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ABSTRACT
We provide scaling relations and Ðtting formulae for adiabatic cold dark matter cosmologies that

account for all baryon e†ects in the matter transfer function to better than 10% in the large-scale struc-
ture regime. They are based upon a physically well-motivated separation of the e†ects of acoustic oscil-
lations, Compton drag, velocity overshoot, baryon infall, adiabatic damping, Silk damping, and cold
dark matter growth suppression. We also Ðnd a simpler, more accurate, and better motivated form for
the zero-baryon transfer function than previous works. These descriptions are employed to quantify the
amplitude and location of baryonic features in linear theory. While baryonic oscillations are prominent if
the baryon fraction the main e†ect in more conventional cosmologies is a sharp)

b
/)0Z )0 h2] 0.2,

suppression in the transfer function below the sound horizon. We provide a simple but accurate descrip-
tion of this e†ect and stress that it is not well approximated by a change in the shape parameter !.
Subject headings : cosmology : theory È dark matter È large-scale structure of universe

1. INTRODUCTION

A key success of the cold dark matter (CDM) paradigm is
the ability of linear perturbation theory in the early universe
to explain the power spectra observed in the cosmic micro-
wave background (CMB) and galaxy surveys. On the
largest scales, COBE Ðnds a trend of power with scale
rather close to the theoretically motivated scale-invariant
spectrum et al. On scales between 10 and(Bennett 1996).
200 Mpc, however, galaxy surveys (e.g., & EfstathiouBaugh

& Willick Ðnd a much di†erent trend, in1993 ; Strauss 1995)
which the power increases with scale. Merely by including
the e†ects of the transition between a radiation-dominated
and matter-dominated universe, the CDM cosmology
roughly explains both the relative normalization and the
di†ering spectral indices of these two regimes.

Although the presence of cold dark matter does play a
leading role in determining the matter power spectrum, the
inclusion of baryons can lead to signiÐcant alterations.
Indeed baryonic features in the power spectrum are a fun-
damental prediction of the gravitational instability para-
digm, and their discovery would represent a strong
consistency test for the cosmological model. Such features
are the direct result of small density Ñuctuations in the early
universe prior to recombination. At those times, the
baryons are tightly coupled with the photons and share in
the same pressure-induced oscillations that lead to acoustic
peaks in the CMB. This not only leads to intermediate-scale
oscillations in the power spectrum but also produces an
overall suppression of power on small and intermediate
scales.

While the low baryon fraction (D5%) in the standard
CDM model may have justiÐed the neglect of baryonic
e†ects on the power spectrum in the past, recent obser-
vations favor higher baryon fractions. X-ray observations of
clusters of galaxies yield baryon fractions of 10%È30%

et al. Jones, & Foreman Recent(White 1993 ; David, 1995).
measurements of high-redshift deuterium abundances

Fan, & Burles but see & Hogan(Tytler, 1996 ; Rugers 1996)

1 Alfred P. Sloan Fellow.

and new theoretical interpretations of the Lya forest
et al. and references therein) suggest a(Weinberg 1997,

value of the baryon density greater than the Ðducial)
bnucleosynthesis value of 0.0125 h~2 et al.(Walker 1991).

Meanwhile, observations of large-scale structure (e.g.,
higher Hubble constants (e.g.,Bahcall 1996), Freedman

and high-redshift galaxies (e.g., et al.1996), Spinrad 1997)
and clusters Fan, & Cen favor a universe(Bahcall, 1997)
with Such baryon fractions lead to modiÐcations of)0\ 1.
the pure CDM transfer function that are within obser-
vational sensitivities & Strauss(Tegmark 1997 ; Goldberg
1997).

Numerical codes to solve the multispecies Boltzmann
equations (e.g., & EfstathiouBond 1984 ; Holtzmann 1989 ;

et al. & Zaldarriaga now agree to 1%Hu 1995 ; Seljak 1996)
accuracy and run in a few minutes on todayÏs workstations.
While these codes (e.g., the publicly available CMBfast)
should be used for applications demanding high accuracy,
analytic descriptions are useful for understanding how the
di†erent physical e†ects give rise to the behavior seen in the
transfer function. Such descriptions better isolate the
unique and robust observational signatures of physical pro-
cesses in the early universe and quantify their scalings with
cosmological parameters. They also probe possible param-
eter degeneracies and suggest possible consistency tests with
related e†ects in the CMB.

To this end, we develop here a Ðtting formula for the
matter transfer function of the general CDM plus baryon
universe (see eqs. and The formula is com-[16]È[24] ° 2).
posed of a number of well-motivated ingredients, whose
behaviors we discuss in detail. We achieve fractional accu-
racies of 10% in fully baryonic models and D5% in partial
baryon models. Included here is a quantiÐcation of the fun-
damental scales including the acoustic and Silk damping
scales that are related but not equal to the equivalent scales
in the CMB.

