES.

Notice that the scalings (14) and (15) are different and
in particular shallower than ΛCDM expectation in Eqs.
(8), (10) respectively. It is in this sense that they repre-
sent “non-ΛCDM targets”. Had we enforced the ΛCDM
scalings and a fit to H0 = 73.0 km/s/Mpc, the CMB
would significantly underpredict the value of S8 in com-
parison with DES Y3.

Although up to this point we have remained agnos-
tic about the underlying physics of the new cosmological
model, it would have to satisfy several important proper-
ties due to the caveats in the construction of the scaling
relations, which we clarify next.

Firstly, we assume that weak-lensing posteriors do not
move under this new cosmology. Effectively, this im-
plies that the late universe remains well-described by
ΛCDM. This approach is well-supported by literature
that demonstrates that late-universe modifications to
background ΛCDM cosmology cannot resolve the Hub-
ble tension while maintaining a good fit to concordant
data (Benevento et al. 2020, Efstathiou 2021, Keeley &
Shafieloo 2022). Hence, this assumption eliminates mod-
els that cannot reconcile both tensions simultaneously
without introducing new ones.

A related and more specific assumption is that the
matter power spectrum should minimally diverge from
ΛCDM such that the scaling of SDES

12 (h) used to derive
the target in Eq. (15), which relies on the shape of the
power spectrum via its correlation with h, is preserved.

Additionally, recall that the targets are defined as the
shift required in the best-fit point of the Planck temper-
ature and polarization data when going from a ΛCDM-
interpretation to some new cosmology, along a power-law
direction. This encompasses new models that are contin-
uously connected to ΛCDM by some small parameter,
where the relatively small changes in Planck’s best fit
when extending the model make the bounds in the S8×h
plane elongated in the direction of the scalings proposed
and provide agreement between data sets. More gener-
ally, for more radical models, the new, internal S8×h de-
generacy direction could be different from these scalings
which are extrapolated from the baseline ΛCDM model.
For example, this could occur if what is physically con-
strained by Planck under the new model implies that S8

is not concordant with its ΛCDM value S8 ≈ 0.83 at its
best-fit value for h ≈ 0.67.
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More generally, any beyond-ΛCDM model that realizes
such scalings should also provide a reasonable fit to the
CMB data, for instance via a significant improvement in
χ2 or Bayesian evidence-based comparisons when more
degrees-of-freedom are introduced, in comparison with
the baseline ΛCDM best fit. This requirement is far from
trivial, and the performance of different candidate models
is thoroughly tested in Schöneberg et al. (2022).

B. EDE as a Test Case

A model that illustrates the use of these targets and
embodies these caveats is “early dark energy” (EDE)
wherein an extra component increases H(z) only around
matter-radiation equality (Agrawal et al. 2019, Karwal &
Kamionkowski 2016, Lin et al. 2019, Poulin et al. 2019,
Smith et al. 2020). It is realized in its simplest form
by a scalar field, initially behaving like a cosmological
constant and becoming transiently significant to the ex-
pansion rate before redshifting away. This mechanism
has been studied as a way to reduce the sound horizon at
recombination rs, which has the consequence of increas-
ing the CMB-inferred H0 when the well-measured sound
horizon angular scale θs is preserved (Aylor et al. (2019),
Bernal et al. (2016), Knox & Millea (2020)).

Because the EDE component redshifts away soon af-
ter equality, the evolution of structure in the late uni-
verse in EDE follows that of ΛCDM. The additional in-
formation from weak lensing can be mainly characterized
through S8 for the DES Y1 3 × 2pt data (Abbott et al.
2018). This is validated in Hill et al. (2020), which finds
very small discrepancies in an EDE inference between a
full-likelihood treatment of DES Y1 according to Krause
et al. (2017) and the use of the DES Y1 ΛCDM-based S8

constraint as a Gaussian, independent prior (with small
differences owing mostly to Ωm). That is, relative to the
constraining power of a combination of other data sets
in that work, the DES Y1 S8 posterior for EDE departs
minimally from ΛCDM and remains nearly independent
of H0. The DES Y3 cosmic shear S8 posterior used as
a point of comparison in our targets has an uncertainty
comparable to the DES Y1 3 × 2pt result and is there-
fore significantly less constraining than Planck 2018 in
parameter directions other than the lensing amplitude,
so the results of Hill et al. (2020) are applicable here.

