next up previous contents
Next: Integral Solutions Up: Boltzmann Equation Previous: Normal Modes

Evolution Equations

It is now straightforward to rewrite the Boltzmann equation (19) as the evolution equations for the amplitudes of the normal modes of the temperature and polarization $\vec{T}_\ell^{(m)} = (\Theta^{(m)}_\ell, E^{(m)}_\ell, B_\ell^{(m)})$.The gravitational sources and scattering sources of these equations follow from Eq. (20) and (21) by noting that the spin harmonics are orthogonal,
\begin{displaymath}
\int d\Omega\ (\, {}_{s}^{\vphantom{m}} {Y}_{\ell}^{m})(\, {...
 ...'}} {Y}_{\ell'}^{m'}{}^*)
 = \delta_{\ell,\ell'} \delta_{m m'}.\end{displaymath} (26)
The term $n^i \vec{T}_{\vert i}$ is evaluated by use of the coupling relation Eq. (25) for $n^i (\, {}_{s}^{\vphantom{m}} {G}_{\ell}^{m})_{\vert i}$.It represents the fact that spatial gradients in the distribution become orbital angular momentum as the radiation streams along its trajectory $\vec{x}(\hat{n})$.For example, a temperature variation on a distant surface surrounding the observer appears as an anisotropy on the sky. This process then simply reflects a projection relation that relates distant sources to present day local anisotropies.

With these considerations, the temperature fluctuation evolves as  
 \begin{displaymath}
\dot\Theta_\ell^{(m)}
= q \Bigg[ {\, {}_{0}^{\vphantom{m}} {...
 ...ot\tau \Theta_\ell^{(m)} + S_\ell^{(m)}, 
 \qquad (\ell \ge m),\end{displaymath} (27)
and the polarization as 
 \begin{displaymath}
\begin{array}
{rcl}\dot E_\ell^{(m)} &=&
 q
 \Bigg[ {\, {}_{...
 ...}
 B_{\ell + 1}^{(m)} \Bigg] -\dot\tau B_\ell^{(m)}.\end{array}\end{displaymath}   
The temperature fluctuation sources in Newtonian gauge are
\begin{displaymath}
\begin{array}
{lll}
S_0^{(0)} = \dot\tau \Theta_0^{(0)} - \d...
 ... \dot H \vphantom{\displaystyle{\dot a \over a}}\, ,\end{array}\end{displaymath} (28)
and in synchronous gauge,  
 \begin{displaymath}
\begin{array}
{lll}
S_0^{(0)} = \dot\tau \Theta_0^{(0)} - \d...
 ... \dot H \vphantom{\displaystyle{\dot a \over a}}\, ,\end{array}\end{displaymath} (29)
The $\ell=m=2$ source doesn't contain a curvature factor because we have recursively defined the basis functions in terms of the lowest member, which is $\ell=2$ in this case. In the above  
 \begin{displaymath}
P^{(m)} = {1 \over 10} \left[ \Theta_2^{(m)} - \sqrt{6} E_2^{(m)} \right].\end{displaymath} (30)
and note that the photon density and velocities are related to the $\ell=0,1$moments as
\begin{displaymath}
\delta_\gamma = 4\Theta_0^{(0)}$\,, \qquad $v_\gamma^{(m)}=
\Theta_1^{(m)} \, ;\end{displaymath} (31)
whereas the anisotropic stresses are given by
\begin{displaymath}
\pi_\gamma^{(m)} Q_{ij}^{(m)} = 
12 \int {d \Omega \over 4\pi}\ (n_i n_j-{1\over 3}\gamma_{ij})\Theta^{(m)},\end{displaymath} (32)
which relates them to the quadrupole moments ($\ell=2$) as
\begin{displaymath}
(1-3K/k^2)^{1/2} \pi_\gamma^{(0)}= {12 \over 5}\Theta_2^{(0)...
 ...a_2^{(1)}, 
\qquad \pi_\gamma^{(2)}= {8\over 5} \Theta_2^{(2)}.\end{displaymath} (33)
The evolution of the metric and matter sources are given in Appendices A3--A5.


next up previous contents
Next: Integral Solutions Up: Boltzmann Equation Previous: Normal Modes
Wayne Hu
9/9/1997