We then use this form to produce quantitative assess-
ments of the amplitude and location of baryonic oscil-
lations, as well as the alteration to the intermediate-scale
shape and small-scale normalization of the transfer func-
tion. Previous assessments of the latter e†ects (see, e.g.,
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TABLE 1

A LIST OF SYMBOLS USED IN THIS PAPER

Symbol Description Equation/Section

!0 . . . . . . . . )0 h (28)
!eff . . . . . . . E†ective shape (30)
#2.7 . . . . . . Temperature of CMB ° 2
a! . . . . . . . . ! suppression (31)
a
b
. . . . . . . . . Baryon suppression (14)

a
c
. . . . . . . . . CDM suppression (11)

b
b
. . . . . . . . . Baryon envelope shift (24)

b
c
. . . . . . . . . Shift in CDM log (12)

bnode . . . . . . Node shift parameter (23)
R . . . . . . . . . Photon-baryon ratio (5)
R

d
. . . . . . . . R at z

d
(6)

T . . . . . . . . . Transfer function (TF) (1), (16)
T
b
. . . . . . . . . Baryon sector TF (13), (21)

T
c
. . . . . . . . . CDM sector TF (9), (17)

T0 . . . . . . . . Zero-baryon TF (29)
T30 . . . . . . . . Pressureless TF (19)
k . . . . . . . . . . Wavenumber (1)
keq . . . . . . . . Equality wavenumber (3)
kSilk . . . . . . Silk wavenumber (7)
q . . . . . . . . . . k scaled with keq (10)
s . . . . . . . . . . Sound horizon at drag epoch (6), (26)
s8 . . . . . . . . . . E†ective sound horizon (22)
z
d
. . . . . . . . . Redshift of drag epoch (4)

zeq . . . . . . . . Redshift of equality (2)

& Dodds though sufficientPeacock 1994 ; Sugiyama 1995),
for the current generation of experiments at low baryon
fraction, are not accurate enough for future high-precision
tests expected of the Sloan Digital Sky Survey &(Gunn
Weinberg and 2dF Survey We present1995) (Taylor 1995).
an approximate form that neglects the acoustic oscillations
but accurately represents the suppression of power on inter-
mediate scales (eqs. and To this end, we[26] [28]È[31]).
also present a simpler and more accurate formula (eq. [29])
for the zero-baryon transfer function (e.g., et al.Bardeen
1986).

In we lay the groundwork for the subsequent dis-° 2
cussions by presenting a summary of the physical scales that
enter linear perturbation theory and the exact small-scale
solution & Sugiyama hereafter HS96) that we use(Hu 1996,
to anchor our Ðtting formula. In we state the Ðtting° 3
formula and discuss its performance. In we describe the° 4
phenomenology revealed by the formula and present simple
scalings to characterize the baryon oscillations and shape
alteration. We conclude in In the we give a° 5. Appendix,
short guide to help the reader locate relevant formulae from
the paper and turn them into COBE-normalized power
spectra. A list of symbols used in this paper is given in
Table 1.

2. PHYSICAL EFFECTS

To motivate and explain the transfer function formulae in
we begin with a review of some of the basic results of° 3,

linear perturbation theory, starting with a summary of the
physical scales that enter the theory. We then describe the
exact small-scale solutions found by as they play aHS96,
central role in the development of the Ðtting formulae and
the explanation of baryon phenomenology.

The particular physical properties of the constituents of
the universe, in particular their equations of state and inter-
actions, can alter the predictions of perturbation theory.
Causality, however, precludes e†ects at arbitrarily large

scales. It is therefore usual to measure the resulting pertur-
bations by comparing them to the amplitude they would
have had were causal physics neglected. The result is the
transfer function, deÐned as2

T (k)4
d(k, z\ 0)
d(k, z\ O)

d(0, z\ O)
d(0, z\ 0)

, (1)

where d(k, z) is the density perturbation for wavenumber k
and redshift z. By construction, T ] 1 as k ] 0. The power
spectrum So d(k) o2T is proportional to the square of the
transfer function multiplied by the initial power spectrum,
most often taken to be proportional to a power law kn with
n B 1. Strictly speaking, each species of particle has a
separate transfer function ; however, after recombination
the baryons are essentially pressureless and quickly catch
up with the cold dark matter perturbations, leaving both
with the same transfer function. It is this transfer function
that we study in this paper.

We consider cosmologies in which the universe is pri-
marily composed of photons, baryons (and their accom-
panying electrons), massless neutrinos, and cold dark
matter (CDM). Relative to the critical density, the densities
today of the baryons and CDM are and respectively.)

b
)

c
,

The total matter density is then The CMB)0\ )
b
] )

c
.

temperature is written as K; the best obser-TCMB 2.7#2.7vations from the COBE FIRAS instrument are
2.728^ 0.004 K et al. 95% conÐdence level).(Fixsen 1996 ;
We assume that the massless neutrinos contribute an
energy density corresponding to three species at (4/11)1@3
the temperature of the photons. We use a Hubble constant

and deÐne km s~1 Mpc~1). It is importantH0 h 4H0/(100
to note that for the dynamics of the Ñuctuationsz? )0~1
are determined solely by the matter-radiation ratio

the baryon-photon ratio and the)0 h2#2.7~4, )
b
h2#2.7~4,

CMB temperature We Ðx the last of these to be theTCMB.COBE value and do not include variations in in our#2.7Ðts. Since all e†ects in the transfer function are set at those
early times, the resulting description should depend only on

and The existence today of a nonzero cosmo-)0 h2 )
b
/)0.logical constant or curvature is insigniÐcant.

2.1. L ength and T imescales
The physics governing the evolution of perturbations in

CDM-baryon universes involves three distinct length
scales : the horizon size at matter-radiation equality, the
sound horizon at the time of recombination, and the Silk
damping length at recombination.