Furthermore, we check that the EDE low-redshift mat-
ter transfer function shape is nearly preserved when com-
pared to ΛCDM and the shift induced by ns is subdom-
inant, which motivates the use of the SDES

12 (h) scaling in
Eq. (13). In particular, we compare the S12 samples in
the EDE MCMC result with the right-hand side of Eq.
(11), computed with the parameters (S8, Ωm, ...) at the
same respective samples. In doing so, we sub-select sam-
ples within an approximate 3σ of the EDE best fit given
by a ∆χ2 < 9, simply to highlight the important samples
of the parameter space.

Since Eq. (11) was derived entirely under ΛCDM, a

good agreement in the comparison described above would
mean that the relationship between S12 and S8 (which
we know is preserved from Hill et al. (2020)) for a given
EDE cosmology is very close to the ΛCDM prediction.
We indeed find such agreement, reported in Fig. 5, which
shows a deviation smaller than 0.5% between the EDE
value of S12 and its approximation based on the ΛCDM
relation S12(S8) in Eq. (11).

Next we would like to verify how well EDE obeys the
target scalings for Planck S8(h) and S12(h). Note that
EDE satisfies the basic requirement for using those scal-
ings in that it is continuously connected to ΛCDM by
a small parameter fede, the maximal fraction of early
dark energy density relative to total. In order to test
the scalings, we sample the posterior distributions of the
fundamental EDE parameters for Planck 2018 tempera-
ture and polarization data (Aghanim et al. (2020), Planck
Collaboration (2020)) with S8 and S12 as derived param-
eters. We use the AxiCLASS Boltzmann code9 for EDE
(Poulin et al. (2018), Smith et al. (2020)) and sample us-
ing MontePython10 (Audren et al. (2013), Brinckmann
& Lesgourgues (2019)). We follow Smith et al. (2022) for
EDE parameter priors (but with fede < 0.03) and adopt
uninformative priors on all ΛCDM parameters.

Proceeding with the same definition used for the tar-
get scalings, we connect the best-fit LCDM point to the
best-fit EDE point at H0 = 73.0 km/s/Mpc. We find
this point by optimising the likelihood over all cosmo-
logical and nuisance parameters, while holding H0 fixed
at its concordant value (equivalent to a profile likelihood
approach as e.g. Herold et al. (2022)) and find:

SPlanck
8 (h) ∝ h0.2 (EDE) , (16)

SPlanck
12 (h) ∝ h0.3 (EDE) . (17)

Apparent in the empirical EDE scalings above is that
their trend is opposite to the target direction which would
solve both tensions jointly, slightly increasing - or at best
not alleviating - the statistical significance of the lensing
amplitude tension. This is a known shortcoming of cur-
rent implementations of EDE and is attributed primarily
to an increase in ωcdm required with EDE to fit CMB
data, which in turn increases the lensing amplitude (Hill
et al. 2020, Reeves et al. 2022).

Note that in spite of the trend of higher S8 with higher
h, the EDE model intrinsically predicts a lower S8 value
at a fixed set of cosmological parameters than ΛCDM as
given by Eq. (5). In EDE, the impact on S8 of the larger
ωcdm that accompanies the larger h is offset by the EDE
suppression of the early growth of structure. For example
in the maximum likelihood EDE model with fede = 8.3%,
S8 is about 3% lower than in ΛCDM with the same other
parameters.

9 https://github.com/PoulinV/AxiCLASS
10 https://github.com/brinckmann/montepython public
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(dashed) posteriors. Vertical and horizontal grey bands in both panels correspond to 1σ uncertainties of DES Y3 cosmic shear’s
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the left panel, but showing the target line S12 ∝ h−1.0 (dashed) through the joint concordance point (SDES
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FIG. 5. For an EDE cosmology, we compare the ΛCDM
expectation SΛCDM

12 (SEDE
8 ) utilizing Eq. (11) as a function of

the integral result SEDE
8 , with the full integral result SEDE

12 .
Points are computed at MCMC samples, ordered by their H0

values. Note that the deviations decrease as H0 approaches
the ΛCDM best fit of H0 ≈ 67 km/s/Mpc but remain less
that 0.5% all the way to 73 km/s/Mpc. We thus confirm
that the ΛCDM scaling SDES

12 (h) in Eq. (13) is sufficiently
well-preserved in EDE

The scalings (14)-(17) and the many best-fit points
referenced above can be seen more clearly in Fig. 4. The
left panel shows Planck posteriors in ΛCDM and EDE in
the S8 × h plane along with the directions given by Eqs.
(14) and (16) and the right panel shows the posteriors
in S12 × h along with the target and empirical (EDE)
scalings (15) and (17). Horizontal and vertical grey bands
show the 1σ uncertainties of SH0ES and DES Y3 cosmic
shear respectively.