In the usual cosmological paradigm, nonrelativistic par-
ticles (baryons, electrons, and CDM) dominate relativistic
particles (photons and massless neutrinos) in density today.
However, because the density of these two classes of par-
ticles scale di†erently in time, at an earlier time, the reverse
situation held. The transition from a radiation-dominated
universe to a matter-dominated one occurs roughly at

zeq\ 2.50] 104)0 h2#2.7~4 , (2)

the redshift where the two classes have equal density. As
density perturbations behave di†erently in a radiation-

2 In the synchronous or comoving gauge ; gauge issues of are no practi-
cal concern for subhorizon scales.
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dominated universe versus a matter-dominated one due to
pressure support, the scale of the particle horizon at the
equality epoch zeq,

keq 4 (2)0 H02 zeq)1@2 \ 7.46] 10~2)0 h2#2.7~2 Mpc~1 ,

(3)

is imprinted on the matter transfer function ; in particular,
perturbations on smaller scales are suppressed in amplitude
in comparison to those on large scales. If the universe con-
sisted only of noninteracting matter and radiation, the
matter transfer function would depend on the ratio (k/keq)alone.

Complications arise due to interactions between the
species. Prior to the recombination of baryons and elec-
trons, the large density of free electrons couples the baryons
to the photons through Coulomb and Compton inter-
actions so that the three species move together as a single
Ñuid. This continues until, in the process of recombination,
the rate of Compton scattering between photons and elec-
trons becomes too low, freeing the baryons from the
photons. We thus deÐne the drag epoch as the time atz

dwhich the baryons are released from the Compton drag of
the photons in terms of a weighted integral over the
Thomson scattering rate (see eqs. [C8], [E2]). A Ðt toHS96,
the numerical recombination results is

z
d
\ 1291

()0 h2)0.251
1 ] 0.659()0 h2)0.828 [1] b1()b

h2)b2] ,

b1\ 0.313()0 h2)~0.419[1] 0.607()0 h2)0.674] ,

b2\ 0.238()0 h2)0.223 , (4)

where we have reduced by a factor of 0.96 from onz
d

HS96
phenomenological grounds. For this epoch)

b
h2[ 0.03,

follows last scattering of the photons.
Prior to small-scale perturbations in the photon-z

d
,

baryon Ñuid propagate as acoustic waves. The sound speed
is (in units where the speed of light isc

s
\ 1/[3(1 ] R)]1@2

unity), where R is the ratio of the baryon to photon momen-

tum density,

R4 3o
b
/4oc \ 31.5)

b
h2#2.7~4(z/103)~1 . (5)

We deÐne the sound horizon at the drag epoch as the co-
moving distance a wave can travel prior to redshift z

d

s \
P
0

t(zd)
c
s
(1 ] z)dt

\ 2
3keq

S 6
Req

ln
J1 ] R

d
] JR

d
] Req

1 ] JReq
, (6)

where and are the values of R at theR
d
4 R(z

d
) Req4 R(zeq)drag epoch and epoch of matter-radiation equality, respec-

tively. The sound horizon at the drag epoch (hereafter
simply the sound horizon) is larger than the equality
horizon in models but smaller than it is in(D1/keq) high-)0models ; it also decreases strongly with increasinglow-)0baryon fraction if (seeR

d
Z 1 Fig. 1).

On small scales, the coupling between the baryons and
the photons is not perfect, such that the two species are able
to di†use past one another The Silk damping(Silk 1968).
scale is well Ðtted by the approximation

kSilk\ 1.6()
b
h2)0.52()0 h2)0.73[1 ] (10.4)0 h2)~0.95]

Mpc~1 , (7)

which represents a ^20% phenomenological correction
from the value given in The Silk scale is generally aHS96.
smaller length scale than either s or Note that the1/keq.di†erence between the drag and last scattering epochs
implies that for the sound and Silk scales in the)

b
h2[ 0.03

transfer function are larger than those in the CMB. We
show a comparison of these scales as a function of cosmo-
logical parameters in Figure 1.

2.2. Small-Scale Solutions
In the small-scale limit, one can solve the linear pertur-

bation equations analytically in the approximation that
baryons provide no gravitational source to the CDM

This approximation is appropriate below the sound(HS96).

FIG. 1.ÈComparison of the physical scales as functions of and the baryon fraction (a) The equality scale vs. the sound horizon :)0 h2 )
b
/)0. keq s/n

(unlabeled contours are at 0.1 increments). (b) The sound horizon vs. the Silk scale : (unlabeled contours are 2 and 3). The factors of n have beenkSilk s/n
included to facilitate comparison to the acoustic scale.
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horizon since baryon perturbations are pressure supported.
As we will use this solution in order to anchor the small-
scale end of our Ðtting formulae, we describe the solutions
further.

The transfer function is written as a sum of the baryon
and cold dark matter contributions at the drag epoch

T (k) \ )
b

)0
T
b
(k) ] )

c
)0

T
c
(k) . (8)

The CDM transfer function can be solved exactly in terms
of hypergeometric functions that are more conveniently
approximated by the following form:

T
c
] a

c
ln 1.8b

c
q

14.2q2 , (9)

q \
A k
Mpc~1

B
#2.72 ()0 h2)~1 \ k

13.41keq
, (10)

where and are Ðtted bya
c

b
c

a
c
\ a1~)b@)0a2~()b@)0)3 ,

a1\ (46.9)0 h2)0.670[1 ] (32.1)0 h2)~0.532] ,

a2\ (12.0)0 h2)0.424[1 ] (45.0)0 h2)~0.582] , (11)

b
c
~1\ 1 ] b1[()c

/)0)b2 [ 1] ,

b1\ 0.944[1] (458)0 h2)~0.708]~1 ,

b2\ (0.395)0 h2)~0.0266 . (12)

As shows the familiar ln)
b
/)0] 0, a

c
, b

c
] 1. Equation (9)

(k)/k2 dependence of the small-scale CDM transfer function.
This occurs because outside the horizon, density pertur-
bations grow as k2 due to the product of potential and
velocity gradients that drive the growth ; inside the horizon
in the radiation-dominated epoch the growth is logarithmic.
The main e†ect of the baryons comes from the suppression
in growth rates between equality and the drag epoch. As

increases, the time between the two epochs increases ;)0 h2
thus the maximum suppression due to the baryons occurs in
the highest models. A plot of is shown in)0 h2 a

c
)

c
/)0Figure 2a.

In the small-scale limit, the baryons are trapped in acous-
tic oscillations until recombination permits them to slip
past the photons. While the density perturbation of this
oscillation contributes to the transfer function, the corre-

sponding velocity perturbation actually dominates in the
small-scale limit. When the oscillation is released at the
drag epoch, the baryons move kinematically according to
their velocity and generate a new density perturbation

& Zeldovich & Vishniac This(Sunyaev 1970 ; Press 1980).
so-called velocity overshoot means that the transfer func-
tion for ks ? 1 follows

T
b
] a

b
sin(ks)

ks
D(k) . (13)

Here D(k) represents the e†ects of Silk damping, which
occurs due to combination of di†usion of the photons with
respect to the baryons and Compton drag moving baryons
from overdensities to underdensities and hence destroying
the perturbation. That the dependence is sin(ks) rather than
cos(ks) is the result of the dominance of the velocity term
rather than the density term. A detailed treatment allows
one to calculate a

b
:

a
b
\ 2.07keq s(1] R

d
)~3@4G

A1 ] zeq
1 ] z

d

B
, (14)

G(y) \ y
C
[6J1 ] y ] (2 ] 3y) ln

AJ1 ] y ] 1

J1 ] y [ 1

BD
. (15)

The factor comes from the damping of oscil-(1] R
d
)~3@4

lations resulting from the adiabatic decrease in the sound
speed & Yu eq. [A17]). The factor(Peebles 1970 ; HS96,
involving G(y) (Py~1@2 for y ? 1) comes from the product
of the growth suppression between equality and the drag
epoch (Py~1) and the time available before the velocities
creating the perturbation decay due to the free expansion of
the universe (Py1@2). A plot of is shown ina

b
)

b
/)0 Figure

2b.
That the phase of the oscillations is ks & Yu(Peebles

can be seen simply from integrating the dispersion1970)
relation The change in phase for an acoustic waveu\ kc

s
.

is Integrating this from t B 0 to thed/\ [k(1 ] z)]c
s
dt.

drag epoch (where the baryons are released and the oscil-
lations freeze out) yields ks, owing to the deÐnition in

A technical complication occurs forequation (6). k Z kSilk.The presence of strong damping slightly raises the redshift
at which the oscillations freeze out, making s a few percent
smaller (see Fig. 2). We have neglected this e†ectHS96
because it occurs at sufficiently small scales that the

FIG. 2.ÈSuppression factors for (a) the CDM and (b) the baryonic acoustic oscillations(a
c
)

c
/)0) (a

b
)

b
/)0)
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FIG. 3.ÈFour examples of the Ðt compared to numerical results. The larger plots show the numerical result (solid lines) and the Ðt (dashed lines). The
smaller subplots show the residuals, deÐned as the di†erence between the two divided by a nonoscillatory envelope. Note that in the fully baryonic models,
the oscillations have alternating sign in the transfer function. Also shown is the zero-baryon case (dotted lines) ; note the strong suppression on scales below
the sound horizon due to the baryons.

resulting phase shift is unobservable in practice, but one can
see the deviations when comparing to numerical results (see
Fig. 3).

3. FITTING FORMULAE

As we have seen in analytic solutions exist for the° 2,
transfer function at both large and small scales. The tran-
sition between these extremes is deÐned by two scales, the
horizon at matter-radiation equality and the sound horizon
at the end of the drag epoch. The former sets the dynamics
of the expansion and perturbation growth ; the latter sets
the scale at which pressure support becomes important for
the baryons. Because the range of scales accessible by the
study of structure formation falls within this transition
regime, it is important to understand the full transfer func-
tion in detail. To that end, we present in this section a Ðtting
formula that approximates the full transfer function on all
scales.

We write the transfer function as the sum of two pieces,

T (k) \ )
b

)0
T
b
(k) ] )

c
)0

T
c
(k) , (16)

whose origins lie in the evolution before the drag epoch of
the baryons and cold dark matter, respectively. This separa-
tion is physically reasonable, as before the drag epoch the
two species were dynamically independent and after the
drag epoch their Ñuctuations are weighted by the fractional

density they contribute. This automatically includes in T
cthe e†ects of baryonic infall into CDM potential wells. Note

however that and are themselves not true transferT
b

T
cfunctions, as they do not reÑect the density perturbations of

the relevant species today. Rather, it is their density-
weighted average T (k) that is the transfer function for both
the baryons and the CDM.