Notice also that the internal degeneracy (dot-dashed
line) defined by connecting the maximum likelihood EDE
models at h ≈ 0.67 to h ≈ 0.73 is slightly different than
the scaling in Eq. (16) and in particular S8 is instead
nearly independent of h. This illustrates the caveat that
our target scaling connects ΛCDM at h ≈ 0.67 to the
new model at h ≈ 0.73 rather than the scaling within
the new model. For EDE this difference of 0.2 in the
exponent is small compared with the deviation from the
target scaling of S8 ∝ h−1.2. Similar statements apply to
S12.

In summary, we have presented above a set of tar-
get scalings which are intended to help build models
beyond-ΛCDM that jointly solve the Hubble and lensing-
amplitude tensions. We have illustrated their use and the
assumptions behind them in a model of current interest
that solves the Hubble tension, namely EDE. The fact
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that this specific model does not successfully address the
lensing-amplitude tension in its current implementation
is well known, though quantifying its scalings in compar-
ison with the idealized targets (16) and (17) may help
develop an extension that does. We do not find quali-
tatively different conclusions with the S12 parametriza-
tion compared to those obtained via S8 – both parame-
ters seem equally suited to describe fundamental differ-
ences between the early- and late-time Universe as seen
by the Planck data, though S8 is more convenient for
treating lensing alone given its near independence of the
constraints on h.

V. SUMMARY & CONCLUSIONS

Using the latest cosmic shear constraints made public
by ongoing weak-lensing surveys (DES Y3, KiDS-1000,
HSC-Y1), we have explored a re-definition of the lensing
amplitude parameter in terms of the linear matter power
spectrum filtered over a 12 Mpc absolute distance scale
(S12) as proposed by Sánchez (2020), and compared those
survey results against Planck 2018.

When inspecting the 2D plane S12 × ωm, we find con-
straints from all lensing surveys to be substantially weak-
ened in this parameterization (Fig. 1). We trace this
loss of constraining power to the marginalization over the
Hubble parameter, which is poorly measured in lensing
alone and correlates with S12 in the absolute distance def-
inition (a feature that is not present in the S8 convention
of distances relative to the Hubble length). Simultane-
ously, we find that the full statistical significance of the
lensing amplitude tension measured by QDM in S8 ×Ωm
moves to the correlated 3D space S12×ωm×h. An addi-
tional hidden consequence of this correlation is that S12

posteriors from lensing surveys depend on their choice of
h priors, which are informative despite being wide.

In further exploring the dependence of S8 and S12 on
the Hubble parameter, we update a fitting formula orig-
inally presented in Hu & Jain (2004) (Eq. 5), derive its

σ12 analogous form (Eq. 9) and utilize both to find semi-
analytic scalings in S8 × h and S12 × h of Planck CMB
and DES cosmic shear under ΛCDM (Eqs. 8, 10 and 13).
Both formulae are good to 1% or better accuracy within
a range of parameters spanning a 10σ region around the
Planck 2018 ΛCDM best fit. These scalings are helpful
in explaining the correlations of lensing surveys with h
when tighter priors are introduced (Fig. 2), as well as in
showing what joint solutions to the Hubble and lensing
tensions would or would not be consistent with ΛCDM.

Finally, we obtain idealized target scalings for models
aiming to solve both cosmology tensions jointly by drop-
ping the assumption of ΛCDM, while adjusting only the
early-Universe (Eqs. 14 and 15). These targets are simply
directions in parameter space which may serve as model-
building pointers. We compare them with the empirical
results of an existing popular model (EDE), quantifying
its known inability in its current formulation to solve the
lensing part of the tension (Eqs. 16 and 17 and Fig. 4).

In conclusion, we find the absolute distance convention
still provides a coherent picture of the current lensing-
amplitude tension, however it is complicated in weak
lensing alone due to a correlation with the unconstrained
Hubble parameter.
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