3.1. Cold Dark Matter
The transfer function for cosmologies in which noninter-

acting cold dark matter dominates over baryons has been
studied by many authors, and accurate Ðtting formulae
already exist in this limit (e.g., & EfstathiouBond 1984 ;

et al. but see improvements in ourBardeen 1986 ; ° 4.2).
However the e†ect of baryons, though long known from
numerical calculations (e.g., & YuPeebles 1970 ; Holtzmann

have in the past either been included in Ðtting formu-1989),
lae in an ad hoc manner (see, e.g., & DoddsPeacock 1994 ;

or only in the small-scale limitSugiyama 1995) (HS96).
In the presence of baryons, the growth of CDM pertur-

bations is suppressed on scales below the sound horizon.
The change to the asymptotic form can be calculated and
has been shown in equations We introduce this(9)È(12).
suppression by interpolating between two solutions near
the sound horizon :

T
c
(k)\ fT30(k, 1, b

c
)] (1 [ f )T30(k, a

c
, b

c
) (17)
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f \ 1
1 ] (ks/5.4)4 , (18)

with

T30(k, a
c
, b

c
) \ ln (e] 1.8b

c
q)

ln (e] 1.8b
c
q) ] Cq2 , (19)

C\ 14.2
a
c

] 386
1 ] 69.9q1.08 . (20)

The variables q, and have been given in equationsa
c
, b

c
(10),

and respectively.(11), (12),

3.2. Baryons
In the case of cosmologies without cold dark matter, the

transfer function departs from unity below the sound
horizon to exhibit a series of declining peaks due to acoustic
oscillations. The small-scale exact solution of equation (13)
suggests that these may be written as the product of a
declining oscillatory term, a suppression due to the decay of
potentials between the equality and drag scales, and an
exponential Silk damping. We therefore write

T
b
\
C T30(k ; 1, 1)
1 ] (ks/5.2)2] a

b
1 ] (b

b
/ks)3 e~(k@kSilk)1.4

D
j0(ks8 ) .

(21)

Here the spherical Bessel function x)/x is a piecej0(x) 4 (sin
that approaches unity above the sound horizon but oscil-
lates below it. The envelope in square brackets traces the
zero-baryon CDM case above the sound horizon and then
breaks to a constant multiplied by an exponential Silk
damping factor. We attach the Silk damping factor only to
the second term because such di†usion can only occur on
scales below the sound horizon, where only the second term
contributes signiÐcantly. This subtlety marginally improves
the Ðt. The sound horizon s, Silk scale and amplitudekSilk,suppression were given in equations anda

b
(6), (7), (14),

respectively ; we now discuss ands8 b
b
.

While the nodes of the baryonic transfer function asymp-
totically approach those of sin(ks) for ks ? 1, the Ðrst few
nodes fall at higher k than predicted by sin(ks).(ks [ 10)
This shift is due to the contribution of the baryon density
perturbation itself at the drag epoch and reÑects the fact
that at the sound horizon velocity overshoot is not the
dominant e†ect. This e†ect increases with because the)0 h2
time available for velocity overshoot (see decreaseseq. [14])
as and is only weakly dependent on the baryon(z

d
/zeq)1@2fraction. We have veriÐed this explanation of the node shift

by isolating the density and velocity contributions of the
baryons at the drag epoch from numerical evolution codes.

We address this shifting of the nodes phenomenologically
by introducing the quantity

s8 (k)\ s
[1] (bnode/ks)3]1@3 . (22)

For restoring the sinusoidal nodes.ks ?bnode, s8 ] s,
However, at moving the nodesks [bnode, s8 B ks2/bnode \ s,
to higher k. We Ðnd

bnode \ 8.41()0 h2)0.435 , (23)

independent of the baryon fraction. Hence the e†ect gets
smaller at low as expected.)0

The amplitude speciÐes the small-scale asymptotica
bcontribution of the velocity portion of the acoustic oscil-

lation. Two e†ects modify this amplitude at large scales.
Above the sound horizon, velocity contributions to the
transfer function fall o†. Furthermore, the amplitude
declines if CDM dominates the energy density of the
photon-baryon system when the wavelength enters the
horizon. This occurs due to the absence of feedback in the
gravitational driving of the photon-baryon oscillator

° 3.1). The net result is a cuto† associated with the(HS96,
sound horizon that moves to smaller scales as )0 h2
increases and/or decreases. We describe this in)

b
/)0by turning on the velocity term at the charac-equation (21)

teristic scale whereb
b
s,

b
b
\ 0.5] )

b
)0

]
A
3 [ 2

)
b

)0

B
J(17.2)0 h2)2] 1 . (24)

3.3. Performance
For the parameter range and 0¹0.025[)0 h2[ 0.25

the Ðtting formula works quite well. For fully)
b
/)0¹ 1

baryonic models (i.e., the fractional residuals are)
c
\ 0)

nearly always under 10%. As the baryon fraction decreases,
the accuracy improves due to the increasing contribution of
the simpler CDM piece. Residuals smaller than 5% are
typical for Note that we quote the residuals as)

b
/)0\ 0.5.

the di†erence between the Ðt and the numerical results
divided by a nonoscillatory envelope that is deÐned by
replacing in by(sin ks8 )/ks8 equation (21) [1] (ks8 )4]~1@4.
This envelope matches the knee of the transfer function and
grazes all the subsequent maxima.

In we display four comparisons of the ÐttingFigure 3
formula relative to the numerical results. Also shown are
the residuals relative to our envelope. The reason for the
degradation in the Ðt at the shortest scales is that small
errors in the sound horizon (see the end of produce° 2.2)
signiÐcant errors in the phase of the oscillations, producing
order unity residuals. However, the Ðtting formula repro-
duces the correct amplitude and hence the Silk scale.

The most serious systematic error in the Ðtting formula
occurs for In the baryon sector of these cases,)0 h2Z 0.25.
the drop between ks B 1 and the oscillations at ks Z 5
becomes quite precipitous. Our formula does not decline
this quickly, causing the amplitude of the Ðrst valley to be
signiÐcantly overestimated. Later peaks and valleys are
underestimated in an attempt to compensate. One can see
the beginnings of this trend in the example in)0\ )

b
\ 1

the problem gets more severe for higherFigure 3 ; )0 h2.
A less important systematic e†ect occurs for high baryon

fraction low-) models. Because of a(0.7\ )
b
/)0\ 0.9),

small shift in the CDM break scale that we have(eq. [18])
chosen not to model, the Ðrst valley is systematically under-
estimated by D10%È15% in amplitude. This problem does
not extend to lower baryon fractions.

4. PHENOMENOLOGY

There are a number of phenomenological trends as a
function of cosmological parameters. The two basic e†ects
that arise from the inclusion of baryons are the introduction
of oscillations and the suppression of power below the
sound horizon, with a corresponding sharpening of the
bend around the sound horizon. We discuss these two in
turn.
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FIG. 4.ÈLocation of the Ðrst peak in Mpc~1 as a function of cosmo-
logical parameters.

4.1. Baryon Oscillations
Two interesting aspects of the baryonic oscillations are

the location and amplitude of the peaks and troughs. Well
under the sound horizon we expect them to fall at
k \ mn/2s where m\ 3, 7, 11, . . . for troughs and m\ 5, 9,
13, . . . for peaks. However, as described in the Ðrst few° 3.2,
oscillations are shifted according to the parameter Asbnode.increases, the Ðrst few peaks and troughs are progres-)0 h2
sively shifted to higher k. A corollary to this shift is that the
ratio of the node locations becomes smaller as one raises

i.e., the valleys and peaks become slightly narrower. The)0,location of the Ðrst peak is conveniently Ðtted as

kpeak \ 5n
2s

(1 ] 0.217)0 h2) , (25)

where

s \ 44.5 ln (9.83/)0 h2)
J1 ] 10()

b
h2)3@4

Mpc (26)

approximates the sound horizon to D2% over the range
and The value of as)

b
h2Z0.0125 0.025[)0h2[0.5. kpeaka function of cosmological parameters is shown in Figure 4.
The amplitude of the oscillations also has a nontrivial

dependence on the cosmological parameters. The oscil-
lations of course grow stronger as the baryon fraction
increases. However, at Ðxed baryon fraction, they are
weaker compared to CDM contributions in high due)0 h2
to the increase in the time available for the CDM to grow
between equality and the drag epoch. While the full series of
peaks and valleys may be impossible to observe due to
nonlinear structure formation, the Ðrst valley and peak are
generally in the linear regime. In we show theFigure 5
fractional enhancement of power due to the oscillations
over the smooth CDM contributions. The Ðrst peak grows
monotonically with the baryon fraction. The Ðrst trough is
more subtle : while the transfer function at this location
simply declines as the baryon fraction increases, when T (k)
goes negative, the power, which is the square of T , will
regenerate. Perfect cancellation of the baryon and CDM
contributions occurs along the contour labeled ““[1 ÏÏ in

above this line the trough in amplitude becomesFigure 5a ;
a peak in power as the baryon contributions come to fully
dominate. A useful rough scaling as to when oscillations
become important is given by

)
b

)0
Z )0 h2] 0.2 , (27)

which crudely describes the region where the change in
power is greater than D20%.

A related trend is the increase with of the sharpness)0 h2
of the decline in the baryonic sector from the knee at ks B 1
(T B 1) into the series of oscillations below the sound
horizon This is most easily seen in the fully(Peebles 1981).
baryonic models of near k \ 0.1 h Mpc~1 in theFigure 3 ;

model, the transfer function drops a factor of)0 h2\ 0.25
10 in under half a decade in k. This break becomes even
more striking in higher cases.)0 h2

FIG. 5.ÈFractional enhancement of power due to (a) the Ðrst valley and (b) the Ðrst peak relative to nonoscillatory CDM portion of the transfer function
at the appropriate wavevector from the Ðt. Unlabeled contours are at (a) [0.8, 0, 1, 3 and (b) 8.0, 16.0.(T /T

c
)2[ 1,
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4.2. E†ective Shape
As we have seen, if the main e†ect)

b
/)0[ )0 h2] 0.2,

of the baryons is not to introduce oscillations into the trans-
fer function but to suppress the k~2 tail from the growth of
CDM perturbations. This occurs both because the CDM
portion is suppressed by and because the baryonicT

c
a
cportion is providing essentially no power below theT

bsound horizon. As noted just above, the latter transition can
occur quite quickly. These suppressions indicate that the
shape of the transfer function must change, with a break
near the sound horizon. It is useful to quantify this e†ect.

Let us work forward from the zero-baryon case. Here the
transfer function is parameterized by more com-q P k/keq,monly expressed as a shape parameter where!\ )0 h,

q \ k
h Mpc~1 #2.72 /! . (28)

A commonly used Ðtting formula to the zero-baryon limit
was presented by et al. eq. [G3]). HoweverBardeen (1986,
this formula Ðts neither the exact small-scale solution of

nor does it have the quadratic deviation from unity° 2.2
required by the theory. The latter is a fundamental require-
ment of causality in that one power of k(Zeldovich 1965),
must arise from stress gradients generating bulk velocity
and a second from velocity gradients generating density
perturbations. In fact the coefficient of this quadratic devi-
ation can be calculated perturbatively if the stress gradients
are dominated by the isotropic (pressure) term.

The following functional form satisÐes these criteria and
is a better Ðt to the zero-baryon case extrapolated from
trace-baryon models calculated by CMBfast

T0(q) \ L 0
L 0] C0 q2 ,

L 0(q) \ ln (2e] 1.8q) ,

C0(q) \ 14.2] 731
1 ] 62.5q

. (29)

Note that this form is not only more accurate than the
et al. one but is also simpler : there are fewerBardeen (1986)

parameters and the coefficients 1.8 and 14.2 are derived
theoretically. The parameter 731, the small-q quadratic
deviation, has been Ðtted rather than derived to account for
the small correction due to anisotropic stress gradients. In

we show a comparison of this form to numericalFigure 6
calculations and various Ðtting formulae in the literature.
Our formula agrees with numerical calculations at the same
level as di†erent numerical calculations agree with each
other et al. i.e., to 1% through the CMB and(Hu 1995),
large-scale structure regimes.

The presence of baryons has commonly been included by
Ðtting a constant shape parameter ! & Dodds(Peacock

That such an approach can work on1994 ; Sugiyama 1995).
small scales can be seen as follows. On small scales, the
e†ect of the baryons is a constant suppression by the factor

Since the transfer function there is proportional toa
c
)

c
/)0. a rescaling of approximates this e†ect.(k/!0)~2, !0However, this simple rescaling of does not properly treat!0the region observable through large-scale structure. Above

the sound horizon, the baryons and CDM are indistin-
guishable, and so the transfer function is close to that
parameterized by Below the horizon, if one!04 )0 h.

FIG. 6.ÈComparison of various zero-baryon transfer functions to the
numerical calculation of CMBfast & Zaldarriaga The Ðtting(Seljak 1996).
form of agrees with CMBfast to 1%; whereas previous approx-eq. (29)
imations P82), Starobinsky & Sahni (in Modern TheoreticalPeebles (1982 ;
and Experimental Problems of General Relativity, as quoted in Shandarin
& Zeldovich SS84), and et al. BBKS86). Also shown1984 ; Bardeen (1986 ;
is the form of & Efstathiou BE84), a 3% baryon fractionBond (1984 ;
model that has often been used as a zero-baryon proxy.

neglects the oscillations caused by the baryons, the transfer
function is suppressed and roughly follows that of a rescaled
!. Hence the transition around the sound horizon cannot
be Ðtted by a single !.

A reasonable Ðt to the nonoscillatory part of the transfer
function can be written by rescaling as one moves!eff(k)
through the sound horizon

!eff(k) \ )0 h
C
a!] 1 [ a!

1 ] (0.43ks)4
D

, (30)

a!\ 1 [ 0.328 ln (431)0 h2) )
b

)0

] 0.38 ln (22.3)0 h2)
A)

b
)0

B2
. (31)

DeÐning as in we Ðnd thatqeff equation (28), T (k) B T0(qeff).shows an example. Note the simpler form of s inFigure 7
may be used here. The quantity is nearlyequation (26) a!the radicand of which is plotted in(a

c
)

c
/)0)1@2, Figure 2 ;

we provide the above form for simplicity and to account for
small deviations at the higher values. The latter arise)0 h2
because the Ðt has been optimized in the observable region

Mpc~1, where the CDM transfer function is notk [ 0.1
quite in its k~2 small-scale limit. Of course, neglecting the
oscillatory contributions is not a good approximation for

In addition to the obvious omission of the)
b
/)0Z 0.5.

wiggles, we have Ðtted to the transfer function T (k) anda!not the observable T (k)2. This neglects the power intro-
duced by the square of the oscillatory term.

We caution the reader that the small-scale asymptote
arises from the normalization rather than!eff \ a!)0 h

shape and therefore should not be conÑated with ! derived
from redshift surveys & Dodds Pure nor-(Peacock 1994).
malization distinctions are not observable with current red-
shift surveys ; instead, one estimates ! by Ðtting power
spectra of arbitrary normalization and relying on the di†er-
ences in shape and power-law slope introduced by the
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FIG. 7.ÈDistortions to the shape of the transfer function as measured
by the true transfer function over the zero-baryon form. The shape func-
tion of adequately describes the true curve apart from the oscil-eq. (30)
lations ; whereas the constant shift in ! described by & DoddsPeacock

PD94) and S95) do not.(1994 ; Sugiyama (1995 ;

variation in !. However, when combined with the COBE
normalization (e.g., & White the normalizedBunn 1997),
predictions from equations and are appropriate.(30) (31)

However, and do make clear that aequation (30) Figure 7
simple rescaling of ! is not accurate near the sound horizon.
Future measurements of large-scale structure expected from
the Sloan Digital Sky Survey & Weinberg and(Gunn 1995)
2dF Survey will be sufficiently precise as to(Taylor 1995)
detect the deviations from a single ! model (Tegmark 1997 ;

& Strauss A key signature is that the bendGoldberg 1997).
from T B 1 to T P k~2 becomes sharper as baryons are
introduced. Detecting this change will require that scales
around s/n (see are well observed.eq. [26])

5. DISCUSSION

We have presented an accurate, well-motivated Ðtting
form for the transfer function of a general CDM-baryon
universe. The formula is generally accurate to better than
10% in fully baryonic universes and better than 5% in cos-
mologies with While the available numerical)

b
/)0[ 0.5.

codes will provide yet more accurate transfer functions, the
Ðtting form here should be useful for characterizing trends

in cosmological parameter space. Moreover, by separating
the various physical aspects in the analytic form, we hope to
provide physical intuition for the e†ects, their interrela-
tionships, and their correspondence with analogous e†ects
in the CMB.

As applications of the form, we gave quantitative assess-
ments of the location and amplitude of the baryonic fea-
tures in the linear regime. We quantiÐed the suppression of
power on scales below the sound horizon due to the admix-
ture of baryons and showed that this suppression is not well
Ðtted by a rescaling of ! if one is probing scales near the
sound horizon. An alternative model, based on an inter-
polation in !, gives a reasonable Ðt to the nonoscillatory
portion of the transfer function provided that )

b
/)0[

Finally, we gave a new Ðtting form for the zero-)0 h2] 0.2.
baryon limit that is more accurate on small scales than
those used previously. A summary of how to use these
various formulae is given in the Appendix.

Baryonic features, like the acoustic peaks in the CMB
& White transcend the adiabatic CDM para-(Hu 1996),

digm discussed in this paper. In fact, any gravitational
instability model where reionization took place no earlier
than the Compton drag epoch for a fullyz

d
D 270()0 h2)1@5,

ionized universe, must possess acoustic e†ects at some level.
Evidence of these e†ects is strong indication that Ñuctua-
tions were generated in the early universe. Moreover, when
combined with CMB observations, baryonic features allow
strong consistency tests for the predicted growth of Ñuctua-
tions as both sets of features reÑect the underlying acoustic
oscillations before recombination. A measurement of the
sound horizon from the matter power spectrum combined
with its angular extent from the CMB would allow an
angular diameter distance test for curvature in the universe
that is largely free of cosmological assumptions. Baryonic
features in the matter power spectrum thus represent a valu-
able resource for cosmological information, but one that
may be difficult to mine observationally.

We thank S. Boughn, U. Seljak, J. Silk, D. Spergel, A.
Szalay, M. Tegmark, and M. White for useful discussions.
The CMBfast was used to generate numericalpackage3
transfer functions. W. H. acknowledges support from the
W. M. Keck foundation and the hospitality of the Aspen
Center for Physics. D. J. E. and W. H. acknowledge support
from NSF PHY-9513835.

3 http ://arcturus.mit.edu :80/Dmatiasz/CMBFAST/cmbfast.html.

APPENDIX

A USERÏS GUIDE

In this paper, we have presented a Ðtting form for the transfer function in a CDM and baryon cosmology with adiabatic
perturbations. The formula is given as equations and Alternatively, if one prefers a simpler form(2)È(7), (10)È(12), (14)È(24).
that accurately represents the baryon-induced suppression on intermediate scales but that ignores the acoustic oscillations in
the transfer function, one may use the form given in equations and The oscillations are fairly small(26) (28)È(31). ([20%
modulation in power) for so in these cases the simpler form will be appropriate for many applications.)

b
/)0[ )0 h2] 0.2,

We also provide in equation a more accurate form for the zero-baryon transfer(29) function.4
The power spectrum of the density Ñuctuations is then proportional to the initial power spectrum times the square of the

transfer function. In the most usual case, the initial power spectrum is taken to be a power law, so that P(k) P knT 2(k), where
n \ 1 is the familiar Harrison-Zeldovich-Peebles scale-invariant case.

4 Electronic versions of the formulae in this paper may be found at http ://www.sns.ias.edu/Dwhu/transfer/transfer.html.
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While the transfer function is independent of late-time e†ects such as the presence of a cosmological constant or curvature,
the magnitude and time dependence of the normalization of the power spectrum does depend on these e†ects. & WhiteBunn

calculate the present-day normalization of the power spectrum implied by the 4 year COBE anisotropy measurement(1997)
and provide the following Ðtting forms for Ñat and open cosmologies :

*2(k) o
z/0 4

k3
2n2 P(k) \ d

H
2
A ck
H0

B3`n
T 2(k) , (A1)

d
H

\ 1.95] 10~5)0~0.35~0.19 ln )0~0.17“e~“~0.14“2 ("\ 0) , (A2)

d
H

\ 1.94] 10~5)0~0.785~0.05 ln )0e~0.95“~0.169“2 ("\ 1 [ )0) , (A3)

where and the contribution of tensor perturbations to the observed anisotropies has been assumed to be zero (seen8 \ n [ 1
& White for more details). The 1 p statistical uncertainty is 7%, and the error in the above Ðts are much smallerBunn 1997

than this for and 0.7 ¹ n ¹ 1.2.0.2¹)0 ¹ 1
To extend this normalization to earlier times, one needs to scale the power spectrum by the square of the growth function

As is well known, for at redshift z. For other cosmologies, one can use theD1(z) (Peebles 1980). )0\ 1, D1\ (1] z)~1
approximation et al. Press, & Turner(Lahav 1991 ; Carroll, 1992)

D1(z) \ (1 ] z)~1 5)(z)
2
G
)(z)4@7 [)"(z) ]

C
1 ] )(z)

2
DC

1 ] )"(z)
70
DH~1

. (A4)

Here )(z) and are the density parameters as seen by an observer at redshift z ; hence)"(z)

)(z) \ )0(1] z)3
)" ] )

R
(1 ] z)2] )0(1 ] z)3 , (A5)

)"(z) \ )"
)" ] )

R
(1 ] z)2] )0(1 ] z)3 , (A6)

where is the matter density in units of critical density, represents the cosmological constant ", and)0 )" \ "/3H02represents the e†ects of curvature.)
R

\ 1 [ )0[ )"The normalization of the power spectrum is such that the variance of mass Ñuctuations inside a sphere of radius R is

p2(R) \
P
0

= dk
k

*2(k)
C3j1(kR)

kR
D2

, (A7)

where j1(x) \ (sin x [ x cos x)/x2.
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